
CRITICAL SETS OF RANDOM SMOOTH FUNCTIONS ON COMPACT MANIFOLDS

LIVIU I. NICOLAESCU

ABSTRACT. Given a compact, connected Riemann manifold without boundary (M, g) of dimension m
and a large positive constant L we denote byUL the subspace of C∞(M) spanned by eigenfunctions of
the Laplacian corresponding to eigenvalues≤ L. We equipUL with the standard Gaussian probability
measure induced by the L2-metric onUL, and we denote by NL the expected number of critical points
of a random function in UL. We prove that NL ∼ Cm dimUL as L → ∞, where Cm is an explicit
positive constant that depends only on the dimension m of M and satisfying the asymptotic estimate
logCm ∼ m

2
logm as m→∞.
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1. INTRODUCTION

Suppose that (M, g) is a smooth, compact, connected Riemann manifold of dimension m > 1. We
denote by |dVg| the volume density on M induced by g. Throughout the paper we assume that the
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volume is normalized ∫
M
|dVg(x)| = 1.

For any u,v ∈ C∞(M) we denote by (u,v)g their L2 inner product,

(u,v)g :=

∫
M
u(x)v(x) |dVg(x)|.

The L2-norm of a smooth function u is then

‖u‖ :=
√

(u,u)g.

Let ∆g : C∞(M)→ C∞(M) denote the scalar Laplacian defined by the metric g. For L > 0 we set

UL = UL(M, g) :=
⊕

λ∈[0,L]

ker(λ−∆g), d(L) := dimUL.

We equip UL with the Gaussian probability measure.

dγL(u) := (2π)−
d(L)

2 e−
‖u‖2

2 |du|.
For any u ∈ UL we denote by NL(u) the number of critical points of u. If L is sufficiently large,
then NL(u) is finite with probability 1. We obtain in this fashion a random variable NL = NL,M,g,
and we denote by E(NL) its expectation

E(NL) :=

∫
UL

NL(u)dγL(u).

In this paper we investigate the behavior of E(NL) as L → ∞. More precisely, we will prove the
following result.

Theorem 1.1. For any m > 1 there exists a positive constant C = C(m) such that for any compact,
connected, m-dimensional Riemannian manifold M we have

E(NL,M,g) ∼ C(m) dimUL(M, g) as L→∞. (1.1)

The constant C(m) can be expressed in terms of certain statistics on the space Sm the space of
symmetric m×m matrices . We denote dγ∗ the Gaussian measure1on Sm given by

dγ∗(X) =
1

(2π)
m(m+1)

4
√
µm
· e−

1
4

(
trX2− 1

m+2
(trX)2

)
2

1
2(m2 )

∏
i≤j

dxij ,

µm = 2(m2 )+1(m+ 2)m−1.

(1.2)

Then

C(m) =

(
4π

m+ 4

)m
2

Γ(1 +
m

2
)

∫
Sm

|detX| dγ∗(X)︸ ︷︷ ︸
=:Im

. (1.3)

A similar result holds in the case m = 1. In this case M = S1 and UL is the space of trigonometric
polynomials of degree ≤ L. One can show (see [34])

E(NL,S1) ∼
√

3

5
dimUL as L→∞.

1We refer to Appendix B for a detailed description of a 3-parameter family Gaussian measures dΓa,b,c on Sm that
includes dγ∗ as dγ∗ = dΓ3,1,1.
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We can say something about the behavior of C(m) as m→∞.

Theorem 1.2.
logC(m) ∼ log Im ∼

m

2
logm as m→∞. (1.4)

The proof of (1.1) is based on Kac-Rice’s integral formula [1, 4, 8, 14, 15] which expresses the
expected number of critical points of a function in UL as an integral

E(NL) =

∫
M
ρL(x) |dVg(x)|. (∗)

The above equality was given a geometric interpretation by Chern and Lashof [11]. More precisely,
they showed that the integral in the right-hand side of the above equality is the the total curvature of
the immersion given by the evaluation map

ev : M → Hom(UL,R), p 7→ evp, (1.5)

where evp(u) = u(p), ∀u ∈ UL.
For our purposes the probabilistic description of the integrand ρL(x) is more useful. To formulate

it let us denote by Hessx(u, g) the Hessian at x of the random function u ∈ UL computed using the
Levi-Civita connection of the metric g. Using the metric we identify Hessx(u, g) with a symmetric
linear operator TxM → TxM . Then

ρL(x) =
1√

det 2πSdu(x)

E
(
| det Hessx(u, g)|

∣∣ du(x) = 0
)
. (1.6)

Above, Sdu(x) denotes covariance matrix of the Gaussian vector UL 3 u 7→ du(x) ∈ T ∗xM , while
the quantity

E
(
|det Hessx(u, g)|

∣∣ du(x) = 0
)

is the conditional expectation of the random variable u 7→ |det Hessx(u, g)| given that du(x) = 0.
Using the regression formula (see [4, Prop. 1.2] or (A.2)) we express this conditional expectation

as the unconditional expectation of a new random variable |detAL(x)|, where AL(x) denotes a
random, Gaussian symmetric m × m matrix whose covariance takes into account the correlations
between the Gaussian variables u 7→ Hessx(u, g) and u 7→ du(x).

Next, we reduce the large L asymptotics of the Gaussian random vector du(x) and matrix AL(x)
to questions concerning the asymptotics of the spectral function EL of the Laplacian, i.e., the Schwartz
kernel of the orthogonal projection onto UL. These issues were addressed in the pioneering work of
L. Hörmander [21].

We actually prove a bit more. We show that

lim
L→∞

L−
m
2 ρL(x) =

C(m)ωm
(2π)m

, uniformly in x ∈M, (1.7)

where ωm denotes the volume of the unit ball in Rm. Using the classical Weyl estimates (3.2) we see
that (1.7) implies (1.1).

The equality (1.7) has an interesting interpretation. We can think of ρL(x)|dVg(x)| as the ex-
pected number of critical points of a random function in UL inside an infinitesimal region of volume
|dVg(x)| around the point x. From this point of view we see that (1.7) states that for large L we
expect the critical points of a random function in UL to be approximatively uniformly distributed.

We are inclined to believe that as L→∞ the ratio

qL =
var(NL)

E(NL)
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has a finite limit q(M, g). Such a result would show that NL is highly concentrated near its mean value
as L→∞. In [34] we proved that this is the case when M = S1 and moreover, q(S1) ≈ 0.4518.....
In [35] we proved that a closely related concentration result is valid for all flat tori.

For a holomorphic counterpart of such an estimate we refer to [42].
We obtain the asymptotics of C(m) by relying on a trick used by Y.V. Fyodorov [17] in a re-

lated context. This reduces the asymptotics of the integral Im to known asymptotics of the 1-point
correlation function in random matrix theory, more precisely, Wigner’s semi-circle law.

Philosophically, the universality result contained in Theorem 1.1 is a consequence of a universal
behavior of the spectral function EL along the diagonal. Roughly speaking, if we rescale the metric
g so that in the limit it becomes flatter, and flatter, then the corresponding spectral function begins to
resemble the spectral function of the Laplacian on the Euclidean space Rm. For a precise formulation
of this universal rescaling phenomenon we refer to [25, 33].

A related problem was considered by M. Douglas, B. Shiffman, S. Zelditch, [14, 15] where they
investigate the number of critical points of a random holomorphic section of a large power N of a
positive holomorphic line bundle L over a Kähler manifold X . In these papers the role of our UL

is played by the space of holomorphic sections H0(X,LN ), and the large L asymptotics is replaced
by large N asymptotics. The large N asymptotics ultimately follow from the refined asymptotics of
the Szegö kernels obtained by S. Zelditch in [44]. These refined asymptotics then lead to a complete
asymptotic expansion asN →∞ for the expected number of critical points of a random holomorphic
section of LN .

The proof of Theorem 1.1 reveals several additional interesting universal rescaling phenomena.
We identifyUL withU∨L = Hom(UL,R) using the L2-metric. We can thus view the evaluation map
in (1.5) as a map ev : M → UL. For large L this map is an embedding, and we denote by σL the
pullback to M via ev of the L2-metric on UL. Equivalently, if (ψk) is an orthonormal basis of UL,
then

σL =
∑
k

dψk ⊗ dψk.

The equality (3.9) in the proof of Theorem 1.1 shows that the rescaled metric g(L) := L−
m+2

2 σL
converges in the C0 topology to Kmg, where g is the original metric on M and Km is a certain,
explicit constant that depends only on m; see (3.5). This was also observed by S. Zelditch, [45, Prop.
2.3]. A closely related result was proved in [5, Thm.5].

To obtain the convergence of g(L) in stronger topologies we would need bounds on the sectional
curvature of g(L). We show that these bounds are equivalent to some refined asymptotic estimates
satisfied by certain linear combinations of fourth order derivatives of the spectral function, (3.20).

A related embedding can be constructed in the holomorphic case and S. Zelditch [44] has proved
that the resulting sequence of suitably rescaled metrics gN converges C∞ to the original Kähler
metric. The main reason for such a stronger form of convergence is the better behavior of the Szegö
kernels. Such a regular behavior is not to be expected for the spectral function EL.

The present paper is structured as follows. Section 2 contains the formulation and the proof of
the key integral formula (1.6), including several reformulations in the language of random processes.
In this section we also present a simple application of this formula to the number of critical points
of random spherical harmonics of large degree on S2. This sheds additional light on a recent result
of Nazarov and Sodin [30] on the number of nodal domains of random spherical harmonics. More
precisely, the inequality (2.40) shows that the expected number δn of zonal domain on S2 of a random
harmonic polynomial of large degree n satisfies the upper bound δn < 0.29n2.

Section 3 contains the proof of the asymptotic estimate (1.1) and Section 4 contains the proof of
the estimate (1.3).
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In our experience, many basic probabilistic technologies are not that familiar to an audience with
a more geometric background. With this audience in mind we decided to include in Appendix A a
coordinate-free, brief survey of several facts about Gaussian measures and Gaussian processes in a
form adapted to the applications in this paper. Appendix B contains a detailed description of a 3-
parameter family of Gaussian measures on the space Sm of real, symmetric m ×m matrices. These
measures play a central role in the proof of (1.1) and we could not find an appropriate reference for
the mostly elementary facts discussed in this appendix. Appendix C contains the computations of a
Gaussian integral involving random 2× 2 matrices.

ACKNOWLEDGMENTS
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Steve Zelditch on various parts of this paper.

NOTATIONS

(i) For any random variable ξ we denote by E(ξ) and respectively var(ξ) its expectation and
respectively its variance.

(ii) Sm denotes the space of symmetric m×m real matrices.
(iii) For any finite dimensional real vector spaceV we denote byV ∨ its dual,V ∨ := Hom(V ,R).
(iv) For any Euclidean space V , we denote by S(V ) the unit sphere in V centered at the origin

and by B(V ) the unit ball in V centered at the origin.
(v) We will denote by σn the “area” of the round n-dimensional sphere Sn of radius 1, and by

ωn the “volume” of the unit ball in Rn. These quantities are uniquely determined by the
equalities (see [31, Ex. 9.1.11])

σn−1 = nωn = 2
π
n
2

Γ(n2 )
=

nπ
n
2

Γ
(
1 + n

2

) , Γ

(
1

2

)
=
√
π, (σ)

where Γ is Euler’s Gamma function.
(vi) If V 0 and V 1 are two Euclidean spaces of dimensions n0, n1 < ∞ and A : V 0 → V 1 is

a linear map, then the Jacobian of A is the nonnegative scalar J(A) defined as the norm of
the linear map

ΛkA : ΛkV 0 → ΛkV 1, k := min(n0, n1).

More concretely, if n0 ≤ n1, and {e1, . . . , en0} is an orthonormal basis of V 0, then

J(A) =
(

detG(A)
)1/2

, (J−)

where G(A) is the n0 × n0 Gramm matrix with entries

Gij =
(
Aei, Aej

)
V 1
.

