CRITICAL SETS OF RANDOM SMOOTH FUNCTIONS ON COMPACT MANIFOLDS

LIVIU I. NICOLAESCU

ABSTRACT. Given a compact, connected Riemann manifold without boundary (M, g) of dimension m
and a large positive constant L we denote by U 1, the subspace of C'°° (M) spanned by eigenfunctions of
the Laplacian corresponding to eigenvalues < L. We equip U 1, with the standard Gaussian probability
measure induced by the L?-metric on U 1, and we denote by N, the expected number of critical points
of a random function in U 1. We prove that N, ~ C,,, dim U, as L — oo, where C,, is an explicit
positive constant that depends only on the dimension m of M and satisfying the asymptotic estimate
log Cr, ~ 5 logm as m — oo.
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Suppose that (M, g) is a smooth, compact, connected Riemann manifold of dimension m > 1. We
denote by |dV,| the volume density on M induced by g. Throughout the paper we assume that the
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/\dV )= 1.

For any u, v € C*(M) we denote by (u, v), their L? inner product,

(4, 0) 1= /M w(zyo() |4V, ()|

The L2-norm of a smooth function w is then

volume is normalized

[ull ==/ (u, u)g.
Let A, : C°(M) — C°°(M) denote the scalar Laplacian defined by the metric g. For L > 0 we set

U,=UL(M,g):= P ker(A\—4y), d(L):=dimU;.
X€[0,L]
We equip U, with the Gaussian probability measure.
_dir) _M
dyp(u) = (2m)""2"e |dul.

For any u € U, we denote by Ny (u) the number of critical points of w. If L is sufficiently large,
then Nz () is finite with probability 1. We obtain in this fashion a random variable Nz, = N7, /4,
and we denote by E (N ) its expectation

E(NL) = NL(U)d’YL(U)
UL
In this paper we investigate the behavior of E(N) as L — oo. More precisely, we will prove the
following result.

Theorem 1.1. For any m > 1 there exists a positive constant C' = C(m) such that for any compact,
connected, m-dimensional Riemannian manifold M we have

E(Nparg) ~ C(m)dimUL(M,g) as L — oo. (1.1)

The constant C'(m) can be expressed in terms of certain statistics on the space §,, the space of
symmetric m X m matrices . We denote d-, the Gaussian measurelon Sm given by

iy (X) = 1 e L x2- 2 (i X)?2 dezm

m(m+1)

(27‘(’)*% i<j (1.2)
L :2( )+1(m_|_2)m 1

Then

m
2

C(m) = (mA‘L) r(1+%) /Sm|detX|d~y*(X). (1.3)

-~

=:Im
A similar result holds in the case m = 1. In this case M = S! and U, is the space of trigonometric
polynomials of degree < L. One can show (see [34])

3
E(Np g1) ~ \/;dimUL as L — oo.

'We refer to Appendix B for a detailed description of a 3-parameter family Gaussian measures dI'; 5. on S,, that
includes d, as dv, = dl'31,1.
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We can say something about the behavior of C'(m) as m — oo.

Theorem 1.2. .
log C(m) ~ log I, ~ Elogm as m — oo. (1.4)

The proof of (1.1) is based on Kac-Rice’s integral formula [1, 4, 8, 14, 15] which expresses the
expected number of critical points of a function in U, as an integral

BE(N,) = /me) dV()). *)

The above equality was given a geometric interpretation by Chern and Lashof [11]. More precisely,
they showed that the integral in the right-hand side of the above equality is the the total curvature of
the immersion given by the evaluation map

ev: M — Hom(U,R), p— evyp, (1.5)

where evy,(u) = u(p), Vu € U.

For our purposes the probabilistic description of the integrand py, () is more useful. To formulate
it let us denote by Hessz (u, g) the Hessian at @ of the random function w € U 1, computed using the
Levi-Civita connection of the metric g. Using the metric we identify Hessz(u, g) with a symmetric
linear operator T, M — T M. Then

1

= F
,OL(m) A\ /det QWSdu(x)

Above, Sy () denotes covariance matrix of the Gaussian vector U, 3 u +— du(z) € T, M, while
the quantity

(|det Hessz(u, g)| | du(z) = 0). (1.6)

E( | det Hessg (u, g)| | du(z) = O)

is the conditional expectation of the random variable uw — | det Hessz (u, g)| given that du(z) = 0.

Using the regression formula (see [4, Prop. 1.2] or (A.2)) we express this conditional expectation
as the unconditional expectation of a new random variable |det Ay (x)|, where Ay (x) denotes a
random, Gaussian symmetric m X m matrix whose covariance takes into account the correlations
between the Gaussian variables u — Hessy(u, g) and u — du(z).

Next, we reduce the large L asymptotics of the Gaussian random vector du(x) and matrix Ay, (x)
to questions concerning the asymptotics of the spectral function €, of the Laplacian, i.e., the Schwartz
kernel of the orthogonal projection onto U . These issues were addressed in the pioneering work of
L. Hormander [21].

We actually prove a bit more. We show that
C(m)wm
(2m)™
where w,,, denotes the volume of the unit ball in R™. Using the classical Weyl estimates (3.2) we see

that (1.7) implies (1.1).

The equality (1.7) has an interesting interpretation. We can think of pr(x)|dV(x)| as the ex-
pected number of critical points of a random function in U 1, inside an infinitesimal region of volume
|dVy(x)| around the point . From this point of view we see that (1.7) states that for large L we
expect the critical points of a random function in U r, to be approximatively uniformly distributed.

We are inclined to believe that as L — oo the ratio

_ wvar(Ng)
qr = 7E(NL)

lim L™2 pp(x) = , uniformly in z € M, (1.7)
L—oo
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has a finite limit g(M/, g). Such a result would show that N, is highly concentrated near its mean value
as L — oc. In [34] we proved that this is the case when M = S! and moreover, ¢(S!) ~ 0.4518.....
In [35] we proved that a closely related concentration result is valid for all flat tori.

For a holomorphic counterpart of such an estimate we refer to [42].

We obtain the asymptotics of C'(m) by relying on a trick used by Y.V. Fyodorov [17] in a re-
lated context. This reduces the asymptotics of the integral [,,, to known asymptotics of the 1-point
correlation function in random matrix theory, more precisely, Wigner’s semi-circle law.

Philosophically, the universality result contained in Theorem 1.1 is a consequence of a universal
behavior of the spectral function €y, along the diagonal. Roughly speaking, if we rescale the metric
g so that in the limit it becomes flatter, and flatter, then the corresponding spectral function begins to
resemble the spectral function of the Laplacian on the Euclidean space R™. For a precise formulation
of this universal rescaling phenomenon we refer to [25, 33].

A related problem was considered by M. Douglas, B. Shiffman, S. Zelditch, [14, 15] where they
investigate the number of critical points of a random holomorphic section of a large power N of a
positive holomorphic line bundle £ over a Kéhler manifold X. In these papers the role of our U,
is played by the space of holomorphic sections H°(X, L"), and the large L asymptotics is replaced
by large N asymptotics. The large /N asymptotics ultimately follow from the refined asymptotics of
the Szego kernels obtained by S. Zelditch in [44]. These refined asymptotics then lead to a complete
asymptotic expansion as N — oo for the expected number of critical points of a random holomorphic
section of LV,

The proof of Theorem 1.1 reveals several additional interesting universal rescaling phenomena.
We identify U7, with U} = Hom(U 1, R) using the L?-metric. We can thus view the evaluation map
in (1.5) asamap ev : M — Uy . For large L this map is an embedding, and we denote by o, the
pullback to M via ev of the L?-metric on U 1. Equivalently, if (1)) is an orthonormal basis of U,
then

op = Zd"#k @ dipy,.
%

The equality (3.9) in the proof of Theorem 1.1 shows that the rescaled metric g(L) := Lo L

converges in the C° topology to K,,g, where g is the original metric on M and K, is a certain,
explicit constant that depends only on m; see (3.5). This was also observed by S. Zelditch, [45, Prop.
2.3]. A closely related result was proved in [5, Thm.5].

To obtain the convergence of g(L) in stronger topologies we would need bounds on the sectional
curvature of g(L). We show that these bounds are equivalent to some refined asymptotic estimates
satisfied by certain linear combinations of fourth order derivatives of the spectral function, (3.20).

A related embedding can be constructed in the holomorphic case and S. Zelditch [44] has proved
that the resulting sequence of suitably rescaled metrics gy converges C to the original Kéhler
metric. The main reason for such a stronger form of convergence is the better behavior of the Szego
kernels. Such a regular behavior is not to be expected for the spectral function €.

The present paper is structured as follows. Section 2 contains the formulation and the proof of
the key integral formula (1.6), including several reformulations in the language of random processes.
In this section we also present a simple application of this formula to the number of critical points
of random spherical harmonics of large degree on S2. This sheds additional light on a recent result
of Nazarov and Sodin [30] on the number of nodal domains of random spherical harmonics. More
precisely, the inequality (2.40) shows that the expected number 6,, of zonal domain on S? of a random
harmonic polynomial of large degree n satisfies the upper bound J,, < 0.29n2.

Section 3 contains the proof of the asymptotic estimate (1.1) and Section 4 contains the proof of
the estimate (1.3).
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In our experience, many basic probabilistic technologies are not that familiar to an audience with
a more geometric background. With this audience in mind we decided to include in Appendix A a
coordinate-free, brief survey of several facts about Gaussian measures and Gaussian processes in a
form adapted to the applications in this paper. Appendix B contains a detailed description of a 3-
parameter family of Gaussian measures on the space §,,, of real, symmetric m x m matrices. These
measures play a central role in the proof of (1.1) and we could not find an appropriate reference for
the mostly elementary facts discussed in this appendix. Appendix C contains the computations of a
Gaussian integral involving random 2 X 2 matrices.
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NOTATIONS

(i) For any random variable £ we denote by E(£) and respectively var(§) its expectation and

respectively its variance.