If n1 ≥ n0 then
J(A) = J(A†) =

(
detG(A†)

)1/2
, (J+)

where A† denotes the adjoint (transpose) of A. Equivalently, if dVoli ∈ ΛniV ∗i denotes the
metric volume form on V 1, and dVolA denotes the metric volume form on kerA, then J(A)
is the positive number such that

dVol0 = ±dVolA ∧A∗dVol1. (J ′+)

2He suddenly and untimely passed away in June 2011. I will miss his generosity and expertise.
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2. A KAC-RICE TYPE FORMULA

2.1. The key integral formula. As we mentioned in the introduction, a key component in the proof
of Theorem 1.1 is an integral formula that describes the expected number of critical points as an
integral over the background manifold M . The literature on random fields contains many formulæ of
this type, and their proofs follow the strategy pioneered by M. Kac and S. Rice, [1, 4, 24, 40].

We believe that it would greatly benefit a reader less fluent in the probabilistic language to first see
the geometric origins of these formulae. For this reason we decided to include a complete proof of
these formulae in our special case. Not surprisingly the ubiquitous double-fibration trick in integral
geometry, [2, 19, 31] will carry the day. As a matter of fact, our main integral formula (2.2) contains
as special cases the integral formulæ of Chern-Lashof, [11] and Milnor, [27].

Suppose that M is a smooth, compact, connected manifold without boundary. Set m := dimM .

Definition 2.1. (a) For any nonnegative integer k, any point p ∈ M and any f ∈ C∞(M) we will
denote by jk(f,p) the k-th jet of f at p.
(b) Suppose that U ⊂ C∞(M) is a linear subspace. If k is nonnegative integer then we say that U is
k-ample if for any p ∈M and any f ∈ C∞(M) there exists u ∈ U such that

jk(u,p) = jk(f,p). ut

Fix a finite dimensional vector space U ⊂ C∞(M) and set N := dimU . We have an evaluation
map

ev = evU : M → U∨ := Hom(U ,R), p 7→ evp,

where for any p ∈M the linear map evp : U → R is given by

evp(u) = u(p), ∀u ∈ U .

For any u ∈ C∞(M) we denote by N(u) the number of critical points of u. In the remainder of this
section we will assume thatU is 1-ample. This implies that the evaluation map evU is an immersion.
Moreover, as explained in [32, Cor. 1.26], the 1-ampleness condition also implies that almost all
functions u ∈ U are Morse functions and thus N(u) <∞ for almost all u ∈ U .

We fix an inner product h = (−,−)h on U and we denote by | − |h the resulting Euclidean norm.
Using the metric h we identifyU with its dual and thus we can regard the evaluation map as a smooth
map ev : M → U . We define the expected number of critical points of a function in U to be the
quantity

N(U , h) :=
1

σN−1

∫
S(U)

N(u) |dAh(u)| =
∫
U
N(u)

e−
|u|2h

2

(2π)
N
2

|dVh(u)|︸ ︷︷ ︸
=:dγh(u)

, (2.1)

where σn−1 denotes the ”area” of the unit sphere in Rn, |dAh| denotes the ”area” density on the
unit sphere S(U), and |dVh(u)| denotes the volume density on U determined by the metric h. A
priori, the expected number of critical points could be infinite, but in any case, it is independent of
any choice of metric on M . The space U equipped with the Gaussian probability measure dγh is a
probability space. We denote by NU the random variable U 3 ν 7→ N(u) ∈ Z so that

N(U , h) = E(NU , dγh),

whereE(−, dγh) denotes the expectation computed with respect to the probability measure dγh. We
will refer to the pair (U , h) as the sample space.
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Fix a metric g on M . We will express N(U , h) as an integral∫
M
ρg(p) |dVg(p)|.

The function ρg does depend on g, but the density ρg(p) |dVg(p)| is independent of g. The concrete
description of ρg(p) relies on several fundamental objects naturally associated to the triplet (U , h, g).

For any p ∈M we set
U0
p :=

{
u ∈ U ; du(p) = 0

}
.

The 1-ampleness assumption on U implies that for any p ∈ M the subspace U0
p has codimension

m in U so that dimU0
p = N − m. Denote by dAS(U0

p) the area density along the unit sphere

S(U0
p) ⊂ U0.

The differential of the evaluation map at p is a linear map Ap : TpM → U . We will refer to
Ap as the adjunction map and we will denote by Jg(p) = Jg(p,U) its Jacobian. More precisely, if
(e1, . . . , em) is a g-orthonormal basis of TpM , then

Jg(p)2 = det
[ (

Apei,Apej
)
h

]
1≤i,j≤m

.

Since evU is an immersion we have Jg(p) 6= 0, ∀x ∈M .
For any p ∈ M and any u ∈ U0

p, the Hessian of u at p is a well defined symmetric bilinear
form on TpM that can be identified via the metric g with a symmetric endomorphism Hessp(u, g) of
TpM . We denote this symmetric endomorphism by Hessp(u, g).

Theorem 2.2. If (U , h) is a 1-ample sample space on M , then

N(U , h) =
1

σN−1

∫
M

1

Jg(p)

(∫
S(U0

p)
|det Hessp(v, g)| |dAS(U0

p)(v)|

)
|dVg(p)|

= (2π)−
m
2

∫
M

1

Jg(p)

∫
U0

p

| det Hessp(u, g)| e
− |u|

2
h

2

(2π)
N−m

2

|dVh(u)|


︸ ︷︷ ︸

=:Ip

|dVg(p)|.
(2.2)

Proof. Denote by UM the trivial vector bundle over M with fiber U , UM := (U ×M → M). For
any p ∈M we denote byKp the orthogonal complement of U0

p in U .

Lemma 2.3. The subspaceKp coincides with the range of the adjunction map Ap.

Proof. Indeed, if (Ψn)1≤n≤N is an orthonormal basis of (U , h), then

evp =
∑
n

Ψn(p)Ψn ∈ U .

and for any vector field X on M we have

ApXp =
∑
n

(XΨn)pΨn.

Thus, the function u =
∑

n unΨn ∈ U , un ∈ R, belongs toK⊥p if and only if for any vector field X
on M we have

0 =
∑
n

un(XΨn)p = X · u(p)⇐⇒u ∈ U0
p.

ut
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This proves that the collection (Kp) defines a subbundleK ofUM and the adjunction map induces
an isomorphism of vector bundle A : TM → K. We deduce that the collection of spaces (U0

p)p∈M
also forms a vector subbundle U0 of the trivial bundle UM and we have an orthogonal direct sum
decomposition

UM = U0 ⊕K.

For any section u of UM we denote by u0 its U0-component.
The bundle UM is equipped with a canonical trivial connection D. More precisely, if we regard

a section of u of UM as a smooth map u : M → U , then for any vector field X on M we define
DXu as the smooth function M → U obtained by derivating u along X . The shape operator of the
subbundleK is the bundle morphism Ξ : TM ⊗K → U0 defined by the equality

Ξ(X,u) := (DXu)0, ∀X ∈ C∞(TM), u ∈ C∞(K).

For every p ∈ M , we denote by Ξp the induced linear map Ξp : TpM ⊗Kp → U0. If we denote
by Grm(U) the Grassmannian of m-dimensional subspaces of U , then we have a Gauss map

M 3 p G7−→ G(p) := Kp ∈ Grm(U).

The shape operator Ξp can be viewed as a linear map

Ξp : TpM → Hom(Kp,U
0
p) = TKp Grm(U),

and, as such, it can be identified with the differential of G at p, [31, §9.1.2]. Any v ∈ U0
p determines

a bilinear map

Ξp · v : TpM ⊗Kp → R, Ξp · v(e,u) :=
(
Ξp(e,u),v

)
h
,

By choosing orthonormal bases (ei) in TpM and (uj) of Kp we can identify this bilinear form
with an m × m-matrix. This matrix depends on the choices of bases, but the absolute value of its
determinant is independent of these bases. It is thus an invariant of the pair (Ξp,v) that we will
denote by |det Ξp · v|.

Lemma 2.4.

N(U , h) =
1

σN−1

∫
M

(∫
S(U0

p)
| det Ξp · v| |dAS(U0

p)(v)|

)
|dVg(p)|. (2.3)

Proof. Consider the incidence variety

I :=
{

(p,v) ∈M × S(U); dv(p) = 0
}

=
{

(x,v) ∈M × S(U); v ∈ S(U0
p)
}
.

We have a natural double “fibration”

M
λ←− I

ρ−→ S(U),

where the left/right projections λ,ρ are the canonical projections. The left projection λ : I → M
describes I as the unit sphere bundle associated to the metric vector bundle U0. In particular, this
shows that I is a compact, smooth manifold of dimension (N − 1). For generic v ∈ S(U) the fiber
ρ−1(v) is finite and can be identified with the set of critical points of v : M → R. We deduce

N(U , h) =
1

area (S(U) )

∫
S(U)

#ρ−1(v) |dAh(u)|. (2.4)

Denote by gI the metric on I induced by the metric on M × S(U) and by |dVI| the induced volume
density. The coarea formula, [10, §13.4], implies that∫

S(U)
#ρ−1(v)|dAh(v)| =

∫
I

Jρ(p,v)|dVI(p,v)|, (2.5)
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where the nonnegative function Jρ is the Jacobian of ρ defined by the equality

ρ∗|dAh| = Jρ · |dVI|.

To compute the integral in the right-hand side of (2.5) we need a more explicit description of the
geometry of the incidence variety I.

Fix a local orthonormal frame (e1, . . . , em) of TM defined in a neighborhood O in M of a given
point p0 ∈M . We denote by (e1, . . . , em) the dual co-frame of T ∗M . Set

f i(p) := Apei(p) ∈ U , i = 1, . . . ,m, p ∈ O.

More explicitly, f i(u) is defined by the equality(
f i(p),v

)
h

= ∂eiu(p), ∀u ∈ U . (2.6)

Fix a neighborhood U ⊂ λ−1(O) in M × S(U) of the point (p0,v0), and a local orthonormal frame
u1(p,v), . . . ,uN−1(p,v) over U of the bundle ρ∗TS(U) → M × S(U) such that the following
hold.

• The vectors u1(p,v), . . . ,um(p,v) are independent of the variable v and form an orthonor-
mal basis of K⊥x . (E.g., we can obtain such vectors from the vectors f1(p), . . . ,fm(p) via
the Gramm-Schmidt process.)
• For (p,v) ∈ U, the space TpEx is spanned by the vectors um+1(p,v), . . . ,uN−1(p,v).

The collection u1(p), . . . ,um(p) is a collection of smooth sections ofUM over O. For any p ∈ O

and any e ∈ TpM , we obtain the vectors (functions).

Deu1(p), . . . , Dpum(x) ∈ U ,

where we recall that D denotes the trivial connection on UM . Observe that

I ∩ U =
{

(p,v) ∈ U; Ui(p,v) = 0, ∀i = 1, . . . ,m
}
, (2.7)

where Ui is the function Ui : O×U → R given by

Ui(p,v) :=
(
ui(p),v

)
h
.

Thus, the tangent space of I at (p,v) consists of tangent vectors ṗ⊕ v̇ ∈ TxM ⊕ TvS(V ) such that

dUi(ṗ, v̇) = 0, ∀i = 1, . . . ,m.

We let ωU denote the m-form

ωU := dU1 ∧ · · · ∧ dUm ∈ Ωm(U),

and we denote by ‖ωU‖ its norm with respect to the product metric on M × S(U). Denote by |d̂V |
the volume density on M × S(U) induced by the product metric. The equality (2.7) implies that

|d̂V | = 1

‖ωU‖
|ωU ∧ dVE | .

Hence

Jρ|d̂V | =
1

‖ωU‖
|ωU ∧ ρ∗dA|.

We deduce
Jρ(p0,v0) = Jρ(p0,v0)|d̂V |(e1, . . . , em,u1, . . . ,uN−1)

=
1

‖ωU‖
|ωU ∧ ρ∗dS|(e1, . . . , em,u1, . . . ,uN−1) =

1

‖ωU‖
∣∣ωU( e1, . . . , em

)∣∣
(p0,v0)︸ ︷︷ ︸

=:∆U (p0,v0)

.
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Hence, ∫
S(U)

#ρ−1(w)|dAh(v)| =
∫
I

∆U

‖ωU‖
|dVI(p,v)|. (2.8)

Sublemma 2.5. We have the equality

Jλ =
1

‖ωU‖
, (2.9)

where Jλ denotes the Jacobian of the projection λ : I→M .

Proof of Sublemma 2.5. Along U we have

|d̂V | = 1

‖ωU‖
|ωU ∧ dVI | ,

while the definition of the Jacobian implies that

|dVI| =
1

Jλ
|dVg ∧ dAS(U0

p)|.

Therefore, it suffices to show that along U we have

|d̂V | = |ωU ∧ dVg ∧ dAS(U0
p)|,

i.e., ∣∣∣ωU ∧ dVg ∧ dAS(U0
p)(e1, . . . , em,u1, . . . ,uN−1)

∣∣∣ = 1.

Since dUi(uk) = 0, ∀k ≥ m+ 1 we deduce that∣∣∣ωU ∧ dVg ∧ dAS(U0
p)(e1, . . . , em,u1, . . . ,uN−1)

∣∣∣ = |ωU (u1, . . . ,um)|.

Thus, it suffices to show that |ωU (u1, . . . ,um)| = 1. This follows from the elementary identities

dUi(uj) = (ui,uj)h = δij , ∀1 ≤ i, j ≤ m,

where δij is the Kronecker symbol. ut

Using (2.9) in (2.8) and the coarea formula we deduce∫
S(U)

#ρ−1(w)|dAh(v)| =
∫
M

(∫
S(U0

p)
∆U (p,v) |dAS(U0

p)(v)|

)
|dVg(p)|. (2.10)

Observe that at a point (p,v) ∈ λ−1(O) ⊂ I we have

dUi(ej) =
(
Dejui(p),v

)
h
.

We can rewrite this in terms of the shape operator Ξp : TpM ⊗Kp → U0
p. More precisely,

dUi(ej) =
(
Ξp(ej ,ui),v

)
h
.

Hence,
∆U (x,v) =

∣∣det
(
Ξp(ej ,ui),v

)
h

∣∣ ,
We conclude that∫

Sh(U)
#ρ−1(v)|dAh(v)| =

∫
M

(∫
S(U0

p)
|det Ξp · v| |dAS(U0

p)(v)|

)
|dVM (p)|.

This proves (2.3) ut
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To proceed further observe that the left-hand side of (2.3) is plainly independent of the metric g on
M . This raises the hope that if we judiciously choose the metric on M , then we can obtain a more
manageable expression for µ(M,V ). One choice presents itself.

Let σ be the pullback to M of the metric on V via the immersion ev : M → U . More concretely,
for any p ∈M and any X,Y ∈ TpM , we have

σp(X,Y ) =
(
ApX,ApY

)
h
.

Fix p ∈ M and a σ-orthonormal frame(ei)1≤i≤m of TM defined in a neighborhood O of p. Then
the collection uj = Aej , 1 ≤ j, is a local orthonormal frame of K|O. The shape operator has the
simple description

Ξp(ei,uj) =
(
DeiAej

)0
.

Fix an orthonormal basis (Ψn)1≤n≤N of U so that every v ∈ U has a decomposition

v =
∑
α

vnΨn, vn ∈ R.

Then
Apej(p) =

∑
n

(∂ejΨn)pΨn, DeiA
†ej(p) =

∑
n

(∂2
eiejΨn)pΨn,

and (
(DeiAej)p,v

)
h

=
∑
α

vn(∂2
eiejΨα)p = ∂2

eiejv(p).

If v ∈ U0
p, then the Hessian of v at p is a well-defined, symmetric bilinear form Hessp(v) on TpM

that can be identified via the metric σ with a symmetric linear operator

Hessp(v,σ) : TpM → TpM.

If we fix a σ-orthonormal frame (ei) of TpM , then the operator Hessp(v,σ) is described by the
symmetric m×m matrix with entries ∂2

eiejv(x). We deduce that

|det Ξp · v| = |det Hessp(v,σ) | , ∀v ∈ S(U0
p).

In particular, we deduce that

N(U , h) =
1

σN−1

∫
M

(∫
S(U0

p)
|det Hessp(v,σ)| |dAS(U0

p)(v)

)
|dVσ(p)|. (2.11)

This is precisely the main theorem of Chern and Lashof, [11].
Finally, we want to express (2.11) entirely in terms of the adjunction map A. For any p ∈ M and

any v ∈ Up, we define the density

µp,v : ΛmTpM → R,

µp,v(X1 ∧ · · · ∧Xm) =
∣∣∣det

(
∂2
XiXjv(p)

)
1≤i,j≤m

∣∣∣ · ( det
(

(ApXi,ApXj)h
)

1≤i,j≤m
)−1/2

=
∣∣∣det

(
Hessp(v)(Xi, Xj)

)
1≤i,j≤m

∣∣∣ · ( det
(
σ(Xi, Xj)

)
1≤i,j≤m

)−1/2
,

for any basis X1, . . . , Xm of TpM . Observe that for any σ-orthonormal frame e1, . . . , em of TpM
we have

µp,v(e1 ∧ · · · ∧ em) = | det Hessp(v,σ) |.
If we integrate µp,v over v ∈ S(U0

p), we obtain a density

|dµU (p)| : ΛmTpM → R,



12 LIVIU I. NICOLAESCU

|dµU (p)|(X1 ∧ · · · ∧Xm) =

∫
S(Up)

µp,v(X1 ∧ · · · ∧Xm) |dAS(U0
p)(v)|,

∀X1, . . . , Xm ∈ TpM .
Clearly |dµU (p)| varies smoothly with p, and thus it defines a density |dµU (−)| on M . We want

to emphasize that this density depends on the metric on U but it is independent of any metric on M .
We will refer to it as the density of U . By construction

N(U , h) =
1

σn−1

∫
M
|dµU (p)|.

If we now return to our original metric g on M , then we can express |dµU (−)| as a product

|dµU (p)| = δg(p) · |dVg(p)|,

where δg = δg,U : M → R is a smooth nonnegative function.
To find a more useful description of ρg, we choose local coordinates (x1, . . . , xm) near p such that

(∂xi) is a g-orthonormal basis of TpM . Then

µp,v(∂x1 ∧ · · · ∧ ∂xm) =
∣∣∣det

(
∂2
xixjv(p)

)
1≤i,j≤m

∣∣∣ · ( det
(

(Ap∂xi ,Ap∂xj )h
)

1≤i,j≤m
)−1/2

.

Observe that the matrix ( ∂2
xixjv(p)

)
1≤i,j≤m describes the Hessian operator

Hessp(v, g) : TpM → TpM

induced by the Hessian of v at p and the metric g.
The scalar

(
det
(

(Ap∂xi ,Ap∂xj )h
)

1≤i,j≤m
)1/2 is precisely the Jacobian Jg(p) of the adjunction

map Ap : TpM → U defined in terms of the metric g on TpM and the metric h on U . We set

∆x(V , g) :=

∫
S(U0

p)
|det Hessx(v, g)| |dAS(U0

p)(v)|.

Since |dVg(p)|(∂x1 ∧ · · · ∧ ∂xm) = 1, we deduce

δg,V (p) = ∆p(V , g) · Jg(p)−1. (2.12)

This proves the first equality in (2.2). The second equality follows from the first by invoking (A.6)
and the explicit formula (σ) for σN−1. ut

2.2. A Gaussian random field perspective. For our concrete purposes it is convenient to give a
probabilistic interpretation to the integral formula (2.2). For the reader’s convenience we have gath-
ered in Appendix A the basic probabilistic notions and facts needed in the sequel.

Consider again the metric σ = σU , the pullback of the metric h on U via the evaluation map. We
will refer to it as the stochastic metric associated to the sample space (U , h). It is convenient to have
a local description of the stochastic metric.

Fix an orthonormal basis ψ1, . . . ,ψN of U . The evaluation map evU : M → U is then given by

M 3 x 7→
∑
n

ψn(x) ·ψn ∈ U .

If p ∈M and U is an open coordinate neighborhood of p with coordinates x = (x1, . . . , xm), then

σp(∂xi , ∂xj ) =
∑
n

∂ψn
∂xi

(p)
∂ψn
∂xj

(p), ∀1 ≤ i, j ≤ m. (2.13)
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Note that if the collection (∂xi)1≤i≤m forms a g-orthonormal frame of TpM , then

Jg(p)2 = det
[
σp(∂xi , ∂xj )

]
1≤i,j≤m

. (2.14)

To the sample space (U , h) we associate in a tautological fashion a Gaussian random field on M
as follows. The measure dγh in (2.1) is a probability measure and thus (U , dγh) is naturally a
probability space. We have a natural map

ξ : M ×U → R, M ×U 3 (p,u) 7→ ξp(u) := u(p).

The collection of random variables (ξp)p∈M is a Gaussian random field on M .
Using the orthonormal basis (ψk) of U we obtain a linear isometry

RN 3 t = (t1, . . . , tn) 7→ ut =
∑
k

tkψk ∈ U ,

with inverse u 7→ tk(u) = h(u,ψk). For any p ∈M and any t ∈ RN we have

ξp(ut) =
∑
k

tkψk(p).

The covariance kernel of this field is the function E = EU : M ×M → R given by

E(p, q) = E(ξp, ξq) =

N∑
j,k=1

(∫
RN

tjtkdγN (t)

)
ψj(p)ψk(q)

=
M∑
k=1

ψk(p)ψk(q),

(2.15)

where dγN is the canonical Gaussian measure on RN .
If p ∈M and U is an open coordinate neighborhood of p with coordinates x = (x1, . . . , xm) such

that x(p) = 0, then we can rewrite (2.13) in terms of the covariance kernel alone

σp(∂xi , ∂xj ) =
∂2E(x, y)

∂xi∂yj
|x=y=0. (2.16)

Note that any vector fieldX determines a new Gaussian random field onM , the derivative of u along
X . We obtain the Gaussian random variables u 7→ (Xu)p, u 7→ (Y u)p, and we have

σp(X,Y ) = E
(

(Xu)p, (Y u)p
)
. (2.17)

The last equality justifies the attribute stochastic attached to the metric σ.
We denote by ∇ the Levi-Civita connection of the metric g. The Hessian of a smooth function

f : M → R with respect to the metric g is the symmetric (0, 2)-tensor ∇2f on M defined by the
equality

∇2f(X,Y ) := XY f − (∇XY )f, ∀X,Y ∈ Vect(M). (2.18)
If p is a critical point of f then ∇2

pf is the usual Hessian of f at p. More generally, if (x1, . . . , xm)
are g-normal coordinates at p, then

∇2
pf(∂xi , ∂xj ) = ∂2

xixjf(p), ∀1 ≤ i, j ≤ m.

For any p ∈ M and any f ∈ C∞(M) we use the metric gp to identify the bilinear form ∇2
pf on

TpM with an element of S(TpM), the vector space of symmetric endomorphisms of the Euclidean
space (TpM, gp). For any p ∈M we have two random Gaussian vectors

U 3 u 7→ ∇2
pu ∈ S(TpM), U 3 u 7→ du(p) ∈ T ∗xM.
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Note that the expectation of both random vectors are trivial while (2.16) shows that the covariance
form of du(p) is the metric σp.

To proceed further we need to make an additional assumption on the sample space U . Namely, in
the remainder of this section we will assume that it is 2-ample. In this case the map

U 3 u 7→ ∇2
pu ∈ S(TpM)

is surjective so the Gaussian random vector ∇2
pu is nondegenerate. A simple application of the co-

area formula shows that the integral Ip in (2.2) can be expressed as a conditional expectation

Ip = E
(
|det∇2

pu|
∣∣ du(p) = 0

)
.