(ii) 8;, denotes the space of symmetric m x m real matrices.

(iii) For any finite dimensional real vector space V' we denote by V'V its dual, V'V := Hom(V, R).

(iv) For any Euclidean space V', we denote by S(V') the unit sphere in V' centered at the origin
and by B(V) the unit ball in V' centered at the origin.

(v) We will denote by o, the “area” of the round n-dimensional sphere S™ of radius 1, and by
wy, the “volume” of the unit ball in R™. These quantities are uniquely determined by the
equalities (see [31, Ex. 9.1.11])

T2 nmw2 1

On—1 nwn 21—\(%) F(1+g)7 F<2> ﬁa (U)
where I' is Euler’s Gamma function.

(vi) If Vj and V'; are two Euclidean spaces of dimensions ng,n; < coand A : Vg — V7 is
a linear map, then the Jacobian of A is the nonnegative scalar J(A) defined as the norm of
the linear map

AkA : AkV() — Akvl, k= min(no,nl).

More concretely, if ng < nj, and {e, ..., en,} is an orthonormal basis of V', then

J(4) = (det G(4))"?, (J-)

where G(A) is the ng x ng Gramm matrix with entries
Gij = (Aei, Aej )Vl'
If n1 > ng then
J(4) = J(Af) = (det G(ah))"?, ()

where A' denotes the adjoint (transpose) of A. Equivalently, if dVol; € A" V¥ denotes the
metric volume form on V1, and dVol 4 denotes the metric volume form on ker A, then J(A)
is the positive number such that

dVoly = £dVoly A A*dVol;. JD)

’He suddenly and untimely passed away in June 2011. I will miss his generosity and expertise.
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2. A KAC-RICE TYPE FORMULA

2.1. The Kkey integral formula. As we mentioned in the introduction, a key component in the proof
of Theorem 1.1 is an integral formula that describes the expected number of critical points as an
integral over the background manifold M. The literature on random fields contains many formula of
this type, and their proofs follow the strategy pioneered by M. Kac and S. Rice, [1, 4, 24, 40].

We believe that it would greatly benefit a reader less fluent in the probabilistic language to first see
the geometric origins of these formulae. For this reason we decided to include a complete proof of
these formulae in our special case. Not surprisingly the ubiquitous double-fibration trick in integral
geometry, [2, 19, 31] will carry the day. As a matter of fact, our main integral formula (2.2) contains
as special cases the integral formula of Chern-Lashof, [11] and Milnor, [27].

Suppose that M is a smooth, compact, connected manifold without boundary. Set m := dim M.

Definition 2.1. (a) For any nonnegative integer k, any point p € M and any f € C°°(M) we will
denote by ji(f, p) the k-th jet of f at p.

(b) Suppose that U C C'°°(M) is a linear subspace. If k is nonnegative integer then we say that U is
k-ample if for any p € M and any f € C°°(M) there exists w € U such that

Je(u,p) = jr(f, ). O

Fix a finite dimensional vector space U C C°°(M) and set N := dim U. We have an evaluation
map

ev=ev’: M - U" :=Hom(U,R), p+— evp,
where for any p € M the linear map ev, : U — R is given by
evp(u) =u(p), Vue U.

For any u € C°°(M ) we denote by N(u) the number of critical points of w. In the remainder of this
section we will assume that U is 1-ample. This implies that the evaluation map evV is an immersion.
Moreover, as explained in [32, Cor. 1.26], the 1-ampleness condition also implies that almost all
functions u € U are Morse functions and thus N(u) < oo for almost all uw € U.

We fix an inner product h = (—, —); on U and we denote by | — |, the resulting Euclidean norm.
Using the metric h we identify U with its dual and thus we can regard the evaluation map as a smooth
map ev : M — U. We define the expected number of critical points of a function in U to be the
quantity

Jul7,
1 T2
N(U. ) = — / N(u)\dAh(u)\_/ N(w) 5 [dVa(u)l, @.1)
N-1J5s(U) U (2m)2
S
=:dyy,(w)

where 0,1 denotes the area” of the unit sphere in R™, |dAy| denotes the “area” density on the
unit sphere S(U), and |dV},(u)| denotes the volume density on U determined by the metric h. A
priori, the expected number of critical points could be infinite, but in any case, it is independent of
any choice of metric on M. The space U equipped with the Gaussian probability measure d-y;, is a
probability space. We denote by Ny; the random variable U > v +— N(u) € Z so that

N(U, h) = ENu, dvy),

where E(—, d7;) denotes the expectation computed with respect to the probability measure d-y;,. We
will refer to the pair (U, h) as the sample space.
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Fix a metric g on M. We will express N(U, h) as an integral

/ pg(P) [dVy(p)|-
M

The function p, does depend on g, but the density p,(p) |dV,(p)| is independent of g. The concrete
description of p,4(p) relies on several fundamental objects naturally associated to the triplet (U, h, g).
For any p € M we set
Ug :={ueU; du(p)=0}.
The 1-ampleness assumption on U implies that for any p € M the subspace Ug has codimension
m in U so that dim U 10, = N — m. Denote by dA SUY) the area density along the unit sphere
suy) cU”.

The differential of the evaluation map at p is a linear map A, : T, M — U. We will refer to
Ap as the adjunction map and we will denote by J,(p) = Jy4(p, U) its Jacobian. More precisely, if
(e1,...,en) is a g-orthonormal basis of T, M, then

2 _ . .
Jg(p)” = det { (Apez,flpe] )h } R

Since evV

is an immersion we have J,(p) # 0, V& € M.
For any p € M and any u € U%, the Hessian of u at p is a well defined symmetric bilinear
form on T}, M that can be identified via the metric g with a symmetric endomorphism Hessy (u, g) of

Tp M. We denote this symmetric endomorphism by Hessy, (u, g).

Theorem 2.2. If (U, h) is a 1-ample sample space on M, then

1 1
NU,h) = / / det H v, dA v dv.
o= Jg(p)<S(Ug)| et Hess(0,9) |45 01 >|)| )
5 1 det T o~ - . (2.2)
=(2m) 2 et Hessp(w, 9)| —F— u ‘
@ E [ Ty | oy et st ol Sl ) i)

=:p

Proof. Denote by U ,, the trivial vector bundle over M with fiber U, U ;; := (U x M — M). For
any p € M we denote by K, the orthogonal complement of U 2, inU.

Lemma 2.3. The subspace K, coincides with the range of the adjunction map Ap.

Proof. Indeed, if (V,,)1<n<n is an orthonormal basis of (U, h), then
evp = Z U, (p)¥, eU.
n

and for any vector field X on M we have

ApXp = (XT,)pT,.

Thus, the functionw = ), u,V,, € U, u,, € R, belongs to K ; if and only if for any vector field X
on M we have

0=> un(XV,), =X - u(p)<=uc U,
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This proves that the collection (K ) defines a subbundle K of U , and the adjunction map induces
an isomorphism of vector bundle A : TM — K. We deduce that the collection of spaces (Ug)pe M
also forms a vector subbundle U" of the trivial bundle U ;, and we have an orthogonal direct sum
decomposition

U,=U"0K.
For any section v of U ,; we denote by u" its U 9_component.

The bundle U ;, is equipped with a canonical trivial connection D. More precisely, if we regard
a section of u of U, as a smooth map u : M — U, then for any vector field X on M we define
Dxu as the smooth function M — U obtained by derivating u along X. The shape operator of the
subbundle K is the bundle morphism Z : TM @ K — U defined by the equality

E(X,u) = (Dxu)’, VX € O°(TM), uc C®(K).

For every p € M, we denote by E,, the induced linear map E, : T, M @ Kp — UY. If we denote
by Gr,,,(U) the Grassmannian of m-dimensional subspaces of U, then we have a Gauss map

M3 p+2s §(p) = Kp € Grp(U).
The shape operator E,, can be viewed as a linear map
Ep : TpM — Hom(Kp, UY) = Tk, Gry,(U),

and, as such, it can be identified with the differential of G at p, [31, §9.1.2]. Any v € Ug determines
a bilinear map
Ep-v:TpMe K, =R, Ep-vieu):= (Ep(e,u),v)h,

By choosing orthonormal bases (e;) in TpM and (u;) of K, we can identify this bilinear form
with an m X m-matrix. This matrix depends on the choices of bases, but the absolute value of its
determinant is independent of these bases. It is thus an invariant of the pair (Ep,v) that we will
denote by | det E, - v|.

Lemma 2.4.

1
N(U, h) = / / |det =, - vl [dAg ) (0)] | 1V, (p)]. 23)
ON-1JMm \ JsUY)

Proof. Consider the incidence variety
J:={(p,v) € M x S(U); dv(p)=0}={(x,v) e M x SU); veSU,)}.
We have a natural double “fibration”
M 925 s,

where the left/right projections A, p are the canonical projections. The left projection XA : J — M
describes J as the unit sphere bundle associated to the metric vector bundle U°. In particular, this
shows that J is a compact, smooth manifold of dimension (N — 1). For generic v € S(U) the fiber
p~!(v) is finite and can be identified with the set of critical points of v : M — R. We deduce

NU,h) = ——<=+ / #p~ " (v) [dAp(u)]. (2.4)

area

Denote by gg the metric on J induced by the metric on M x S(U) and by |dV4| the induced volume
density. The coarea formula, [10, §13.4], implies that

40\ (v)|dAy ()| = / (. 0)|dVi(p, v)), @5)
SU)
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where the nonnegative function J,, is the Jacobian of p defined by the equality
p*ldA| = T, - |dVi.

To compute the integral in the right-hand side of (2.5) we need a more explicit description of the
geometry of the incidence variety J.