Observing that
Jg(p) = (detSdu(p))

1
2 , (2.19)

we deduce that

N(U , h) =
1

(2π)
m
2

∫
M

(detSdu(p))
− 1

2E
(
|det∇2

pu|
∣∣ du(p) = 0

)
|dVg(p)|. (2.20)

The last equality is the main conclusion of the Expectation Metatheorem, [1, Thm. 11.2.1] or the
expectation formula in [4, Thm. 6.2]. We can simplify the equality (2.20) even more by taking full
advantage of the Gaussian nature of the various random variables involved in this equality.

The covariance form of the pair of random variables∇2
pu and du(p) is the bilinear map

Ω : S(TpM)∨ × TpM → R,

Ω(ξ, η) = E
(
〈ξ,∇2

pu〉 · 〈du, η〉
)
, ∀ξ ∈ S∨m, η ∈ TpM.

Using the natural inner products on S(TpM) and TpM defined by gp we can regard the covariance
form as a linear operator

Ωp : TpM → S(TpM).

Similarly, we can identify the covariance forms of ∇2
pu and du with symmetric positive definite

operators
S∇2

pu
: S(TpM)→ S(TpM)

and respectively
Sdu(p) : TpM → TpM.

Using the regression formula (A.3) we deduce that

E
(
|det∇2

pu|
∣∣ du(p) = 0

)
= E(| detYp|), (2.21)

where Yp : U → S(TpM) is a Gaussian random vector with mean value zero and covariance operator

Ξp = ΞYp := S∇2
pu
− ΩS−1

du(p)Ω
† : S(TpM)→ S(TpM). (2.22)

Since U is 2-ample the operator Ξp is invertible and we have

E(| detYp|) = (2π)−
dim S(Tp)

2 (det Ξp)−
1
2

∫
S(TpM)

| detY | e−
(Ξ−1

p Y,Y )

2 dVg(Y ). (2.23)

We deduce that when U is 2-ample we have

N(U , h) =
1

(2π)
m
2

∫
M

(detSdu(p))
− 1

2E(| detYp|) |dVg(p)|, (2.24)

where Yp is a Gaussian random symmetric endomorphism of TpM with expectation 0 and covariance
operator Ξp described by (2.22).
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To compute the above integral we choose normal coordinates (x1, . . . , xn) near p and thus we can
orthogonally identify TpM with Rm. We can view the Hessian∇2

pu as a random variable

Hp : U → Sm := S(Rm), U 3 u 7→ Hp(u) ∈ Sm, Hp
ij(u) = ∂2

xixju(p),

and the differential du(p) as a random variable

Dp : U → Rm, u 7→ Dpu ∈ Rm, Dpi u = ∂xiu(p).

The covariance operator Sdu(p) of the random variable Dp is given by the symmetric m×m matrix
with entries

σp(∂xi , ∂xj ) =
∂2E(x, y)

∂xi∂yj
|x=y=0. (2.25)

To compute the covariance form ΣHp of the random matrix Hp we observe first that we have a
canonical basis (ξij)1≤i≤j≤m of S∨m so that ξij associates to a symmetric matrix A the entry aij
located in the position (i, j). Then

ΣHp(ξij , ξk`) = E
(
Hp
ij(u), Hp

k`(u)
)

= E
(
∂2
xixju(x)∂2

xkx`u(x)
)

=
N∑
n=1

∂2
xixjψn(x)∂2

xkx`ψn(x) =
∂4E(x, y)

∂xi∂xj∂yk∂y`
|x=y=0.

(2.26)

Similarly we have

Ω(ξij , ∂xk) = E
(
∂2
xixju(p), ∂xku(p)

)
=

∂3E(x, y)

∂xi∂xj∂yk
|x=y=0. (2.27)

To identify Ω with an operator it suffices to observe that (∂xk) is an orthonormal basis of TpM , while
the collection { ξ̂ij }i≤j ⊂ S∨m,

ξ̂ij =

{
ξij , i = j√

2ξij , i < j

is an orthonormal basis of S∨m. If we denote by Êij the dual orthonormal basis of Sm, then

Ω∂xk =
∑
i≤j

Ω(ξ̂ij , ∂xk)Êij .

Remark 2.6. If the metric g coincides with the stochastic metric σ, then the covariance operator Ω is
trivial. For a proof of this and of many other nice properties of the metric σ we refer to [1, §12.2]. ut

2.3. Zonal domains of spherical harmonics of large degree. In the conclusion of this section we
want to discuss an immediate application of the above results to critical sets of random spherical
harmonics.

Let (M, g) be the unit round sphere S2. The spectrum of the Laplacian on S2 is

λn = n(n+ 1), n = 0, 1, 2, . . . , dim ker(λn −∆) = 2n+ 1 = dn.

The space Un = ker(λn − ∆) has a well known descrition: it consists of sperical harmonics, i.e.,
restrictions to S2 of harmonic polynomials of degree n in three variables. We want to describe the
behavior of N(Un) as n → ∞, where Un is equipped with the L2-metric. In other words we want
to find the expected number of critical points of a spherical harmonic of very large degree.
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In this case the covariance kernel En(p, q) ofUn has a very simple description. More precisely, if
(Ψk)1≤k≤2n+1 is an orthonormal basis of Un, then the classical addition theorem, [28, §1.2] shows
that

En(p, q) =
∑
k

Ψk(p)Ψk(q) =
2n+ 1

4π
Pn(p • q), ∀p, q ∈ S2,

where • denotes the inner product in R3, and Pn denotes the n-th Legendre polynomial,

Pn(t) = (−1)n
1

2nn!

dn

dtn
(1− t2)n.

In this case the stochastic metric σ = σn is obviously SO(3)-invariant and it is a (constant) multiple
of the round metric. In view of Remark 2.6 this implies that for any p ∈ S2 the random variables

Un 3 u 7→ Hessp(u, g) and Un 3 u 7→ du(p)

are independent and we deduce that

N(Un) =
1

2π

∫
S2

1

Jg(p)


∫
Un

|det Hessp(u, g))| e−
1
2
|u|2

(2π)
dim Un

2

|du|︸ ︷︷ ︸
=:dγn(u)

 dVg(p).

Clearly, the integrand in the above formula is invariant with respect to the SO(3)-action on S2 and
we thus have

N(Un) =
2

Jg(p0)

∫
Un

∣∣det Hessp0
(u, g)

∣∣ dγn(u), (2.28)

where p0 a fixed (but arbitrary) point on S2. To compute the term in the right-hand side of the above
equality we use the equalities (2.25) and (2.26).

Fix normal coordinates (x1, x2) in a neighborhood O of p0 so we can view En as a function
En(x, y). The location of a point p ∈ O is described by a smooth function

O 3 (x1, x2) 7→ p(x1, x2) ∈ R3.

The tangent vector ∂xi , viewed as a vector in R3, corresponds with the derivative pxi := ∂xip of the
above function. At p0 we have

pxi • pxj = δij and pxi • p0 = 0, ∀i, j. (2.29)

The arcs C1 = {x2 = 0} and C2 = {x1 = 0} are portions of great circles intersecting orthogonally
at p0. Note that x1 is the arclength parameter along Ci, i = 1, 2. The vectors pxi are unit tangent
vectors along these arcs. This shows that at p0 we have

pxixi = −p0.

Since the arcs C1 and C2 are planar their torsion is trivial and the Frenet formulæ imply that at p0 we
have

pxixj = 0, ∀i 6= j.

The last two equalities can be rewritten in compact form as

pxixj = −δijp0, ∀i, j (2.30)
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We set

sn :=
2n+ 1

π
P ′n(1) =

2n+ 1

4π
× n(n+ 1)

2
∼ 1

4π
n3

tn :=
2n+ 1

π
P ′′n (1) =

(2n+ 1)

4π
× (n+ 2)(n+ 1)n(n− 1)

16
∼ 1

32π
n5.

(2.31)

We deduce
σ(∂xj , ∂xk) = ∂xj∂ykE(p, q)|p=q=p0

=
2n+ 1

4π

(
P ′n(p • q)pxj • qyk + P (2)

n (p • q)(pxj • q)(p • qyk)
)
p=q=p0

= snδjk,

(2.32)

and
Jg(p0) = sn. (2.33)

To compute ∂4
xixjyky`

En(p, q) at p = q = p0 we will use (2.29) and (2.30) to cut down the
complexity of the final formula. We deduce that at p = q = p0 we have

∂4
xixjyky`En(p, q) =

2n+ 1

4π

(
P ′n(p • q)pxixj • qy`yk + P (2)

n (p • q)(pxixj • q)(p • qyky`)
)
p=q

+
2n+ 1

4π

(
P (2)
n (p • q)(pxi • qy`)(pxj • qyk) + P (2)

n (p • q)(pxj • qy`)(pxi • qyk)
)
p=q

,

and thus
∂4
xixjyky`En(p, q)p=q =

(
sn + tn

)
δijδk` + tn

(
δi`δjk + δikδj`

)
. (2.34)

Denote by dΓn the pushforward of the Gaussian measure dγn via the Hessian map

Un 3 u 7→ Hessp0
(u, g) ∈ S(Tp0

S2) = S2.

We deduce from (2.34) that the covariance form Σn of dΓn satisfies the equality

Σn = Σan,bn,cn , an = sn + 3tn, bn = sn + tn, cn = tn,

where Σa,b,c is defined by the conditions (B.2a) and (B.2b). Observe that an, bn, cn satisfy (B.4),i.e.,
an = bn + 2cn. As explained in Appendix B, this implies that dΓn is O(2)-invariant. Set

a∗n =
an
tn
, b∗n =

bn
tn
, c∗n =

cn
tn
,

and denote by dΓ∗n the Gaussian measure on S2 with covariance matrix Σa∗n,b
∗
n,c
∗
n

. Using (A.7) we
deduce that ∫

S2

| detX| dΓn(X) = tn

∫
S2

|detX| dΓ∗n(X).

From (2.28) and (2.33) we now deduce

N(Un) =
2tn
sn

∫
S2

| detX| dΓ∗n(X). (2.35)

Observe that as n→∞ we have
2tn
sn
∼ n2

4
, a∗n ∼ 3, b∗n ∼ 1 c∗n ∼ 1,

so that

N(Un) ∼ n2

4

∫
S2

|detX| dΓ3,1,1(X), (2.36)
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where dΓ3,1,1(X) is the Gaussian measure on S2 with covariance form Σ3,1,1. More precisely (see
(B.11))

dΓ3,1,1(X) =
1

4(2π)
3
2

e−
1
4

(
trX2− 1

4
(trX)2

)
·
√

2
∏

1≤i≤j≤2

dxij .

In Appendix C we show that ∫
S2

| detX| dΓ3,1,1(X) =
4√
3
, (2.37)

and we deduce from (2.28) that

N(Un) ∼ n2

√
3

as n→∞. (2.38)

Let us observe that for n very large, a typical spherical harmonic u ∈ Un is a Morse function on
S2 and 0 is a regular value. The nodal set {u = 0} is disjoint union of smoothly embedded circles.
We denote by Du the set of connected components of the complement of the nodal set are called
the nodal domains of u and we denote δ(u) the cardinality of Du. A result of Pleijel and Peetre,
[6, 36, 39], shows that

δ(u) ≤ 4

j2
0

n2 ≈ 0.692n2, (2.39)

where j0 denotes the first positive zero of the Bessel function J0.
We think of δ(u) as a random variable and we denote by δn its expectation,

δn =
1

(2π)dimUn2

∫
Un

δ(u)e−
1
2
|u|2 |du|.

Denote by p(u) the number of local minima and maxima of u, and by s(u) the number of saddle
points. Then

N(y) = p(u) + s(u), p(u)− s(u) = χ(S2) = 2.

This proves that

p(y) =
1

2

(
N(u) + 2

)
.

For every nodal region D, we denote by p(u, D) the number of local minima and maxima3 of u on
D. Note that p(u, D) > 0 for any D and thus the number p(u) =

∑
D∈Du

p(u, D) can be viewed as
a weighted count of nodal domains. Moreover

δ(u) ≤ p(u).

We set

p(Un) :=
1

(2π)
dim Un

2

∫
Un

e−
1
2
|u|2p(u) |du|.

The equality (2.38) implies that

p(Un) ∼ 1

2
√

3
n2 as n→∞, 1

2
√

3
≈ 0.288.

This shows that while
max
u∈Un

δ(u) ≤ 0.692n2,

3A simple application of the maximum principle shows that on each nodal domain, all the local extrema of y are of the
same type: either all local minima or all local maxima. Thus p(u, D) can be visualized as the number of peaks of |u| on
D.
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the expectation δn is less than half this theoretical maximum,

δn ≈ 0.288

Recently, Nazarov and Sodin [30], have proved that there exists a positive constant a > 0 such that

δn ∼ an2 as n→∞.
Additionally, for large n, with high probability, δ(u) is close to an2 (see [30] for a precise statement).
This shows that

a ≤ 1

2
√

3
≈ 0.288. (2.40)

More information about lower bounds on a can be found in Maria Năstăsescu’s senior thesis [29].

3. THE PROOF OF THEOREM 1.1

3.1. Asymptotic estimates of the spectral function. We fix an orthonormal basis of L2(M, g) con-
sisting of eigenfunctions Ψn of ∆g,

∆gΨn = λnΨn, n = 0, 1, . . . , λ0 ≤ λ1 ≤ · · · ≤ λn ≤ · · · .
The collection (Ψn)λn≤L is therefore an orthonormal basis ofUL so that the covariance kernel of the
Gaussian field determined by UL is

EL(p, q) =
∑
λn≤L

Ψn(p)Ψn(q).

This function is also known as the spectral function associated to the Laplacian. Equivalently, EL can
be identified with the Schwartz kernel of the orthogonal projection onto UL. Observe that∫

M
EL(p,p) |dVg(p)| = dimUL.

In the groundbreaking work [21], L. Hörmander used the kernel of the wave group eit
√

∆ to produce
refined asymptotic estimates for the spectral function. More precisely he showed (see [21] or [23,
§17.5])

EL(p, p) =
ωm

(2π)m
L
m
2 +O

(
L
m−1

2
)

as L→∞, (3.1)

uniformly with respect to p ∈M . Above, ωm denotes the volume of the unit ball in Rm. This implies
immediately the classical Weyl estimates

dimUL ∼
ωm

(2π)m
volg(M)L

m
2 . (3.2)

Hörmander’s approach can be refined to produce asymptotic estimates for the behavior of the deriva-
tives the spectral function in a neighborhood of the diagonal. We describe below these estimates
following closely the presentation in [7]. For more general results we refer to [41, Thm. 1.8.5, 1.8.7].

We set λ := L
1
2 . Fix a point p and normal coordinates x = (x1, . . . , xm) at p. Note that x(p) = 0.

For any multi-indices α, β ∈ Zm≥0 we have (see [7, Thm. 1.1, Prop. 2.3])

∂α+βEL(x, y)

∂xα∂yβ
|x=y=0 = Cm(α, β)λm+|α|+|β| +O

(
λm+|α|+|β|−1

)
, (3.3)

where

Cm(α, β) =


0, α− β 6∈ (2Z)m,

(−1)
|α|−|β|

2

(2π)m

∫
Bm x

α+β|dx|, α− β ∈ (2Z)m,

(3.4)
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andBm denotes the unit ball
Bm =

{
x ∈ Rm; |x| = 1

}
.

The estimates (3.3) are uniform in p ∈M . Using (A.6) we deduce (compare with (B.13) )

1

(2π)m

∫
Bm

xα+β|dx| = 1

(4π)
m
2 Γ
(
1 + |α|+|β|+m

2

) ∫
Rm
xα+β e

−|x|2

π
m
2

|dx|.

We set
Km = Cm(α, α), |α| = 1,

so that

Km =
1

(4π)
m
2 Γ
(
2 + m

2

) ∫
Rm

x2
1

e−|x|
2

π
m
2

|dx| = 1

2(4π)
m
2 Γ
(
2 + m

2

) . (3.5)

For any i ≤ j define αij ∈ Zm so that
xαij = xixj .

For i ≤ j and k ≤ ` we set

Cm(i, j; k, `) = Cm(αij , αk`) =
1

(4π)
m
2 Γ
(
3 + m

2

) ∫
Rm

xixjxkx`
e−|x|

2

π
m
2

|dx|. (3.6)

For i < j we have

Cm(i, i; j, j) =
1

(4π)
m
2 Γ
(
3 + m

2

) ∫
Rm

x2
ix

2
j

e−|x|
2

π
m
2

|dx| = 1

4(4π)
m
2 Γ
(
3 + m

2

) =: cm. (3.7)

Cm(i, j; i, j) = Cm(i, i; j, j),

Finally

Cm(i, i; i, i) =
1

(4π)
m
2 Γ
(
3 + m

2

) ∫
Rm

x4
i

e−|x|
2

π
m
2

|dx| = 3

4(4π)
m
2 Γ
(
3 + m

2

) = 3cm, (3.8)

and
Cm(i, j; k, `) = 0, ∀k ≤ `, (i, j) 6= (k, `).

3.2. Probabilistic consequences of the previous estimates. We denote by σL the stochastic metric
on M determiner by the sample space UL, L � 0. As explained in Subsection 2.2 the covariance
form of the random vector UL 3 u 7→ du(p) ∈ T ∗pM is σLp , and from (3.3) we deduce

σLp(∂xi , ∂xj ) =
∂2EL(x, y)

∂xi∂yj
|x=y=0 = Kmλ

m+2δij +O(λm+1)

= Kmλ
m+2gp(∂xi , ∂xj ) +O(λm+1) as L→∞, uniformly in p.

(3.9)

In particular, if SLdu(p) denotes the covariance operator of the random vector du(p), then we deduce
from the above equality that

SLdu(p) = Kmλ
m+2

1m +O(λm+1), uniformly in p, (3.10)

and invoking (2.19) we deduce

JLg (p) = (detSLdu(p))
1
2 = K

m
2
m λ

m(m+2)
2 +O

(
λ
m(m+2)

2
−1
)
, uniformly in p. (3.11)

Denote by ΣL
Hp the covariance form of the random matrix

UL 3 u 7→ ∇2
pu ∈ S(TpM) = Sm.
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Using (2.26) and (3.3) we deduce

ΣL
Hp = cmλ

m+4Σ3,1,1 +O(λm+3), uniformly in p, (3.12)

where the positive definite, symmetric bilinear form Σ3,1,1 : S∨m×S∨m → R is described by the equal-
ities (B.2a) and (B.2b). We denote by Γ3,1,1 the centered Gaussian measure on Sm with covariance
form Σ3,1,1.

The equality (2.27) coupled with (3.3) imply that the covariance operator ΩL
p satisfies

ΩL
p = O(λm+2), uniformly in p. (3.13)

Using (3.10), (3.12) and (3.13) we deduce that the covariance operator ΞL
p defined as in (2.22) satisfies

the estimate
ΞL
p = cmλ

m+4Q̂3,1,1 +O(λm+2), as L→∞, uniformly in p, (3.14)

where Q̂3,1,1 is the covariance operator associated to the covariance form Σ3,1,1 and it is described
explicitly in (B.3). If we denote by dΓL the Gaussian measure on Sm with covariance operator ΞL

p ,
we deduce that

dΓL(Y ) =
1

(2π)
Nm

2 (det ΞL
p)

1
2

e−
(ΞLpY,Y )

2 · 2
1
2(m2 )

∏
i≤j

dyij︸ ︷︷ ︸
|dY |

,

where

Nm = dim Sm =
m(m+ 1)

2
.

Let us observe that |dY | is the Euclidean volume element on Sm defined by the natural inner product
on Sm, (X,Y ) = tr(XY ). We set

cL := cmλ
m+4, QLp =

1

cL
ΞL
p .

Using (A.7) we deduce that

1

(2π)
Nm

2 (det ΞL
p)

1
2

∫
Sm

| detY |e−
(ΞLpY,Y )

2 |dY | = (cL)
m
2

(2π)
Nm

2 (detQLp)
1
2

∫
Sm

|detY |e−
(QLpY,Y )

2 |dY |.

From the estimate (3.14) we deduce that

QLp → Q̂3,1,1 as L→∞, uniformly in p.

We conclude that

E(|detYp|) =

∫
Sm

|detY |dΓL(Y ) ∼ c
m
2
m λ

m(m+4)
2

∫
Sm

| detY |dΓ3,1,1(Y ). (3.15)

The measure dΓ3,1,1 is described explicitly in (B.11), more precisely

dΓ3,1,1(Y ) =
1

(2π)
Nm

2
√
µm
· e−

1
4

(
trY 2− 1

m+2
(trY )2

)
|dY |,

where µm is given by (B.12). Using (2.24), (3.11) and (3.15) we deduce that

E(NL) ∼
(
cm
Km

)m
2

λ
m(m+4)

2
−m(m+2)

2 volg(M)

∫
Sm

|detY |dΓ3,1,1(Y )

(3.2)∼
(
cm
Km

)m
2 (2π)m

ωm
dimUL.
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Observe that

cm
Km

=
Γ(2 + m

2 )

2Γ(3 + m
2 )

=
1

m+ 4
, ωm =

π
m
2

Γ(1 + m
2 )

(2π)m

ωm
= (4π)

m
2 Γ
(

1 +
m

2

)
.

This completes the proof of (1.1) and (1.7). ut

3.3. On the asymptotic behavior of the stochastic metric. We denote by g(L) the metric

g(L) := λ−(m+2)σL = L−
(m+2)

2 σL,

where Km is described by (3.5).The estimate (3.9) shows that

g(L)
C0

−→ g as L→∞,
where Km is described by (3.5). The metrics g(L) are closely related to the metrics constructed in
[5, Thm. 5]. We want to discuss here possible ways to improve the topology of the convergence.

Observe that if g(L) were to converge in the C2-topology to Km then the sectional curvatures
of g(L) would have to be uniformly bounded. Conversely, the results of S. Peters [37] show that
the C0 convergence coupled with an uniform bound on the sectional curvatures would yield a C1,α

convergence.
The results in [1, §12.2.1] describe a simple way of expressing the sectional curvatures of σL in

terms of the spectral function EL. Here are the details.
Denote by ∇L the Levi-Civita connection of the metric σL. Fix a point p ∈ M and g-normal

coordinates (x1, . . . , xm) at p. We set

ELi1,...,ia;j1,...,jb
:=

∂a+bEL(x, y)

∂xi1 · · · ∂xia∂yj1 · · · ∂yjb
|x=y=0,

σ(L)ij := σLp(∂xi , ∂xj ), 1 ≤ i, j ≤ m,

and we denote by (σ(L)ij )1≤i,j≤m the inverse matrix of (σ(L)ij )1≤i,j≤m. From [1, Eq. (12.2.6)]
we deduce

Γ(L)ijk := σLp(∇L∂xi∂xj , ∂xk) = ELij;k.

We set
Γ(L)kij :=

∑
`

σ(L)k`Γ(L)ij` =
∑
`

σ(L)k`ELij;`,

so that (
∇L∂xi∂xj

)
p

=
∑
k

Γ(L)kij∂xk .

For u ∈ UL we set

HL
ij(u) :=

(
∂∂ix∂xju− (∇L∂xi∂xj )u

)
p

= ∂∂ix∂xju(p)−
∑
k

Γ(L)kij∂xku(p). (3.16)

We think of the matrix HL
ij(u) as an element HL(u) ∈ T ∗pM ⊗ T ∗pM ,

HL(u) =
∑
i,j

HL
ijdx

i ⊗ dxj

and we set
HL(u) ∧HL(u) :=

∑
i,j,k`

HL
ij(u)HL

k`(u)dxi ∧ dxk ⊗ dxj ∧ dx`
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=:
∑

i<k,j<`

QLikj`(u)dxi ∧ dxk ⊗ dxj ∧ dx`.