Fix a local orthonormal frame (e1, ..., e,,) of T'M defined in a neighborhood O in M of a given
point p, € M. We denote by (e, ..., e™) the dual co-frame of T* M. Set

filp) =Apei(p) €U, i=1,...,m, peO.
More explicitly, f;(u) is defined by the equality
(fz-(p), v)h = Oe,u(p), VueU. (2.6)

Fix a neighborhood U C A~(O) in M x S(U) of the point (py, vo), and a local orthonormal frame
ui(p,v),...,un_1(p,v) over U of the bundle p*T'S(U) — M x S(U) such that the following
hold.

e The vectors w1 (p,v), ..., U (P, v) are independent of the variable v and form an orthonor-
mal basis of K ;. (E.g., we can obtain such vectors from the vectors f,(p), ..., f,,(p) via
the Gramm-Schmidt process.)

e For (p,v) € U, the space T}, E, is spanned by the vectors w,,1(p,v), ..., un—1(p,v).

The collection w1 (p), . . ., u, (p) is a collection of smooth sections of U ; over O. For any p € O
and any e € T, M, we obtain the vectors (functions).

Deui(p), ..., Dpup(x) € U,

where we recall that D denotes the trivial connection on U ;;. Observe that
INU={(p,v) elU; Ui(p,v) =0, Vi=1,...,m}, (2.7)
where Uj is the function U; : O x U — R given by
Ui(p,v) := (ui(p),v )h.

Thus, the tangent space of J at (p, v) consists of tangent vectors p & v € T M @ T,,S(V') such that

dU;(p, o) =0, Yi=1,...,m.
We let wy denote the m-form

wy =dUy A --- NdU,, € Q™(U),

and we denote by ||wys|| its norm with respect to the product metric on M x S(U). Denote by \cﬂ\/ |

the volume density on M x S(U) induced by the product metric. The equality (2.7) implies that

—~ 1
’dV’ = — ]wU NdVE | .

Jwur ||

Hence )
JoldV| = ——|wy A p*dAl.
lwol
We deduce
Jo(Pgy, v0) = Jp(pg,v0)|dV |(€1,. .., €m, U1, ..., uN_1)
1 1
= — A p*dS )= — .
”CUUH ‘(.UU P ‘(817 y€m, UL, , UN 1) ||OJUH |wU(ela y €m ) ‘(Poﬂz’O)

=:Ay (pg;v0)
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Hence,
Sublemma 2.5. We have the equaltty
1
Iy = —, (2.9)
lwu |
where Jy denotes the Jacobian of the projection A : J — M.
Proof of Sublemma 2.5. Along U we have
S 1
|dV| = 7|WU/\d‘/J|7
lwo|
while the definition of the Jacobian implies that
1
|dVs| = j}\|d‘@ N dAgwo-
Therefore, it suffices to show that along U we have
ie.,
‘WU A dVg A dAS(U?,)(eh ey €, UL,y .. 7UN—1) ’ =1.
Since dU;(uy) = 0, Vk > m + 1 we deduce that
‘wU N dVy A dAS(Ug)(el, ey €y Uy UN—]) ‘ = |lwy (w1, ..., up)l|
Thus, it suffices to show that |w (w1, . .., %, )| = 1. This follows from the elementary identities
where d;; is the Kronecker symbol. O

Using (2.9) in (2.8) and the coarea formula we deduce
#o (w)dAnw) = [ (/ Au(p,v) [dA g, (v) ) Wyp).  @10)
sS(U) M\ JsWY)
Observe that at a point (p,v) € A~1(0) C J we have
dU;(e;) = (Dejui(p), v )h.
We can rewrite this in terms of the shape operator 2, : T, M ® K, — U%. More precisely,
dUi(ej) = ( Ep(ej, ui), v )h'

Hence,
Ay (z,v) = |det(Ep(ej, ui),v)

)

h
‘We conclude that

/ #p‘l(v)!dAh(vﬂ—/ (/ \detEp-deAS(Uo)(v)\)\dVM(p)\-
Sy, (U) M SwY) P

This proves (2.3) O



RANDOM SMOOTH FUNCTIONS 11

To proceed further observe that the left-hand side of (2.3) is plainly independent of the metric g on
M. This raises the hope that if we judiciously choose the metric on M, then we can obtain a more
manageable expression for p(M, V'). One choice presents itself.

Let o be the pullback to M of the metric on V' via the immersion ev : M — U. More concretely,
forany p € M and any X,Y € T}, M, we have

op(X,Y) = (ApX, ApY ), .

Fix p € M and a o-orthonormal frame(e;)1<i<m of 7'M defined in a neighborhood O of p. Then
the collection u; = Ae;, 1 < j, is a local orthonormal frame of K |o. The shape operator has the
simple description

Ep(ei,u;) = (Dez‘AeJ) :

Fix an orthonormal basis (V,,)1<p<n of U so that every v € U has a decomposition

v = Zvn\IIn, v € R.
(0%

Then
Ape;(p) =Y (0e;Un)pV¥n, De,Alej(p) = (02, ¥n)pTn,

n n
and

((Dei‘Aej)pvv)h = Zvn(azi e; ) agle] ( )

«

IfveU 2, then the Hessian of v at p is a well-defined, symmetric bilinear form Hessy,(v) on T, M
that can be identified via the metric o with a symmetric linear operator

Hessy(v,0) : TpM — TpM.

If we fix a o-orthonormal frame (e;) of 7T, M, then the operator Hessy(v, o) is described by the
symmetric m x m matrix with entries 8giejfv(ac). We deduce that

|det Ep, - v| = |det Hessp(v,0) |, Yo € S(Ug).
In particular, we deduce that

1
/ </ | det Hessp (v, 0)| \dAS(Uo (v )) |dVs(p)|. (2.11)
on-1Jm \ Jsw?)

This is precisely the main theorem of Chern and Lashof, [11].
Finally, we want to express (2.11) entirely in terms of the adjunction map A. For any p € M and
any v € U, we define the density

N(U, h) =

v AMT,M — R,

-1/2
fipo (X1 A A Xpp) = ‘det (0%.x,2(0) ) <1 s ‘ (et ((ApXi ApX)h ) s icm)
1/2
— | det(Hessp(0) (Xi, X))o, o | (det(0(X0 X))y c) %,
for any basis X1,...,.X,, of T, M. Observe that for any o-orthonormal frame eq,...,e,, of T, M

we have
Lpv(€1 A+ Aep)=|det Hessp(v, o) |.
If we integrate jip ., over v € S(U 2), we obtain a density

|[dpu (p)| : A" TpM — R,
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ldpo (P)|(X1 A A X)) = o (X1 A A X)) [dAg oy (v)],
S(Up) ?

VXq,..., Xy € TpM.

Clearly |dugs(p)| varies smoothly with p, and thus it defines a density |dug (—)| on M. We want
to emphasize that this density depends on the metric on U but it is independent of any metric on M.
We will refer to it as the density of U. By construction

1
d .
[ lduo()

If we now return to our original metric g on M, then we can express |dug(—)| as a product

|[duu (P)] = 04(p) - [dVy (p)];

where §; = d, 7 : M — R is a smooth nonnegative function.
To find a more useful description of p,, we choose local coordinates (x!,...,2™) near p such that
(0,i) is a g-orthonormal basis of T, M. Then

N(U, h) =

)—1/2

oDy A+ A D,) = |det (2, v(p)) det( (Apdr,, Ap0e, ) )

1§i,j§m‘ ’ ( 1<i,5<m

Observe that the matrix (92 v describes the Hessian operator
zia; VD p

1<ij<m
Hessp(v,g) : TpM — TpM
induced by the Hessian of v at p and the metric g.

The scalar (det ( (Apda;, ApO;)n ) <; i<m )1/ ? is precisely the Jacobian J,(p) of the adjunction
map Ay, : TpM — U defined in terms of the metric g on 7, pM and the metric i on U. We set

BaV.g) = |

. | det Hessg (v, g)| |dAS(U2)('U)|.
S(Up)

Since |dVy(p)|(Ozy A -+ A Oz,,) = 1, we deduce

3g,v(P) = Ap(V.9) - Jy(p) . (2.12)
This proves the first equality in (2.2). The second equality follows from the first by invoking (A.6)
and the explicit formula (o) for oo n_1. O

2.2. A Gaussian random field perspective. For our concrete purposes it is convenient to give a
probabilistic interpretation to the integral formula (2.2). For the reader’s convenience we have gath-
ered in Appendix A the basic probabilistic notions and facts needed in the sequel.

Consider again the metric o = oy, the pullback of the metric h on U via the evaluation map. We
will refer to it as the stochastic metric associated to the sample space (U, h). It is convenient to have
a local description of the stochastic metric.

Fix an orthonormal basis 91, . ..,y of U. The evaluation map evV : M — U is then given by

Maw»—>2¢n(m)-¢nEU.

If p € M and U is an open coordinate neighborhood of p with coordinates z = (x!,..., 2™), then

o, O, -
i,0.) = - : , <7< m. .
Tp(0pi 0s) = D, 53 (P) 5 2 (P), VI <ij<m (2.13)

n




RANDOM SMOOTH FUNCTIONS 13

Note that if the collection (0, )1<i<m forms a g-orthonormal frame of 7, M, then

J,(p)? det[ap(a axj)] . (2.14)

1<i,j<m

To the sample space (U, h) we associate in a tautological fashion a Gaussian random field on M
as follows. The measure d7; in (2.1) is a probability measure and thus (U, dy;) is naturally a
probability space. We have a natural map

E:MxU—-R, MxU > (p,u)— &(u) :=u(p).

The collection of random variables ({,)pens is a Gaussian random field on M.
Using the orthonormal basis (1) of U we obtain a linear isometry

RN st=(t1,... tn) — up = ZtkwkeU

with inverse u > t3(u) = h(u, ;). For any p € M and any t € R we have

Ep(ue) Z tkr(p
The covariance kernel of this field is the function 8 =&y : M x M — R given by
N
Ep,q) = BE(6p,&g) = Y (/RN tjtkd’YN<t)> ¥;(p)Yr(q)
k=1
u (2.15)
= Z Y(p)¥r(q)
k=1
where dy is the canonical Gaussian measure on R,
If p € M and U is an open coordinate neighborhood of p with coordinates x = (x!, ..., 2™) such
that x(p) = 0, then we can rewrite (2.13) in terms of the covariance kernel alone
82
op(0yi; 0pi) = Pt(z.y) )\m —y=0- (2.16)

ox' Oyl
Note that any vector field X determines a new Gaussian random field on M, the derivative of w along
X. We obtain the Gaussian random variables u — (Xu)p, u — (Yu)p, and we have

op(X,Y) = E((Xu)p, Yu)p). (2.17)

The last equality justifies the attribute stochastic attached to the metric o.
We denote by V the Levi-Civita connection of the metric g. The Hessian of a smooth function
f : M — R with respect to the metric g is the symmetric (0, 2)-tensor V2f on M defined by the
equality
V2F(X,Y):= XY f— (VxY)f, VX,Y € Vect(M). (2.18)
If p is a critical point of f then V% f is the usual Hessian of f at p. More generally, if (z!,...,2™)
are g-normal coordinates at p, then

f( ;B”aacj) :aizaﬂf(p)a V1 S’La] < m.

For any p € M and any f € C°°(M) we use the metric gj, to identify the bilinear form Vf, f on
TpM with an element of §(7, M ), the vector space of symmetric endomorphisms of the Euclidean
space (T M, gp). For any p € M we have two random Gaussian vectors

UEUHV%UES(TPM), U > uw~ du(p) € T, M.
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Note that the expectation of both random vectors are trivial while (2.16) shows that the covariance
form of du(p) is the metric op,.

To proceed further we need to make an additional assumption on the sample space U. Namely, in
the remainder of this section we will assume that it is 2-ample. In this case the map

U> u»—>V12,u € 8(TpM)

is surjective so the Gaussian random vector V%u is nondegenerate. A simple application of the co-
area formula shows that the integral I, in (2.2) can be expressed as a conditional expectation

Ip :E(\detV?,u\ | du(p) =0).

Observing that
1
Jg(p) = (det Sgu(p))?, (2.19)
we deduce that
1
NU, h) = — / (det Suipy) B E(| det V2| | du(p) = 0) |V, (p). (2.20)
(2m)2 Jm

The last equality is the main conclusion of the Expectation Metatheorem, [1, Thm. 11.2.1] or the
expectation formula in [4, Thm. 6.2]. We can simplify the equality (2.20) even more by taking full
advantage of the Gaussian nature of the various random variables involved in this equality.

The covariance form of the pair of random variables Vf,u and du(p) is the bilinear map

Q:8(TpyM)Y x Tp,M — R,

Q& n) = E((&, Vou) - (du,n) ), VEES),, neTpM.

Using the natural inner products on 8(7;, M) and T, M defined by g, we can regard the covariance
form as a linear operator

Qp : TpM — S(Tp,M).
Similarly, we can identify the covariance forms of Vf,u and du with symmetric positive definite
operators

Sv%u 2 8(TpM) — S(TpM)

and respectively

Sdu(p) : TpM — TpM.

Using the regression formula (A.3) we deduce that

E(|det Viu||du(p) =0) = E(| det Yp|), (.21
where Y, : U — 8(Tp M) is a Gaussian random vector with mean value zero and covariance operator
Ep = By, = Svau — Qs;;(p)m : 8(TpyM) — 8(TpM). (2.22)
Since U is 2-ample the operator E,, is invertible and we have
_ dim §(Tp) 1 3 (Ep'YY)
E(|detYp|) = (2m) 2 (detEp) 2 / |detYe 2 dVy(Y). (2.23)
8(TpM)
We deduce that when U is 2-ample we have
1 _1
N = o [ (det Saugy) 3E( det Y, [dVi )], (2.24)
(2m)2 Ju

where Y}, is a Gaussian random symmetric endomorphism of 7, M with expectation 0 and covariance
operator E,, described by (2.22).
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To compute the above integral we choose normal coordinates (z', ..., 2") near p and thus we can

orthogonally identify T}, M with R". We can view the Hessian Vf,u as a random variable
HP :U — 8, :=8(R™), U3 ur— HP(u) €8, HY(u)= 082 ;u(p),
and the differential du(p) as a random variable
P.U - R", ur DPuecR™, DPu=0,u(p).

The covariance operator S z,,(,) of the random variable DP is given by the symmetric m x m matrix

with entries

E(x,y)
ox' Oyl

To compute the covariance form X pp of the random matrix HP we observe first that we have a

canonical basis (&;;)1<i<j<m of 8, so that &; associates to a symmetric matrix A the entry a;;

located in the position (¢, 7). Then

e (§ijs Ere) = E(H?(u) HE)(u)) = E( 0 ,u(x)0} cu(x) )

e (. ) (2.26)
2 _ 9
Zaxl$3¢n xkx[,(/)n<x) - amlax]ayk8y£’$:y:0

O-P(axivaxj) = |x =y=0- (2.25)

Similarly we have
03E(z,y)
2 )
To identify €2 with an operator it suffices to observe that (9, ) is an orthonormal basis of 7}, M, while
the collection { &;; }i<; C 8.
R i i=1
&ij = {EU Y

V26, i<

is an orthonormal basis of Srvn. If we denote by Eij the dual orthonormal basis of &,,,, then

Q0 = > QUEij, 0 ) Eij.

i<j

Remark 2.6. If the metric g coincides with the stochastic metric o, then the covariance operator {2 is
trivial. For a proof of this and of many other nice properties of the metric o we refer to [1, §12.2]. O

2.3. Zonal domains of spherical harmonics of large degree. In the conclusion of this section we
want to discuss an immediate application of the above results to critical sets of random spherical
harmonics.

Let (M, g) be the unit round sphere S2. The spectrum of the Laplacian on S is

A=n(n+1), n=0,1,2,..., dimker(\, —A) =2n+1=d,.

The space U,, = ker(\,, — A) has a well known descrition: it consists of sperical harmonics, i.e.,
restrictions to S? of harmonic polynomials of degree n in three variables. We want to describe the
behavior of N(U,,) as n — oo, where U, is equipped with the L2-metric. In other words we want
to find the expected number of critical points of a spherical harmonic of very large degree.
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In this case the covariance kernel &, (p, q) of U, has a very simple description. More precisely, if
(¥k)1<k<2n+1 is an orthonormal basis of U, then the classical addition theorem, [28, §1.2] shows

that

2n+1
En(p.@) =) Uk(p)¥Ur(q) = = —Pu(peq). Vp.g€ S’
k

where e denotes the inner product in R3, and P, denotes the n-th Legendre polynomial,

1 d" 2\n

gt )"

In this case the stochastic metric & = o, is obviously SO(3)-invariant and it is a (constant) multiple
of the round metric. In view of Remark 2.6 this implies that for any p € S? the random variables

Po(t) = (=1)"

U, > u+— Hessp(u,g) and U,, > u — du(p)

are independent and we deduce that

N =50 [ 567 |, |t Hespta o) Tl | vy o)
n) = — — et Hessp(w, 9))| — 55— |du D).
21 Js2 Jo(p) | Ju, i (2m) 57 !
N ——
=:dy, (u)

Clearly, the integrand in the above formula is invariant with respect to the SO(3)-action on S? and
we thus have

2
NU,) = m / n‘det Hesspo(u,g)‘ dryn(u), (2.28)

where py, a fixed (but arbitrary) point on S2. To compute the term in the right-hand side of the above

equality we use the equalities (2.25) and (2.26).

Fix normal coordinates (z',22) in a neighborhood O of p, so we can view &, as a function

En(x,y). The location of a point p € O is described by a smooth function
03 (2!, 2?) = p(z!,2?) € R3.

The tangent vector d,:, viewed as a vector in R3, corresponds with the derivative p,: := 9,:p of the
above function. At p, we have

Dyi ® Py = 0ij and p,i @ py =0, Vi, j. (2.29)

The arcs C; = {22 = 0} and Cy = {a! = 0} are portions of great circles intersecting orthogonally
at p,. Note that 2! is the arclength parameter along C;, i = 1,2. The vectors p,: are unit tangent
vectors along these arcs. This shows that at p, we have

Dyizi = —DPo-

Since the arcs C'; and C'5 are planar their torsion is trivial and the Frenet formula imply that at p, we
have

Puizi =0, Vi#j.

The last two equalities can be rewritten in compact form as

Dyizi = —0ijPo, Vi,] (2.30)
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We set
i I L prgy L mlnt ) L
241, _ @ntl) (nt2mtlnan-1) 1 g |
ty = Py ( ) DT
= A7 16 327
We deduce
2n+1 2
= == (PP e 9P 0 4y + PP (P )P # )P 2 q,0) ),,ZFPO (232)
= Snéjka
and
Jg(Po) — . (2.33)

To compute 0% i wiyhy En(p,q) at p = g = p, we will use (2.29) and (2.30) to cut down the
complexity of the final formula. We deduce that at p = q¢ = py we have

2n+1
Oy €n(P @) = = (PP ® D)Pyiss 9 @y + PP (P © O)(Pyiss 0 @) (P qykye))p:q
2n+1 9 9
pm (Pé (P o q)(Pyi ® Q) (P # qyr) + PP (D 0 @)(Dys @ qye) (P © ) )p:q ;
and thus
8x1ny ygg (P, q)p=q = (Sn + tn)éij&k@ + tn(éwéjk + b ) (2.34)

Denote by dI';, the pushforward of the Gaussian measure d-y,, via the Hessian map
U, > u s Hessp (u,g) € 8(Tp,S?) = So.
We deduce from (2.34) that the covariance form 3, of dI';, satisfies the equality
X, =%

where X, 5 . is defined by the conditions (B.2a) and (B.2b). Observe that a,,, by, ¢, satisty (B.4),i.e.,
apn, = by + 2¢,,. As explained in Appendix B, this implies that dT',, is O(2)-invariant. Set
an bn, Cn,
* _om b* __n _n
an tn 9 n tn 9 Cn tn 9
and denote by dI';, the Gaussian measure on Sy with covariance matrix Yax bxcx . Using (A7) we
deduce that

ap = Sy + 3tn, by =8, +1,, cp =1y,

n,Cn?