Note that
QLikj`(u) = 2(HL

ij(u)HL
k`(u)−HL

kj(u)HL
i`(u)

)
.

We denote by RL the Riemann tensor of σL and we set

RLijk` := σL
(
RL(∂xi , ∂xj )∂xk , ∂x`

)
p
.

The map UL 3 u 7→ QLikj`(u) ∈ R is a random variable and according to [1, Lemma 12.2.1] we
have4

2RLikj` = −E
(
QLikj`

)
. (3.17)

In particular we deduce that
−RLijij = E

(
HL
iiH

L
jj − (HL

ij)
2
)
.

From (3.9) we deduce that

σ(L)ij = ELi;j ∼ Kmλ
m+2δij +O(λm+1) as L→∞.

Hence
σ(L)ij ∼ 1

Kmλm+2

(
δij +O(λ−1)

)
.

From (3.3) we deduce that as λ→∞ we have

Γ(L)kij ∼
∑
`

1

Kmλm+2

(
δk` +O(λ−1)

)
ELij;` ∼

1

Kmλm+2
ELij;k +O(λ−1) = O(1), (3.18a)

E(∂2
xixju(p), ∂xku(p) ) = ELij;k = O(λm+2) (3.18b)

Using the estimates (2.26), (3.16), (3.18a) and (3.18b) in (3.17) we deduce

E
(
HL
iiH

L
jj − (HL

ij)
2
)

=
(
ELii;jj − ELij;ij

)
+O(λm+2).

We deduce that the sectional curvature of σL along the plane spanned by ∂xi , ∂xk is

KL
ij = − Rijij

σ(L)iiσ(L)jj − σ(L)2
ij

=
1

K2
mλ

2m+4

(
ELii;jj − ELij;ij

)
+O

(
ELii;jj − ELij;ij

λ2m+5

)
.

On the other hand

E(∂2
xixju(p), ∂2

xkx`u(p) ) = ELij;k` ∼ Cm(i, j; k, `)λm+4 +O(λm+3), i ≤ j, k ≤ `,
where Cm(i, j; k, `) is defined by (3.6), and we deduce

ELii;jj − ELij;ij =
(
Cm(i, i; j, j)− Cm(i, j; i, j)

)
λm+4 +O(λm+3) = O(λm+3). (3.19)

Hence
KL
ij =

1

K2
mλ

2m+4

(
ELii;jj − ELij;ij

)
+O(λ−m−2).

The sectional curvature of g(L) = λ−m−2σL along the plane spanned by ∂xi , ∂xj is

K
L
ij = λm+2KL

ij =
1

K2
mλ

m+2

(
ELii;jj − ELij;ij

)
+O(1).

We deduce that the sectional curvatures of g(L) are uniformly bounded if and only if

ELii;jj − ELij;ij = O(λm+2) uniformly over M. (3.20)

4Alternatively, in our case, the equalities (3.17) are simple consequences of Theorema Egregium, [31, §4.2.4, Eq.
(4.2.12)].
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Note that the estimates (3.20) are stronger than the estimates (3.19) which are direct consequences of
the Bin-Hörmander estimates (3.3).

Let us point our that (3.20) hold when (M, g) is a homogeneous space equipped with an invariant
metric. Indeed, in this case the metric g(L) has the same symmetries as g and thus there exists a
constant cL > 0 such that g(L) = cLg. Then cL → Km as L → ∞ so that g(L) → Kmg in the
C∞-topology and therefore KL

ij = O(1).

4. THE PROOF OF THEOREM 1.2

4.1. Reduction to the classical Gaussian orthogonal ensemble. We begin by describing the large
m behavior of the integral

Im :=
1

(2π)
m(m+1)

4
√
µm

∫
Sm

| detX|e−
1
4

(
trX2− 1

m+2
(trX)2

)
|dX|,

where we recall that
µm = 2(m2 )+m−1(m+ 2).

We will use a trick of Fyodorov [17]; see also [16, §1.5]. Recall first the classical equality∫
R
e−(at2+bt+c)|dt| =

(π
a

) 1
2
e

∆
4a , ∆ = b2 − 4ac, a > 0.

For any real numbers u, v, w, we have

ut2 + v tr(X + wt1m)2 = (u+mw2)t2 + 2vw(trX)t+ v trX2

=: a(u, v, w)t2 + b(u, v, w)t+ c(u, v, w).

We seek u, v, w such that

v2w2

u+mw2
(trX)2 − v

u+mw2
trX2 =

b2 − 4ac

4a
= −1

4

(
trX2 − 1

m+ 2
(trX)2

)
.

We have
v

u+mw2
=

1

4
,

v2w2

u+mw2
=

1

4(m+ 2)
,

and we deduce
vw2 =

1

(m+ 2)
, v =

1

4
(u+mw2)⇐⇒u = 4v −mw2.

Hence
w2 =

1

v(m+ 2)
, u = 4v − m

v(m+ 2)
.

We choose v = 1
2 so that

w2 =
2

(m+ 2)
, u = 2− 2m

(m+ 2)
=

4

m+ 2
, a(u, v, w) = 4v = 2,

e−
1
4( trX2− 1

m+2
(trX)2) =

(
2

π

) 1
2
∫
R
e−

4t2

m+2 e
− 1

2
tr(X+t

√
2

m+2
1m)2

dt

(s =
√

2
m+2 t)

=

(
2(m+ 2)

π

) 1
2
∫
R
e
− 1

2
tr(X+ s√

2
1m)2

e−s
2
ds =

(
m+ 2

2

) 1
2
∫
R
e−

1
2

tr(X−s1m)2 · e
−2s2√
π
2

ds︸ ︷︷ ︸
dγ(s)

.
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Hence

Im =
(m+ 2)

1
2

2
1
2 (2π)

m(m+1)
4
√
µm︸ ︷︷ ︸

=:Am

∫
R

(∫
Sm

| detX|e−
1
2

tr(X−s1m)2 |dX|
)
dγ(s)

= Am

∫
R

(∫
Sm

|det(x1m − Y )|e−
1
2

trY 2 |dY |
)

︸ ︷︷ ︸
=:fm(x)

dγ(x).

(4.1)

For any O(n)-invariant function : Sn → R we have a Weyl integration formula (see [3, 16, 26]),

1

(2π)
dim Sm

2

∫
Sn

f(X)|dX| = 1

Zn

∫
Rn
f(λ)|∆m(λ)| |dλ|,

where
∆n(λ) :=

∏
1≤i<j≤n

(λj − λi),

and the constant Zn is defined by the equality [3, Eq. (2.5.11)] ,

Zm :=

∫
Rn
e−

1
2
|λ|2 |∆m(λ)| |dλ| = 2

n
2 n!

n∏
j=1

Γ
( j

2

)
. (4.2)

Now observe that for any λ0 ∈ R we have (with fm defined in (4.1))

fm(λ0) =
(2π)

dim Sm
2

Zm

∫
Rm

e−
|λ|2

2

 n∏
j=1

|λj − λ0|

∣∣∆m(λ)
∣∣ |dλ|

=
e

1
2
λ2

0(2π)
dim Sm

2

Zm

∫
Rm

e−
1
2

∑m
i=1 λ

2
i
∣∣∆m+1(λ0, λ1, . . . , λm)

∣∣ |dλ1 · · · dλm|

=
e

1
2
λ2

0(2π)
dim Sm

2 Zm+1

Zm

1

Zm+1

∫
Rm

e−
1
2

∑m
i=1 λ

2
i
∣∣∆m+1(λ0, λ1, . . . , λm)

∣∣ |dλ1 · · · dλm|︸ ︷︷ ︸
=:ρm+1(λ0)

.

The function Rn(x) = nρn(x) is known in random matrix theory as the 1-point correlation function
of the Gaussian orthogonal ensemble of symmetric n× n matrices, [13, §4.4.1], [18, §3], [26, §4.2].
We conclude that

Im =
(2π)

dim Sm
2 AmZm+1

Zm

∫
R
ρm+1(x)e

x2

2 dγ(x) =
AmZm+1

Zm

∫
R
ρm+1(x)

√
2

π
e−

3x2

2 dx.

We have
Zm+1

Zm
= 2

1
2 (m+ 1)Γ

(
m+ 1

2

)
,√

2

π

(2π)
dim Sm

2 AmZm+1

Zm
= (2π)

dim Sm
2

√
2

π
2

1
2 (m+ 1)Γ

(
m+ 1

2

)
(m+ 2)

1
2

2
1
2 (2π)

m(m+1)
4
√
µm

=

√
2

π
(m+ 1)Γ

(
m+ 1

2

)
(m+ 2)

1
2

√
µm
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=

√
2

π
(m+ 1)Γ

(
m+ 1

2

)
(m+ 2)

1
2

2
1
2(m−1

2 )+m−1
2 (m+ 2)

1
2

=

√
2

π
(m+ 1)

Γ
(
m+1

2

)
2

1
2(m−1

2 )+m−1
2

=

√
2

π

2Γ
(
m+3

2

)
2

1
2(m−1

2 )+m−1
2

.

We deduce

Im =

√
2

π

2Γ
(
m+3

2

)
2

1
2(m−1

2 )+m−1
2

∫
R
ρm+1(x)e−

3x2

2 dx. (4.3)

We set
ρ̄n(s) :=

√
nρn(

√
ns),

and we deduce ∫
R
ρn(x)e−

3x2

2 dx =

∫
R
ρn(
√
ns)e−

3ns2

2 ds = n

∫
R
e−

3ns2

2 ρ̄n(s)ds

=

(
2π

3n

) 1
2
∫
R

(3n)
1
2 e−

3ns2

2

(2π)
1
2︸ ︷︷ ︸

=:wn(s)

· ρ̄n(s)ds.
(4.4)

To proceed further we use as guide Wigner’s theorem, [3, 13, 16, 26] stating that the sequences of
probability measures

ρ̄n(x)dx =
√
nρn(

√
nx)dx =

1√
n
Rn(
√
nx)dx

converges weakly to the semi-circle probability measure5 ρ(x)dx,

ρ(x) =
1

π

{√
2− x2, |x| ≤

√
2

0, |x| >
√

2.
(4.5)

We observe that the Gaussian measures wn(s)ds converge to the Dirac delta measure concentrated at
the origin. This suggests that

lim
n→∞

∫
R
ρ̄n(s)wn(s)ds = ρ(0) =

√
2

π
. (4.6)

We will show that this is indeed the case by slightly refining the arguments in one particular proof
of Wigner’s theorem; see [16, §7.1.6],[18, §6.1] or [26, A.9]. For the moment we will take (4.6) for
granted and show that it immediately implies (1.4).

Using (4.6) in (4.3) and (4.4) we deduce that

Im ∼
√

2

π

2Γ
(
m+3

2

)
2

1
2(m−1

2 )+m−1
2

×
(

2π

3(m+ 1)

) 1
2

×
√

2

π
as m→∞.

We now invoke Stirling’s formula to conclude that

log Im ∼∼ log Γ

(
m+ 3

2

)
∼ m

2
logm, as m→∞. (4.7)

Form (1.3) we deduce that

logC(m) = log Im +
m

2
log 4π + log Γ

(
1 +

m

2

)
− m

2
log(m+ 4).

5There are different rescalings of the semicircle measures in the literature. Our conventions agree with those in [26].
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Stirling’s formula and (4.7) imply that

logC(m) ∼ log Im ∼
m

2
logm as m→∞.