*

|detX\dI‘n(X):tn/ | det X| dI (X).
82 52
From (2.28) and (2.33) we now deduce

N, = 2 [ det X|dr? (X). (2.35)

Sn Sa

Observe that as n — oo we have
ay ~3, by~1c ~1,

so that

NU,) ~ Z/S | det X|dI's 1,1(X), (2.36)
2
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where dI'3 1 1(X) is the Gaussian measure on 8 with covariance form X3 ; 1. More precisely (see
(B.11))

1
dl311(X) = §€—%(trX2_%(trX)2) Va2 H das;
4(2m)> 1<i<j<2

In Appendix C we show that

det X|dI’ X)=— 2.37
., ’ |dl'31,1(X) 73 (2.37)

and we deduce from (2.28) that

n2
NWU,) 7 as n — oo. (2.38)
Let us observe that for n very large, a typical spherical harmonic © € U, is a Morse function on
S? and 0 is a regular value. The nodal set {u = 0} is disjoint union of smoothly embedded circles.
We denote by D,, the set of connected components of the complement of the nodal set are called
the nodal domains of u and we denote §(u) the cardinality of D,,. A result of Pleijel and Peetre,
[6, 36, 39], shows that

4
5(u) < —5n® ~ 0.692n°, (2.39)

where jg denotes the first positive zero of the Bessel function Jj.
We think of d(u) as a random variable and we denote by ¢, its expectation,

1 R

Denote by p(u) the number of local minima and maxima of u, and by s(u) the number of saddle

points. Then
N(y) = p(u) + s(u), p(u) - s(u) = x(5?) = 2.
This proves that
1
ply) = 5 (N(u) +2).

For every nodal region D, we denote by p(u, D) the number of local minima and maxima® of w on
D. Note that p(u, D) > 0 for any D and thus the number p(u) = > pcp. p(u, D) can be viewed as
a weighted count of nodal domains. Moreover

d(u) < p(u).
We set )
p(Uy) := den/ e~ 21" p(uw) |dul.
(27T) 2 U,

The equality (2.38) implies that

1 1
p(U,) ~ —=n? as n — 0o, —= ~ 0.288.

2v/3 2v/3
This shows that while

max §(u) < 0.692n?,
ueUn

3A simple application of the maximum principle shows that on each nodal domain, all the local extrema of y are of the
same type: either all local minima or all local maxima. Thus p(w, D) can be visualized as the number of peaks of |u| on
D.
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the expectation d,, is less than half this theoretical maximum,
on ~ 0.288

Recently, Nazarov and Sodin [30], have proved that there exists a positive constant ¢ > 0 such that

8, ~ an® as n — oo.

Additionally, for large n, with high probability, d(w) is close to an? (see [30] for a precise statement).
This shows that

1
a< —— ~(.288. 2.40
~2V3 (240

More information about lower bounds on a can be found in Maria Nastdsescu’s senior thesis [29].

3. THE PROOF OF THEOREM 1.1

3.1. Asymptotic estimates of the spectral function. We fix an orthonormal basis of L?(M, g) con-
sisting of eigenfunctions ¥,, of A4,

Ag\Ijn:)\n\Pn, ’nZO,l,..., )\Og)\lgg)\ng

The collection (¥,,),, <1, is therefore an orthonormal basis of U, so that the covariance kernel of the
Gaussian field determined by U, is

ELp @)= Y Vn(p)Tu(g).
An<L

This function is also known as the spectral function associated to the Laplacian. Equivalently, €, can
be identified with the Schwartz kernel of the orthogonal projection onto U j,. Observe that

/M 8L(p7p) ’dVg(p” =dimUjy.

In the groundbreaking work [21], L. Hormander used the kernel of the wave group VA (o produce
refined asymptotic estimates for the spectral function. More precisely he showed (see [21] or [23,
§17.5])

Er(p,p) = (;:;mL% —I—O(LmTil) as L — oo, (3.1)

uniformly with respect to p € M. Above, w,,, denotes the volume of the unit ball in R™. This implies
immediately the classical Weyl estimates

dimUy ~ ol (ML . (3.2)

(2m)

Hormander’s approach can be refined to produce asymptotic estimates for the behavior of the deriva-

tives the spectral function in a neighborhood of the diagonal. We describe below these estimates

following closely the presentation in [7]. For more general results we refer to [41, Thm. 1.8.5, 1.8.7].
We set A := L2. Fixa point p and normal coordinates x = (x!, ..., ™) at p. Note that z(p) = 0.

For any multi-indices «, 3 € Z<|, we have (see [7, Thm. 1.1, Prop. 2.3])

a+
W|x=y=0 — Chu(a, AT HIHB 4 o Amlol 13-, (3.3)
2Dy

where
07 a — B g (2Z)m7
ClonB) =3 . ., (34)
Sl Jgm e tPldal, - pe (22,
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and B™ denotes the unit ball
B" ={x eR™; |z|=1}.
The estimates (3.3) are uniform in p € M. Using (A.6) we deduce (compare with (B.13) )

]_ e—|:12|2
2P dx| = / e a— o
(zw)m/m o (1 ) fpn T o

K, =Cpl(a,a), |al =1,

We set

so that

1 el 1
K, = T m / ri——|dz| = o o (3.5)
(4m)2T(2+ %) Jrm w2 2(4m)2 (24 %)
For any ¢ < j define ;; € Z™ so that

x® = xix;.
Fori < j and k < £ we set

.. 1 e—|:1:|2
C (i, J; k, 0) = Cpp(vij, age) = (47r)%1“(3 = %) /m mixjwkxgﬁldx\. (3.6)
For ¢ < j we have
1 e_‘w‘Q 1
Cm (1,457, 5) = / riat | dx| = — =: Cp. 3.7
m(1 7, J) A FT(G+2) Jon 0 1% |dz| ey o

Cm(i,751,5) = Cml(i,4; 4, 5),
Finally

1 —x|?
Con (3,334, 1) = ——m / oS |d] 3 — 36, (3.8)
(4m)2T(34+2) Jem ' 72 4(4m)2T(3+2)

and
Cm(i,j; k, 0) =0, Vk <L, (i,7) # (k. £).

3.2. Probabilistic consequences of the previous estimates. We denote by o” the stochastic metric
on M determiner by the sample space U, L > 0. As explained in Subsection 2.2 the covariance
form of the random vector U, > u — du(p) € Ty M is o'zL,, and from (3.3) we deduce

o 828[/(‘/1“’ y)

UIL)(a:riv az]) = ‘Z’Zy:O = Km>‘m+25ij + O()‘m+1)

0xtoyI (3.9)
= K A" 2g,(8,1,0,5) + O(N™1) as L — oo, uniformly in p.

In particular, if S gu(p) denotes the covariance operator of the random vector du(p), then we deduce
from the above equality that

L
Sdu(p) =
and invoking (2.19) we deduce

K N2, + O(N™), uniformly in p, (3.10)

m(m+2) m(m+2)
OO

JgL(p) = (det Sﬁu(p))% = Km%/\ 2 +0(A , uniformly in p. 3.11)

Denote by X%, the covariance form of the random matrix

UL>u— Viu € $(TpM) = Sp,.
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Using (2.26) and (3.3) we deduce
ZHp =cp A" +42371,1 + O(/\””B‘)7 uniformly in p, (3.12)

where the positive definite, symmetric bilinear form X3 1 1 : 8/, x 8Y, — R is described by the equal-
ities (B.2a) and (B.2b). We denote by I'3 1 the centered Gaussian measure on §,, with covariance
form X3 1 1.

The equality (2.27) coupled with (3.3) imply that the covariance operator QIL, satisfies

QL = O(\™?), uniformly in p. (3.13)

Using (3.10), (3.12) and (3.13) we deduce that the covariance operator EIL) defined as in (2.22) satisfies
the estimate
B = A" Q31,1 + O(N"*?), as L — oo, uniformly in p, (3.14)

where @3 1,1 1s the covariance operator associated to the covariance form 31 1 and it is described
explicitly in (B.3). If we denote by dI';, the Gaussian measure on 8,, with covariance operator =

p b
we deduce that
1 (:LY Y)

A¥) (27) 3" (det EL)2 < 11 i
Y|
where
N,, = dim$,, = m(m;l)

Let us observe that |dY| is the Euclidean volume element on 8,,, defined by the natural inner product
on 8, (X,Y) =tr(XY). We set

1

— +4 L _ + =L
cr = ey AT, Qp = g_p.
Using (A.7) we deduce that
1 —LY El (@YY
— / |det Yl]e~ \dY\ foL)Q / |det Y]e™ 'z |dY].
(2m) 2" (det BL)2 Jsm (2m) 2" (det Q%) /sm

From the estimate (3.14) we deduce that
Q;L; - C53,1,1 as L — oo, uniformly in p.
We conclude that

B(|det Y, |) / et Y[dDp (V) ~ e A" / et V|dTs (V). (3.15)
Sm Sm
The measure dI'3 1 ;1 is described explicitly in (B.11), more precisely
1 1 1
T30 (Y) = ——— - (Y2l (ry) )|dY|,
(2m) 2" /i

where (., is given by (B.12). Using (2.24), (3.11) and (3.15) we deduce that

% m(m m(m
E(NL) ~ (2"‘) AT L () /S | det Y|dl's 1.1 (Y)

(3.2) (Cm> # em dimU,

K, W
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Observe that
re+mo 1 El o)™ m
om _ T2H5) P B = (m3r(1+ 7).
Kn 2I'(34+%) m+4 Frl1+%) wn 2
This completes the proof of (1.1) and (1.7). O

3.3. On the asymptotic behavior of the stochastic metric. We denote by g(L) the metric

g(L) := A~ (m+2) gL — L_(L;”UL,

where K, is described by (3.5).The estimate (3.9) shows that

CO
g(L) — g as L — oo,

where K, is described by (3.5). The metrics g(L) are closely related to the metrics constructed in
[5, Thm. 5]. We want to discuss here possible ways to improve the topology of the convergence.

Observe that if g(L) were to converge in the C-topology to K, then the sectional curvatures
of g(L) would have to be uniformly bounded. Conversely, the results of S. Peters [37] show that
the C° convergence coupled with an uniform bound on the sectional curvatures would yield a C'*®
convergence.

The results in [1, §12.2.1] describe a simple way of expressing the sectional curvatures of o
terms of the spectral function €. Here are the details.

Denote by V% the Levi-Civita connection of the metric o*. Fix a point p € M and g-normal
coordinates (z',...,2™) at p. We set
L aa+b8L(m7 y)

Uyelaiflsendb oxit ... 8xiaayj1 .. 8y]b ’:E:y:()a

o(L)ij = Gﬁ(ami,azj), 1<id,5 <m,

and we denote by (o (L)% )1<; j<m the inverse matrix of (o (L);j )1<i j<m. From [1, Eq. (12.2.6)]
we deduce

D(L)ijk = 05(V5 00, Opk) = €5k
We set

so that

(95,001 )p = 2_T(L);00s

For u € U, we set

Hij(u) = (85, 0pu — (V5 0pi ), = Og: Opsu(p Zr ¥ 0, u(p). (3.16)

We think of the matrix Hzg (u) as an element H"(u) € Ty M @ T M,

H'(u) =) Hfda' @ da’
i,J
and we set ‘ A
H" (u) A H () := ) Hf(w)Hiy(w)da' A da® @ da? A da’
i,5,k¢
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= Y Qhj(wda' Ada* @ dal A dat.
i<k,j<tl

Note that
fhje(w) = 2( Hs(w) Hiy(w) — Hi(w)Hij(u) ).
We denote by RZL the Riemann tensor of o and we set
Rl = 0" (RY (046, 049) 04, 00 ) -

The map Uy > u kaﬂ(u) € R is a random variable and according to [1, Lemma 12.2.1] we
have*
2R = —E(Qlije)- (3.17)
In particular we deduce that
—RL=E(HLHS — (H)?).

1517
From (3.9) we deduce that

o(L)ij = & ~ KmA™ 25 + O(N™1) as L — oc.

Hence
1

ij ij —1
From (3.3) we deduce that as A\ — oo we have

1 1 .
D(LY ~ - ez (07 + 00T )by ~ s €hin - O = 0(1),  (.18a)
¢ m m

E(0%,,u(p), 0pu(p)) = €54 = O(A™H2) (3.18b)

Using the estimates (2.26), (3.16), (3.18a) and (3.18b) in (3.17) we deduce
E(Hy Hj; — (H)*) = (&5 — €y ) + ON™).
We deduce that the sectional curvature of o along the plane spanned by 0., 9, is
L L
_ Rijij _ 1 (EL _eL ) +0 &it, 313 8@] ;LJ
o(Lyua(L)y; — o(L)f — Kgaemst 2 = 2 I
On the other hand

L _

E(8% ,;u(p), 2 eu(P)) = Efe ~ Ol i ks ON™H + O™, i <y k<A,
where C), (i, j; k, ) is defined by (3.6), and we deduce
i — €5y = (Cmliyisg, ) — Cm(i, 34, 4) )A™ T+ O(NF3) = O(A™F9). (3.19)
Hence .
Kzlj W( 1454 8{3 zy) +O()‘_m_2)'

)\m2L

The sectional curvature of g(L) along the plane spanned by 0,, 0, is

1
m+2 7L L L
=A KZ] K%Am—&-Z (811 377 87,] 7,]) + 0(1)

We deduce that the sectional curvatures of g(L) are uniformly bounded if and only if

ek — &k, = O(\™"?) uniformly over M. (3.20)

4Alternatively, in our case, the equalities (3.17) are simple consequences of Theorema Egregium, [31, §4.2.4, Eq.
(4.2.12)].
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Note that the estimates (3.20) are stronger than the estimates (3.19) which are direct consequences of
the Bin-Hormander estimates (3.3).

Let us point our that (3.20) hold when (M, g) is a homogeneous space equipped with an invariant
metric. Indeed, in this case the metric g(L) has the same symmetries as ¢ and thus there exists a
constant ¢y, > 0 such that g(L) = c¢rg. Then ¢, — K,, as L — oo so that g(L) — K,,g in the

C*°-topology and therefore fz =0(1).
4. THE PROOF OF THEOREM 1.2

4.1. Reduction to the classical Gaussian orthogonal ensemble. We begin by describing the large
m behavior of the integral
Ly = ! / |det X[e—k (X755 @207) )

m(m+1)

(27) " T \/fm /Sm

where we recall that
L = 2(2)+m71(m +2).
We will use a trick of Fyodorov [17]; see also [16, §1.5]. Recall first the classical equality

1
/ e_(“t2+bt+c)|dt| = <E> : e%, A =b* —4ac, a>0.
R a
For any real numbers u, v, w, we have
ut? + vtr(X 4+ wtly,)? = (u + mw?)t? 4+ 2ow(tr X)t + vtr X2
=: a(u,v,w)t* + b(u, v, w)t + c(u, v, w).

We seek u, v, w such that

v2w? v b2 — dac 1 1
_  (tr XY - —— tr X?2=— = [ tr X% - tr X)2 ).
u—Hnwz(r ) u+muw? 4a 4<r m+2(r )
‘We have
v 1 v2w? 1

u+mw? 4 u+mw?  4(m+2)
and we deduce

1
vw’ = , vzi(u—i—mwQ)(:»u:llv—mwz.

Hence
9 1 m

Co(m+2)
We choosevz%so that
2

9 Cu—2- 2m _ 4 7

(m+2) (m+2) m+2

1
1 21 2 2\ 2 4?2 1 2 2
o M X2 (i X)?) <> /em+2e Lty 72 1n)?
R

a(u,v,w) =4v =2,

s

_ 2
(s =1/mizb)

_ (20“2))

N

1
-1 tr( X4+ —=1,,)2 g2 m+22 —1 tr(X —slm,)? 6_282
e 2 V2 e ds = —— e 2 m) . ——(s.
R 2 R
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Hence

1
2)3
Im = - (mm—(i_er)l; / </ ‘det X’e_étl‘(X—S]lm)2|dX|> dﬂy(s)
22(2m) " 1/l IR \ISm

=:Am (41)
= Am/ </ | det(z1,, — Y)eéth2|dY|> dy(z).
R Sm

=:fm(z)

For any O(n)-invariant function : 8,, — R we have a Weyl integration formula (see [3, 16, 26]),

1 1
o, 100N = 7 [ Tvan e

where
Ap(A) = H (A — i),
1<i<j<n
and the constant Z, is defined by the equality [3, Eq. (2.5.11)],
_11y2 n - J
Zpy = M)A (V)] |dA] = 25 n! r(f). 42
| e anmlan = 28 ] r (3 @2

j=1
Now observe that for any A\g € R we have (with f,,, defined in (4.1))

dim 8y, 9 n
_ A

o) = 0 [ TTs =0l | [8n 0[N

-

62>‘(2) (27{) dimzsm
_1svm 2
- ~ / ™2 2 A1 (Mos Ay A) | [dA -+ |
m m
l)\(Q) 2 dimSmZ 1 .
_ @) 2 Zmn / 72 SN Ay 1 (A0s Ay A) | [dA <+ d]
Zm Zm+1 m

=:pm‘+rl(>\0)
The function R,,(z) = np,(z) is known in random matrix theory as the 1-point correlation function
of the Gaussian orthogonal ensemble of symmetric n x n matrices, [13, §4.4.1], [18, §3], [26, §4.2].
We conclude that

dim 8y,

2m) 2 AnZ, 22 AnZ ., 2 3.2
= B0 2 AnZnn / pmi1(@)e dy(x) = A7t / pmma:)fe £ da.
m R m R ™

We have

Zm 1 1
T: =22(m+ 1)T <m;> ,

dim 8m 1
2 (2m) ™5™ A, Z msy (2 1 2)}
BOn) 2 A _ oyt [Py e (ML) D
T Z ™ 2 22(2m)" 1 \/lm

_ \/z(er - <m; 1) (m\;%ﬁ
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‘We deduce

2 2F (m+3) 322
AR s

We set

and we deduce

322 3ns? 3ns?
/pn(x)e2dx:/pn( ns)e2ds:n/e2pn(s)ds
R R R

27\E [ (3n)he % 4.4)
v nj)2e 2 .
=|-— ————— - pn(s)ds.

<3n) /]R (2)2 )

To proceed further we use as guide Wigner’s theorem, [3, 13, 16, 26] stating that the sequences of

probability measures
1

NG
converges weakly to the semi-circle probability measure’ p(x)dz,
( ) 1 \% 2— an) |LU‘ S \/i
T)=—
P 0, 2| > V2.

m
We observe that the Gaussian measures wy, (s)ds converge to the Dirac delta measure concentrated at
the origin. This suggests that

pn(z)dz = /npp(v/nz)de = R, (v/nz)dz

4.5)

lim [ pu(s)wy(s)ds = p(0) = —. (4.6)

n—oo Jp T

We will show that this is indeed the case by slightly refining the arguments in one particular proof
of Wigner’s theorem; see [16, §7.1.6],[18, §6.1] or [26, A.9]. For the moment we will take (4.6) for
granted and show that it immediately implies (1.4).

Using (4.6) in (4.3) and (4.4) we deduce that

J2re) (= )5 V2
Ly ~ A\ =7 X X — as m — Q.
Tz (" )+ 3(m+1) @

We now invoke Stirling’s formula to conclude that

log I,,, ~~ logI' <m;—3> ~ % logm, as m — oc. 4.7)

Form (1.3) we deduce that

log C'(m) =log I, + %logllw +logF(1 + %) - %log(m+4).