This proves (1.4). ut

4.2. Wigner’s semicircle law revisited. We can now present the postponed proof of (4.6). The 1-
point correlation function Rn(x) can be expressed explicitly in terms of Hermite polynomials, [26,
Eq. (7.2.32) and §A.9],

Rn(x) =

n−1∑
k=0

ψk(x)2

︸ ︷︷ ︸
=:kn(x)

+
(n

2

) 1
2
ψn−1(x)

∫
R
ε(x− t)ψn(t)dt+ αn(x)︸ ︷︷ ︸
=:`n(x)

, (4.8)

where

ψn(x) =
1

(2nn!
√
π)

1
2

e−
x2

2 Hn(x), Hn(x) = (−1)nex
2 dn

dxn
(e−x

2
),

αn(x) =

{
0, n ∈ 2Z,
ψn−1(x)∫

R ψn−1(x)dx
, n ∈ 2Z + 1,

and

ε(x) =


1
2 , x > 0

0, x = 0,

−1
2 , x < 0.

From the Christoffel-Darboux formula [43, Eq. (5.5.9)] we deduce

π
1
2 ex

2
n−1∑
k=0

ψk(x)2 =
n−1∑
k=1

1

2kk!
Hk(x)2 =

1

2n(n− 1)!

(
H ′n(x)Hn−1(x)−Hn(x)H ′n(x)

)
Using the recurrence formula H ′n = 2xHn −Hn+1 we deduce

H ′n(x)Hn−1(x)−Hn(x)H ′n(x) = H2
n(x)−Hn−1(x)Hn+1(x)

and

kn(x) =
e−x

2

2n(n− 1)!π
1
2

(
H2
n(x)−Hn−1(x)Hn+1(x)

)
.

We set

k̄n(x) :=
kn
(√
nx
)

√
n

, ¯̀
n(x) :=

`n
(√
nx
)

√
n

, R̄n(x) =
1√
n
Rn(
√
nx) = ρ̄n(x)

so that
R̄n(x) = k̄n(x) + ¯̀

n(x).

Lemma 4.1.
lim
n→∞

sup
x∈R
|¯̀n(x)| = 0. (4.9)
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Proof. Using the generating series [43, Eq. (5.5.7)]
∞∑
n=0

Hn(x)
Tn

n!
= e2Tx−T 2

we deduce that
∞∑
n=0

(∫
R
e−

x2

2 Hn(x)dx

)
Tn

n!
= eT

2

∫
R
e−

(x−2T )2

2 dx =
√

2πeT
2
,

so that

1

(2n)!

∫
R
e−

x2

2 H2n(x)dx =

√
2π

n!
and

∫
R
ψ2n(x)dx =

√
2(2n)!

2nn!π
1
4

∼ const · n
1
4 as n→∞.

Using [13, Thm. 6.55] or [43, Thm. 8.91.3] we deduce that

sup
x∈R
|ψn(x)| = O(n−

1
12 )

and thus
sup
x∈R
|αn(x)| = O(n−

1
12
− 1

4 ) = O(n−
1
3 ) as n→∞.

We set

Fn(x) =

∫
R
ε(x− t)ψn(t)dt.

Using [13, Thm. 6.55 + Eq. (6.26)] we deduce supx∈R |Fn(x)| = O
(
n−

1
12

)
. This proves (4.9). ut

From the above lemma we deduce that∫
R

(
ρ̄n(s)− ρ(s)

)
wn(s)ds =

∫
R

(
k̄n(s)− ρ(s)

)
wn(s)ds+O

(
n−

1
12
)

as n→∞.

Lemma 4.2.
lim
n→∞

∫
R

(
k̄n(s)− ρ(s)

)
wn(s)ds = 0.

FIGURE 1. The graph of k̄16(x), |x| ≤ 2.

Proof. Fix c ∈ (0,
√

2) so that the interval (−c, c) lies inside the oscillatory regime of Hn(
√
nt). We

have ∫
R

(
k̄n(s)− ρ(s)

)
wn(s)ds
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=

∫
|s|≤c

(
k̄n(s)− ρ(s)

)
wn(s)ds+

∫
|s|>c

(
k̄n(s)− ρ(s)

)
wn(s)ds

≤ sup
|s|≤c
|k̄n(s)− ρ(s)|+ sup

|s|>c
|
(
k̄n(s)− ρ(s)

)
|
∫
|s|>c

wn(s)ds.

Using the Plancherel-Rotach formulæ ([13, Eq. (6.126)], [38], [43, Thm. 8.22.9]) and arguing as in
[16, §7.1.6] or [18, §6.1] we deduce that

lim
n→∞

sup
|s|≤c
|k̄n(s)− ρ(s)| = 0.

On the other hand
lim
n→∞

∫
|s|>c

wn(s)ds = 0,

and [43, Thm.8.91.3] implies that

sup
|s|>c
|
(
k̄n(s)− ρ(s)

)
| = O(1) as n→∞.

ut

Since wn(s)ds converges to the δ-measure concentrated at the origin we deduce

lim
n→∞

∫
R
ρ(s)wn(s)ds = ρ(0) =

√
2

π
.

This proves (4.6).

APPENDIX A. GAUSSIAN MEASURES AND GAUSSIAN RANDOM FIELDS

For the reader’s convenience we survey here a few basic facts about Gaussian measures. For more
details we refer to [9]. A Gaussian measure on R is a Borel measure γm,σ of the form

γm,σ(x) =
1

σ
√

2π
e−

(x−m)2

2σ2 dx.

The scalar m is called the mean while σ is called the standard deviation. We allow σ to be zero in
which case

γm,0 = δm = the Dirac measure on R concentrated at m.
Suppose that V is a finite dimensional vector space. A Gaussian measure on V is a Borel measure
γ on V such that, for any ξ ∈ V ∨, the pushforward ξ∗(γ) is a Gaussian measure on R, ξ∗(γ) =
γm(ξ),σ(ξ).

The map V ∨ 3 ξ 7→ m(ξ) ∈ R is linear, and thus can be identified with a vector mγ ∈ V called
the barycenter or expectation of γ that can be alternatively defined by the equalitymγ =

∫
V vdγ(v).

Moreover, there exists a nonnegative definite, symmetric bilinear map

Σ : V ∨ × V ∨ → R such that σ(ξ)2 = Σ(ξ, ξ), ∀ξ ∈ V ∨.
The form Σ is called the covariance form and can be identified with a linear operator S : V ∨ → V
such that

Σ(ξ, η) = 〈ξ,Sη〉, ∀ξ, η ∈ V ∨,
where 〈−,−〉 : V ∨ × V → R denotes the natural bilinear pairing between a vector space and its
dual. The operator S is called the covariance operator and it is explicitly described by the integral
formula

〈ξ,Sη〉 = Λ(ξ, η) =

∫
V
〈ξ,v −mγ〉〈η,v −mγ〉dγ(v).
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The Gaussian measure is said to be nondegenerate if Σ is nondegenerate, and it is called centered if
m = 0. A nondegenerate Gaussian measure on V is uniquely determined by its covariance form and
its barycenter.

Example A.1. Suppose that U is an n-dimensional Euclidean space with inner product (−,−). We
use the inner product to identify U with its dual U∨. If A : U → U is a symmetric, positive definite
operator, then

dγA(x) =
1

(2π)
n
2

√
detA

e−
1
2

(A−1u,u) |du| (A.1)

is a centered Gaussian measure on U with covariance form described by the operator A. ut

If V is a finite dimensional vector space equipped with a Gaussian measure γ and L : V → U is
a linear map then the pushforward L∗γ is a Gaussian measure on U with barycenter

mL∗γ = L(mγ)

and covariance form

ΣL∗γ : U∨ ×U∨ → R, ΣL∗γ(η, η) = Σγ(L∨η,L∨η), ∀η ∈ U∨,
whereL∨ : U∨ → V ∨ is the dual (transpose) of the linear mapL. Observe that if γ is nondegenerate
and L is surjective, then L∗γ is also nondegenerate.

Suppose (S, µ) is a probability space. A Gaussian random vector on (S, µ) is a (Borel) measurable
map

X : S→ V , V finite dimensional vector space
such that X∗µ is a Gaussian measure on V . We will refer to this measure as the associated Gaussian
measure, we denote it by γX and we denote by ΣX (respectively SX ) its covariance form (respec-
tively operator),

ΣX(ξ1, ξ2) = E
(
〈ξ1, X −E(X) 〉 〈ξ2, X −E(X) 〉

)
.

Note that the expectation of γX is precisely the expectation of X . The random vector is called
nondegenerate, respectively centered, if the Gaussian measure γX is such.

Suppose that Xj : S → V 1, j = 1, 2, are two centered Gaussian random vectors such that the
direct sum X1 ⊕ X2 : S → V 1 ⊕ V 2 is also a centered Gaussian random vector with associated
Gaussian measure

γX1⊕X2 = pX1⊕X2(x1,x2)|dx1dx2|.
We obtain a bilinear form

cov(X1, X2) : V ∨1 × V ∨2 → R, cov(X1, X2)(ξ1, ξ2) = Σ(ξ1, ξ2),

called the covariance form. The random vectors X1 and X2 are independent if and only if they are
uncorrelated, i.e.,

cov(X1, X2) = 0.

We can form the random vector E(X1|X2), the conditional expectation of X1 given X2. If X1 and
X2 are independent thenE(X1|X2) = E(X1), while at the other extreme we haveE(X1|X1) = X1.

To find a formula for E(X1|X2) in general we fix Euclidean metrics (−,−)V j on V j . We can
then identify cov(X1, X2) with a linear operator Cov(X1, X2) : V 2 → V 1, via the equality

E
(
〈ξ1, X1〉〈ξ2, X2〉

)
= cov(X1, X2)(ξ1, ξ2)

=
〈
ξ1,Cov(X1, X2)ξ†2

〉
, ∀ξ1 ∈ V ∨1 , ξ2 ∈ V ∨2 ,

where ξ†2 ∈ V 2 denotes the vector metric dual to ξ2. The operator Cov(X1, X2) is called the
covariance operator of X1, X2. For a proof of the next classical result we refer to [4, Prop. 1.2].
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Lemma A.2 (Regression formula). If X1 and X2 are as above and, additionally, X2 is nondegener-
ate, then

E(X1|X2) = Cov(X1, X2)S−1
X2

(
X2 −E(X2)

)
+E(X1). (A.2)

ut

The conditional probability density of X1 given that X2 = x2 is the function

p(X1|X2=x2)(x1) =
pX1⊕X2(x1,x2)∫

V 1
pX1⊕X2(x1,x2)|dx1|

.

For a measurable function f : V 1 → R the conditional expectation E(f(X1)|X2 = x2) is the
(deterministic) scalar

E(f(X1)|X2 = x2) =

∫
V 1

f(x1)p(X1|X2=x2)(x1)|dx1|.

Again, if X2 is nondegenerate, then we have the regression formula

E(f(X1)|X2 = x2) = E
(
f(Y + Cx2)

)
(A.3)

where Y : S→ V 1 is a Gaussian vector with

E(Y ) = E(X1)− CE(X2), SY = SX1 −Cov(X1, X2)S−1
X2
Cov(X2, X1), (A.4)

and C is given by

C = Cov(X1, X2)S−1
X2
. (A.5)

Let us point out that if X : S → U is a Gaussian random vector and L : U → V is a linear map,
then the random vector LX : S→ V is also Gaussian. Moreover

E(LX) = LE(X), ΣLX(ξ, ξ) = ΣX(L∨ξ,L∨ξ), ∀ξ ∈ V ∨,

where L∨ : V ∨ → U∨ is the linear map dual to L. Equivalently, SLX = LSXL
∨.

A random field (or function) on a set T is a map ξ : T × (S, µ)→ R, (t, s) 7→ ξt(s) such that

• (S, µ) is a probability space, and
• for any t ∈ T the function ξt : S→ R is measurable, i.e., it is a random variable.

Thus, a random field on T is a family of random variables ξt parameterized by the set T . For
simplicity we will assume that all these random variables have finite second moments. For any t ∈ T
we denote by µt1 the expectation of ξt. The covariance function or kernel of the field is the function
Cξ : T × T → R defined by

Cξ(t1, t2) = E
(

(ξt1 − µt1) ( ξt2 − µt2)
)

=

∫
S

(
ξt1(s)− µt1

)(
ξt2(s)− µt2

)
dµ(s).