SThere are different rescalings of the semicircle measures in the literature. Our conventions agree with those in [26].
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Stirling’s formula and (4.7) imply that
log C(m) ~ log I, ~ %logm as m — oo.

This proves (1.4).

27

O

4.2. Wigner’s semicircle law revisited. We can now present the postponed proof of (4.6). The 1-
point correlation function R, (x) can be expressed explicitly in terms of Hermite polynomials, [26,

Eq. (7.2.32) and §A.9],

n—1 1
Rola) = - in(af+ (5) vnea(@) [ (o= 00t + an(a),
k=0 R

— ke (z) =#n(@)
where
]. 562 2 dn 2
() = ez H,(x), Hy(x) =(=1)"e" — (™),
(o) = e T ), o) = (17 ()
@ {o, n € 27,
Qn(T) = Yn—1(x)
wan_i(x)d , ne2Z+1,
and
%, x>0
e(x) =<0, x =0,
f%, x <0

From the Christoffel-Darboux formula [43, Eq. (5.5.9)] we deduce

Y = 1 1 , ,
T2e” Z%(@Q = Z Wﬂk(x)Q = m(ﬂn(x)ﬂn—l(l‘) — Hy(2)H,,
k=0 k=1 ’ '

Using the recurrence formula H), = 22:H,, — H,, 1 we deduce

H,,(x)Hy1(x) — Hp(x) Hy (2) = Hg(x) — Hp—1(2) Hpp1(2)

n

and
(o) = (H2(@) = Hoot(2) Hasa () )
We set
() = '“%ﬁx) fule) = %ﬁx), Rofi) = = Rul/) = ()
so that
Ry (x) = ky(z) + £, ()
Lemma 4.1.

(4.8)

4.9)
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Proof. Using the generating series [43, Eq. (5.5.7)]
oo
TTL
> (0T — et
n!

n=0

we deduce that

> z? Tn (z— 2
Z </ e2Hn(a:)da:> — = e’ / e g = Varel”,
n=0 R w R
so that
1 o2 V2 v2(2n)!
/ e 2 Hop(x)da = " and / Vop (z)dx = (77? ~ const - ni asmn — 0.
(2n)! Jr n! R 2nnlra

Using [13, Thm. 6.55] or [43, Thm. 8.91.3] we deduce that
1
sup |y (z)| = O(n™12)
z€R

and thus )
sup |ap(z)| =0(n"1274) =0(n"3) asn — 0.
z€R

We set

Fo(z) = [ el — t)gu(t)dt.

—

Using [13, Thm. 6.55 + Eq. (6.26)] we deduce sup,cp |Fi(z)| = O( n-1 ). This proves (4.9). O
From the above lemma we deduce that
/R(pn(s) — p(s) )wn(s)ds = /R(kn(s) — p(s) )wn(s)ds + O(nfé ) asn — oco.
Lemma 4.2.

lim | (kn(s) — p(s) Jwn(s)ds = 0.

n—oo R

FIGURE 1. The graph of kig(z), || < 2.

Proof. Fix c € (0,+/2) so that the interval (—c, c) lies inside the oscillatory regime of H,,(y/nt). We
have

/ (Kn(s) = p(s) ) wn(s)ds
R
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- /|< (Fn(s) _p(s))wn(s)ds+/ (Kn(s) — p(s) Jwn(s)ds

|s|>c

< sup |kn(s) — p(s)| + sup |(kn(s) —p(S))\/> wy(s)ds.

|s|<c |s|>c
Using the Plancherel-Rotach formula ([13, Eq. (6.126)], [38], [43, Thm. 8.22.9]) and arguing as in
[16, §7.1.6] or [18, §6.1] we deduce that

lim sup |k, (s) — p(s)| = 0.

n—oo ‘S‘SC

On the other hand

nl;ngo wp(s)ds =0,

and [43, Thm.8.91.3] implies that

‘81|1>p |(kn(s) — p(s))] = O(1) asn — oo.

Since wy, (s)ds converges to the 6-measure concentrated at the origin we deduce
Jim A p(s)wn(s)ds = p(0) = —.

This proves (4.6).

APPENDIX A. GAUSSIAN MEASURES AND GAUSSIAN RANDOM FIELDS
For the reader’s convenience we survey here a few basic facts about Gaussian measures. For more
details we refer to [9]. A Gaussian measure on R is a Borel measure ,, , of the form

1 _(a=m)?
e 202 dux.

c\T) =
'Ym,() oo

The scalar m is called the mean while o is called the standard deviation. We allow o to be zero in
which case
Ym,0 = 0 = the Dirac measure on R concentrated at m.

Suppose that V' is a finite dimensional vector space. A Gaussian measure on V' is a Borel measure
v on V such that, for any ¢ € V', the pushforward £, (7) is a Gaussian measure on R, &,(y) =
Tm(€),0(€)

The map V'V 2 £ — m(€) € R is linear, and thus can be identified with a vector m, € V called
the barycenter or expectation of y that can be alternatively defined by the equality m., = [;, vdy(v).
Moreover, there exists a nonnegative definite, symmetric bilinear map

:VYx VY =R suchthat o(£)? = B(£,€), Ve VY.
The form X is called the covariance form and can be identified with a linear operator S : VV — V
such that

%(&,m) = (& Sn), ¥ neVY,

where (—, —) : V¥ x V' — R denotes the natural bilinear pairing between a vector space and its
dual. The operator S is called the covariance operator and it is explicitly described by the integral
formula

(6, Sn) = A(E.n) = /V (6,0 — M) (0,0 — my)dry(v).
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The Gaussian measure is said to be nondegenerate if 3. is nondegenerate, and it is called centered if
m = (. A nondegenerate Gaussian measure on V is uniquely determined by its covariance form and
its barycenter.

Example A.1. Suppose that U is an n-dimensional Euclidean space with inner product (—, —). We
use the inner product to identify U with its dual U". If A : U — U is a symmetric, positive definite
operator, then

1 1a-1
dy (%) = —— e 27 ) |y (A1)
’YA( ) (271') 2 \/m ’ ’
is a centered Gaussian measure on U with covariance form described by the operator A. a

If V is a finite dimensional vector space equipped with a Gaussian measure y and L : V' — U is
a linear map then the pushforward L.~ is a Gaussian measure on U with barycenter

mg,, = L(m,)
and covariance form
YU xUY =R, Zp,(n,n) =3%,(LYn,Ly), VneU”,

where LY : UY — V'V is the dual (transpose) of the linear map L. Observe that if 7 is nondegenerate
and L is surjective, then L,y is also nondegenerate.

Suppose (8, 1) is a probability space. A Gaussian random vector on (8, 1) is a (Borel) measurable
map

X :8 — V, V finite dimensional vector space
such that X, is a Gaussian measure on V. We will refer to this measure as the associated Gaussian
measure, we denote it by vx and we denote by X x (respectively S x) its covariance form (respec-
tively operator),
Ex(€1,&) = E((&, X — E(X)) (&, X - E(X))).
Note that the expectation of yx is precisely the expectation of X. The random vector is called
nondegenerate, respectively centered, if the Gaussian measure yx is such.

Suppose that X; : 8§ — V1, j = 1,2, are two centered Gaussian random vectors such that the
direct sum X; ¢ X9 : 8§ — V1 & V5 is also a centered Gaussian random vector with associated
Gaussian measure

VX18X2 = PX16X, (%1, ®2)|dT1das|.
We obtain a bilinear form

cov(X1,X2) : VY x Vi - R, cov(X1,Xz)(&1,&) = (&, &),

called the covariance form. The random vectors X; and X5 are independent if and only if they are
uncorrelated, i.e.,
cov(X1,X2) =0.
We can form the random vector E(X1|X3), the conditional expectation of X; given Xo. If X; and
X are independent then E(X;|X2) = E(X), while at the other extreme we have E(X;|X;) = X;.
To find a formula for E(X1|X2) in general we fix Euclidean metrics (—, —)y; on V ;. We can
then identify cov(X1, X2) with a linear operator Cov (X1, Xs) : Vo — V1, via the equality

E( (&1, X1)(&, Xa)) = cov(X1, X2)(61,£)
= (&,Cov(X1, X2)&}), V& € VY, &eVy,

where 5; € V5 denotes the vector metric dual to . The operator Cov(X7, X») is called the
covariance operator of X1, Xo. For a proof of the next classical result we refer to [4, Prop. 1.2].
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Lemma A.2 (Regression formula). If X; and X5 are as above and, additionally, X is nondegener-
ate, then

E(X1|X3) = Cov(X1, X5)Sy! (X — E(Xy)) + E(X). (A.2)
g

The conditional probability density of X; given that Xo = x5 is the function

PX; X, (21, %2)
_ 1) = :
DX Xamsz) (1) Jv, Pxi@x, (@1, ®2)|dw: |

For a measurable function f : V; — R the conditional expectation E(f(X1)| Xy = x2) is the
(deterministic) scalar

B(f(X))| X2 = @) = /V F(@1)P (s Xy (@)l .

Again, if X5 is nondegenerate, then we have the regression formula

E(f(X1)|X2 = 22) = E(f(Y + Cmy)) (A3)
where Y : § — V4 is a Gaussian vector with
E(Y) = E(X,) - CE(X,), Sy = Sx, — Cov(X1,X3)Sy! Cov(X,, X1), (A.4)
and C'is given by
C = Cov(X1,X2)S.. (A.5)

Let us point out that if X : § — U is a Gaussian random vector and L : U — V is a linear map,
then the random vector LX : § — V is also Gaussian. Moreover

E(LX)=LE(X), Zrx(£&) =3x (LY LYE), VEe VY,
where LY : V'V — UV is the linear map dual to L. Equivalently, Sp,x = LSxL".
A random field (or function)onaset T isamap & : T x (S, u) — R, (¢, ) — &(s) such that

e (8, ) is a probability space, and
e for any ¢ € T the function & : & — R is measurable, i.e., it is a random variable.
Thus, a random field on 7" is a family of random variables &; parameterized by the set T'. For
simplicity we will assume that all these random variables have finite second moments. For any t € T'

we denote by i, the expectation of &;. The covariance function or kernel of the field is the function
Ce¢ : T x T — R defined by

Celtrote) = B( (& = ) (6= ) = [ (6u(5) = ) 60 (9) = ) o)
The field is called Gaussian if for any finite subset /' C T the random vector

Ses (&(s)),.p €RY

is a Gaussian random vector. Almost all the important information concerning a Gaussian random
field can be extracted from its covariance kernel. For more information about random fields we refer
to [1, 4, 12, 20].

In the conclusion of this section we want to describe a few simple integral formulas.
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Proposition A.3. Suppose V' is an Euclidean space of dimension N, f : U — R is a locally
integrable, positively homogeneous function of degree k > 0, and A : U — U is a positive definite
symmetric operator. Denote by B(U) the unit ball of V' centered at the origin, and by S(U) its
boundary. Then the following hold

1 1
e [ sl = S [ )l
w2 (k+ N)Jsw) m2 JB(U)
) o lul? (A.6)
= u du
R J, 0
[ twiva) =t [ fladysw veso, (A7)
U U
where d~y 4 is the Gaussian measure defined by (A.1).
Proof. We have
! _ 1
[ gl = [ s ) = [ fldA)
B(U) 0 SU) k+ N Jsw)
On the other hand
A [ s au = S ([T e ta) [ fia)
T2 JU w2 \Jo sS)
1 k+ N k+N_(k+N
=L (B5N) [ wia =" e (S5 [ wdul.
22 2 S(U) 2712 2 B(U)
1 kE+ N
T2 B(U)
This proves (A.6). The equality (A.7) follows by using the change in variables u = t3v. O

APPENDIX B. GAUSSIAN RANDOM SYMMETRIC MATRICES

We want to describe in some detail a 3-parameter family of centered Gaussian measures on S,
the vector space of real symmetric m X m matrices, m > 1.
For any 1 < i < j define &;; € 8y, so that forany A € §,,,

&ij(A) = a;; = the (7, j)-th entry of the matrix A.
The collection (&;;)1<i<j<m is a basis of the dual space 8,. We denote by (E;;)1<i<; the dual basis

of §,,. More precisely, £;; is the symmetric matrix whose (¢, j) and (7, ) entries are 1 while all the
other entries are equal to zero. For any A € §,,, we have

A=) &(A)E;.
i<j
The space S, is equipped with an inner product
(=, =) :8m x 8 =R, (A,B)=tr(AB), VA,B € 8,,.
This inner product is invariant with respect to the action of SO(m) on §,,,. We set

~ Eiy,  i=]
Lij = { 1”

%Eij, 1< J. '
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The collection (Ez‘j)z‘gj is a basis of 8,,, orthonormal with respect to the above inner product. We set

Eiim &ij» =]
YU\ VR, i<

The collection (£;)i<; the orthonormal basis of 8Y, dual to (Ew) The volume density induced by

this metric is )
|dX‘ = Hd&] = 25(2) delj

1<j i<y
To any numbers a, b, ¢ satisfying the inequalities
a—b, ¢, a+(m—1)b>0. (B.1)

we will associate a centered Gaussian measure I'y ;, . on 8,,, uniquely determined by its covariance
form
X =%pc:8,x8, =R
defined as follows:
3(&iiy &) = a, X(&i,&55) = b, ViF# g, (B.2a)

2(&ij, &) = ¢ B(&ijn&ke) =0, Vi<j, k<UL, (i,7) # (k,£). (B.2b)
To see that 3, . is positive definite if a, b, ¢ satisfy (B.1) we decompose 8y, as a direct sum of
subspaces

8 =D @ O,

m
D = Span{fii? 1<i< ’I?’L}, Om = Span{gij; 1<1<3< 7’rL}7 dim O, = <7721>

With respect to this decomposition, and the corresponding bases of these subspaces the matrix Qg p, .
describing X, ; . with respect to the basis (¢;;) has a direct sum decomposition

Qa,b,c = Gm(a7 b) D 61(7;)7

where G, (a, b) is the m x m symmetric matrix whose diagonal entries are equal to a while all the
off diagonal entries are all equal to b.

The the spectrum of G, (a, b) consists of two eigenvalues: (a — b) with multiplicity (m — 1) and
the simple eigenvalue a — b+ mb. Indeed, if C;,, denotes the m x m matrix with all entries equal to 1,
then G, (a,b) = (a —b)1,, + bCy,. The matrix Cy,, has rank 1 and a single nonzero eigenvalue equal
to m with multiplicity 1. This proves that @, ;. is positive definite since its spectrum is positive. We
denote by dI', 4 . the centered Gaussian measure on 8,,, with covariance form X, ...

Since &,, is equipped with an inner product we can identify X, ; . with a symmetric, positive
definite bilinear form on 8,,. We would like to compute the matrix @ = Q\a@c that describes X .

~

with respect to the orthonormal basis (E;;)1<i<;. We have
Q(Eii, Bi) = Q(&ir i) = a, Q(Eii, Ejj) =b, Vi # j,
Q(Eij, Eij) = Q(&j, &) = 2Q(&j, &) = 2¢, Vi < j,
Thus
Qape = Gm(a,b) ® 26]1(751). (B.3)

If | — |4,5,c denotes the Euclidean norm on §,, determined by 3, ;, . then for

A= Z a;jFij = z aii i + \/izaijﬁif

i<j i i<j
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we have

\A|abC = az:aZZ + 2bZamaﬂ —|—40§:aZJ

1<j 1<j
= (a*b*QC)Zai’ +5b <Za“> + 2¢ Za“JrQZaw
7 i i<j
=(a—b—2c) Za?i + b(tr A)? + 2ctr A%,

i
Observe that when

a—b=2c (B4)
we have

|AJZ e = b(tr A)® + 2ctr A® (B.5)

so that the norm | — |, 5 - and the Gaussian measure dI' ;. are O(m)-invariant. Let us point out that

the space &,, equipped with the Gaussian measure dI' o 1 is the well known GOE, the Gaussian
orthogonal ensemble.
To obtain a more concrete description of I', 5, . we first identify 3,3 . with a symmetric operator

@mb’c : 8m — Sm. Using (B.3) we deduce that
@a,b,c = G(CL, b) ©® 201(7;) .

Observe that R
det Qqpe = (a —b)(a+ (m— 1)b)m_l(2c)(2)7 (B.6)
and
Qa b,c Qa’ bl = (a’/7 b/) EB 26/1(?)’ (B7)
where 2¢' = i and the real numbers a’, b are determined from the linear system
_ 1
-t = 5
(B.8)
_ 1
a/ + (m — 1)b/ = m
We then have
1 _1/A-
AT o(X) = ————— e 3 QuicX X9 (3) T day, (B.9)
(27‘-) 4 (det Qa,b,c) 2 i<j
where . )
A-1 2 2 2
(@1, X X) = (a’ Y- %> Dok V(i X)X, (B.10)
7

The special case b = ¢ > 0, a = 3c is particularly important for our considerations. We denote
by (—, —)c and respectively dI'. the inner product and respectively the Gaussian measure on S,
correspondmg to the covariance form 3. ¢ ..

If we set Qc = Qgc c,c then we deduce from (B.7) that

51_ 5 1
-1 _ A A— / ! N m
Qc _Qa,b,c Gm(a’b)@Qcﬂ(z)’

where
a—-bv = L=2¢

a/+(m—1)b/ = m
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We deduce ) .
m
VY=o — = ==
" (m+2)c 2c 2¢(m + 2) 2c(m +2)
Note that the invariance condition (B.4) a’ — b’ = 2¢/ is automatically satisfied so that
~ 1 1
—1 2 2
X, X)=—trX°— —(tr X)~.
(@7 X, X) ¢’ 20(m+2)(r )
Using (B.6) and (B.9) we deduce
1 — A (¢ x2 r 93 (
dle(X) = T et (X7 (60 ) 93 Hydm (B.11)
(27e) ™5 i
[dX|
where
fim = 2(5) =) (1 1 9). (B.12)
The inner product (—, —). has the alternate description
e_|m|2
(A,B).=1.(A,B) := 4c/ (Az,z)(Bx,x) —F—|dz|
m T 2
a2 (B.13)
= c/ (Am,w)(Bw,w)%Mw\, VA,B € 8§,
m (27’[‘)7
APPENDIX C. A GAUSSIAN INTEGRAL
The proof of (2.37). We want to find the value of the integral
1
I= 3 / | det X|e™ § (- x?) V2 H dxij.
4(2m)2 Jss 1<i<j<2

22 =T — Y, T12 = Z.

We first make the change in coordinates
rm =z +vy,

det X =22 —y? — 2%, tr X =2z, tr X2 =2(22 + 4%+ 2°)

Then
| 2_y _ | —1(z242y +2Z2)f|d:€dydz’

1
3
2(2m)z JRs
2le72 “2+y2+22)]dudydz\

(x = V2u)
1
= / |2u? — y? — 2
R3
|2u® — y= — 22|6_(“2+y2+22)|dudydz\

Hence
I =

a T2 JR3
We now make the change in variables y = rcosf, y = rsinf,r > 06 € [0, 27) and we deduce
2

I= / / (/ ]2u2 — 7’2]6_“ +r d9> rdrdu
2 2

= 3/ / 12u% — r2|e” ) rdrdu
2.Jo Jo
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We now make the change in variables

u=tsinp, r=tcosp, t>0, Oggoﬁg,

and we conclude

us

(t =+/s, z =sinp)

8 X 24 2 a2
I=— / e " thdt / |3sin” ¢ — 1| cos pdy
m2 \JO 0

4 o0 3 ! 4 5 4 4
= “Ss2d 322 —1|ldz | = 4 xT(=) x — = —. O
(T estan) () et 1) =1 (3) < 575 =
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