The field is called Gaussian if for any finite subset F ⊂ T the random vector

S ∈ s 7→
(
ξt(s)

)
t∈F ∈ RF

is a Gaussian random vector. Almost all the important information concerning a Gaussian random
field can be extracted from its covariance kernel. For more information about random fields we refer
to [1, 4, 12, 20].

In the conclusion of this section we want to describe a few simple integral formulas.
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Proposition A.3. Suppose V is an Euclidean space of dimension N , f : U → R is a locally
integrable, positively homogeneous function of degree k ≥ 0, and A : U → U is a positive definite
symmetric operator. Denote by B(U) the unit ball of V centered at the origin, and by S(U) its
boundary. Then the following hold

1

π
N
2 (k +N)

∫
S(U)

f(u)|dA(u)| = 1

π
N
2

∫
B(U)

f(u)|du|

=
1

Γ
(
1 + k+N

2 )

∫
U
f(u)

e−|u|
2

π
N
2

|du|.
(A.6)

∫
U
f(u)dγtA(u) = t

k
2

∫
U
f(u)dγA(u) ∀t > 0, (A.7)

where dγA is the Gaussian measure defined by (A.1).

Proof. We have∫
B(U)

f(u)|du| =
∫ 1

0
tk+N−1

(∫
S(U)

f(u)|dA(u)|

)
=

1

k +N

∫
S(U)

f(u)|dA(u)|.

On the other hand
1

π
N
2

∫
U
f(u)e−|u|

2 |du| = 1

π
N
2

(∫ ∞
0

tk+N−1e−t
2
dt

)∫
S(U)

f(u)|dA(u)|

=
1

2π
N
2

Γ

(
k +N

2

)∫
S(U)

f(u)|dA(u)| = k +N

2π
N
2

Γ

(
k +N

2

)∫
B(U)

f(u)|du|.

=
1

π
N
2

Γ

(
1 +

k +N

2

)∫
B(U)

f(u)|du|.

This proves (A.6). The equality (A.7) follows by using the change in variables u = t
1
2v. ut

APPENDIX B. GAUSSIAN RANDOM SYMMETRIC MATRICES

We want to describe in some detail a 3-parameter family of centered Gaussian measures on Sm,
the vector space of real symmetric m×m matrices, m > 1.

For any 1 ≤ i ≤ j define ξij ∈ S∨m so that for any A ∈ Sm

ξij(A) = aij = the (i, j)-th entry of the matrix A.

The collection (ξij)1≤i≤j≤m is a basis of the dual space S∨m. We denote by (Eij)1≤i≤j the dual basis
of Sm. More precisely, Eij is the symmetric matrix whose (i, j) and (j, i) entries are 1 while all the
other entries are equal to zero. For any A ∈ Sm we have

A =
∑
i≤j

ξij(A)Eij .

The space Sm is equipped with an inner product

(−,−) : Sm × Sm → R, (A,B) = tr(AB), ∀A,B ∈ Sm.

This inner product is invariant with respect to the action of SO(m) on Sm. We set

Êij :=

{
Eij , i = j

1√
2
Eij , i < j.

.
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The collection (Êij)i≤j is a basis of Sm orthonormal with respect to the above inner product. We set

ξ̂ij :=

{
ξij , i = j√

2ξij , i < j.

The collection (ξ̂ij)i≤j the orthonormal basis of S∨m dual to (Êij). The volume density induced by
this metric is

|dX| :=
∏
i≤j

dξ̂ij = 2
1
2(m2 )

∏
i≤j

dxij .

To any numbers a, b, c satisfying the inequalities

a− b, c, a+ (m− 1)b > 0. (B.1)

we will associate a centered Gaussian measure Γa,b,c on Sm uniquely determined by its covariance
form

Σ = Σa,b,c : S∨m × S∨m → R
defined as follows:

Σ(ξii, ξii) = a, Σ(ξii, ξjj) = b, ∀i 6= j, (B.2a)

Σ(ξij , ξij) = c, Σ(ξij , ξk`) = 0, ∀i < j, k ≤ `, (i, j) 6= (k, `). (B.2b)
To see that Σa,b,c is positive definite if a, b, c satisfy (B.1) we decompose S∨m as a direct sum of
subspaces

S∨m = Dm ⊕ Om,

Dm = span {ξii; 1 ≤ i ≤ m}, Om = span {ξij ; 1 ≤ i < j ≤ m}, dimOm =

(
m

2

)
With respect to this decomposition, and the corresponding bases of these subspaces the matrix Qa,b,c
describing Σa,b,c with respect to the basis (ξij) has a direct sum decomposition

Qa,b,c = Gm(a, b)⊕ c1(m2 ),

where Gm(a, b) is the m ×m symmetric matrix whose diagonal entries are equal to a while all the
off diagonal entries are all equal to b.

The the spectrum of Gm(a, b) consists of two eigenvalues: (a− b) with multiplicity (m− 1) and
the simple eigenvalue a−b+mb. Indeed, if Cm denotes them×mmatrix with all entries equal to 1,
then Gm(a, b) = (a− b)1m+ bCm. The matrix Cm has rank 1 and a single nonzero eigenvalue equal
to m with multiplicity 1. This proves that Qa,b,c is positive definite since its spectrum is positive. We
denote by dΓa,b,c the centered Gaussian measure on Sm with covariance form Σa,b,c.

Since Sm is equipped with an inner product we can identify Σa,b,c with a symmetric, positive
definite bilinear form on Sm. We would like to compute the matrix Q̂ = Q̂a,b,c that describes Σa,b,c

with respect to the orthonormal basis (Êij)1≤i≤j . We have

Q̂(Êii, Êii) = Q(ξ̂ii, ξ̂ii) = a, Q̂(Êii, Êjj) = b, ∀i 6= j,

Q̂(Êij , Êij) = Q(ξ̂ij , ξ̂ij) = 2Q(ξij , ξij) = 2c, ∀i < j,

Thus
Q̂a,b,c = Gm(a, b)⊕ 2c1(m2 ). (B.3)

If | − |a,b,c denotes the Euclidean norm on Sm determined by Σa,b,c then for

A =
∑
i≤j

aijEij =
∑
i

aiiÊii +
√

2
∑
i<j

aijÊij .
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we have
|A|2a,b,c = a

∑
i

a2
ii + 2b

∑
i<j

aiiajj + 4c
∑
i<j

a2
ij

= (a− b− 2c)
∑
i

a2
ii + b

(∑
i

aii

)2

+ 2c

∑
i

a2
ii + 2

∑
i<j

a2
ij


= (a− b− 2c)

∑
i

a2
ii + b(trA)2 + 2c trA2.

Observe that when
a− b = 2c (B.4)

we have
|A|2a,b,c = b(trA)2 + 2c trA2 (B.5)

so that the norm | − |a,b,c and the Gaussian measure dΓa,b,c are O(m)-invariant. Let us point out that
the space Sm equipped with the Gaussian measure dΓ2,0,1 is the well known GOE, the Gaussian
orthogonal ensemble.

To obtain a more concrete description of Γa,b,c we first identify Σa,b,c with a symmetric operator
Q̂a,b,c : Sm → Sm. Using (B.3) we deduce that

Q̂a,b,c = G(a, b)⊕ 2c1(m2 ).

Observe that
det Q̂a,b,c = (a− b)

(
a+ (m− 1)b

)m−1
(2c)(

m
2 ), (B.6)

and
Q̂−1
a,b,c = Q̂a′,b′,c′ = Gm(a′, b′)⊕ 2c′1(m2 ), (B.7)

where 2c′ = 1
2c and the real numbers a′, b′ are determined from the linear system

a′ − b′ = 1
a−b

a′ + (m− 1)b′ = 1
a+(m−1)b .

(B.8)

We then have

dΓa,b,c(X) =
1

(2π)
m(m+1)

4 (det Q̂a,b,c)
1
2

e−
1
2

(Q̂−1
a,b,cX,X)2

1
2(m2 )

∏
i≤j

dxij , (B.9)

where
(Q̂−1

a,b,cX,X) =
(
a′ − b′ − 1

2c

)∑
i

x2
ii + b′(trX)2 +

1

2c
trX2. (B.10)

The special case b = c > 0, a = 3c is particularly important for our considerations. We denote
by (−,−)c and respectively dΓc the inner product and respectively the Gaussian measure on Sm
corresponding to the covariance form Σ3c,c,c.

If we set Q̂c := Q̂3c,c,c then we deduce from (B.7) that

Q̂−1
c = Q̂a′,b′,c′ = Gm(a′, b′)⊕ 1

2c
1(m2 ),

where 
a′ − b′ = 1

2c = 2c′

a′ + (m− 1)b′ = 1
(m+2)c .
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We deduce

mb′ =
1

(m+ 2)c
− 1

2c
= − m

2c(m+ 2)
⇒ b′ = − 1

2c(m+ 2)
.

Note that the invariance condition (B.4) a′ − b′ = 2c′ is automatically satisfied so that(
Q̂−1
c X,X

)
=

1

2c
trX2 − 1

2c(m+ 2)
(trX)2.

Using (B.6) and (B.9) we deduce

dΓc(X) =
1

(2πc)
m(m+1)

4
√
µm
· e−

1
4c

(
trX2− 1

m+2
(trX)2

)
2

1
2(m2 )

∏
i≤j
|dxij |︸ ︷︷ ︸

|dX|

, (B.11)

where
µm := 2(m2 )+(m−1)(m+ 2). (B.12)

The inner product (−,−)c has the alternate description

(A,B)c = Ic(A,B) := 4c

∫
Rm

(Ax,x)(Bx,x)
e−|x|

2

π
m
2

|dx|

= c

∫
Rm

(Ax,x)(Bx,x)
e−
|x|2

2

(2π)
m
2

|dx|, ∀A,B ∈ Sm.

(B.13)

APPENDIX C. A GAUSSIAN INTEGRAL

The proof of (2.37). We want to find the value of the integral

I =
1

4(2π)
3
2

∫
S2

| detX|e−
1
4

(
trX2− 1

4
(trX)2

)
·
√

2
∏

1≤i≤j≤2

dxij .

We first make the change in coordinates

x11 = x+ y, x22 = x− y, x12 = z.

Then
detX = x2 − y2 − z2, trX = 2x, trX2 = 2(x2 + y2 + z2).

Hence

I =
1

2(2π)
3
2

∫
R3

|x2 − y2 − z2|e−
1
4

(x2+2y2+2z2)
√

2|dxdydz|

(x =
√

2u)

=
1

(2π)
3
2

∫
R3

|2u2 − y2 − z2|e−
1
2

(u2+y2+z2)|dudydz|

=
2

π
3
2

∫
R3

|2u2 − y2 − z2|e−(u2+y2+z2)|dudydz|.

We now make the change in variables y = r cos θ, y = r sin θ, r > 0 θ ∈ [0, 2π) and we deduce

I =
2

π
3
2

∫
R

∫ ∞
0

(∫ 2π

0
|2u2 − r2|e−u2+r2

dθ

)
rdrdu

=
8π

π
3
2

∫ ∞
0

∫ ∞
0
|2u2 − r2|e−(u2+r2)rdrdu.
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We now make the change in variables

u = t sinϕ, r = t cosϕ, t > 0, 0 ≤ ϕ ≤ π

2
,

and we conclude

I =
8

π
1
2

(∫ ∞
0

e−t
2
t4dt

)(∫ π
2

0
|3 sin2 ϕ− 1| cosϕdϕ

)
(t =

√
s, x = sinϕ)

=
4

π
1
2

(∫ ∞
0

e−ss
3
2ds

)(∫ 1

0
|3x2 − 1|dx

)
=

4

π
1
2

× Γ
(5

2

)
× 4

3
√

3
=

4√
3
. ut

REFERENCES

[1] R. Adler, R.J.E. Taylor: Random Fields and Geometry, Springer Monographs in Mathematics, Springer Verlag,
2007.
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