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ABSTRACT. We prove that a Gaussian ensemble of smooth random sections of a real vector bundle E
over compact manifold M canonically defines a metric on E together with a connection compatible
with it. Additionally, we prove a refined Gauss-Bonnet theorem stating that if the bundle E and the
manifold M are oriented, then the Euler form of the above connection can be identified, as a current,
with the expectation of the random current defined by the zero-locus of a random section in the above
Gaussian ensemble.
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1. INTRODUCTION

1.1. Notations and terminology. Suppose that X is a smooth manifold. We denote by |ΛX | → X
the line bundle of 1-densities on X , [7, 11], so that we have a well defined integration map∫

X
: C∞(|ΛX |)→ R, C∞(|ΛX |) 3 ρ 7→

∫
X
ρ(dx).

Suppose that F is a smooth vector bundle over X . We have two natural projections

πx, πy : X ×X → X, πx(x, y) = x, πy(x, y) = y, ∀x, y ∈ X.
We set F � F := π∗xF ⊗ π∗yF , so that F � F is vector bundle over X ×X .

Following [7, Chap.VI,§1], we define generalized section of F to be a continuous linear functional
on the space C∞0 (F ∗ ⊗ |ΛX |) equipped with the natural locally convex topology. We denote by
C−∞(F ) the space of generalized sections of F . We have a natural injection, [7, Chap.VI, §1]

i : C∞(F ) ↪→ C−∞(F ).
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Recall that a Borel probability measure µ on R is called (centered) Gaussian if has the form

µ(dx) = γv(dx) :=

{
1√
2π
e−

x2

2v dx, v > 0,

δ0, v = 0.

where δ0 denotes the Dirac measure concentrated at the origin.

1.2. Gaussian ensembles of sections and correlators. The concept of smooth random section of
a vector bundle is very similar to the better known concept of random function. Since we were not
able to locate a precise references, we present below a coordinate free description of the concept of
Gaussian random section of a bundle. This description is implicitly contained in the fundamental
work of R.A. Minlos [9], X. Fernique [5] and L. Schwartz [15].

Throughout this paper we fix a smooth compact connected manifold M of dimension m and a
smooth real vector bundle E → M of rank r. The space C∞(E∗ ⊗ |ΛM |) is a nuclear countable
Hilbert space in the of [6] and, a such, its dual C−∞(E) satisfies several useful measure theoretic
properties. Their proofs can be found in Appendix A.

Proposition 1.1. (i) The σ-algebra of weakly Borel subsets of C−∞(E) is equal with the σ-
algebra of strongly Borel subsets. We will refer to this σ-algebra as the Borel σ-algebra of
C−∞(E).

(ii) Every Borel probability measure on C−∞(E) is Radon.
(iii) Any Borel subset of C∞(E) (with its natural topology) belongs to the Borel σ-algebra of

C−∞(E) when viewed as a subset of C−∞(E).
ut

By definition, any section ϕ ∈ C∞(E∗ ⊗ |ΛM |) defines a continuous linear map

Lϕ : C−∞(E)→ R.
Following [3, 6] we define a Gaussian measure on C−∞(E) to be a Borel measure Γ such that, for
any section ϕ ∈ C∞(E∗ ⊗ |ΛM |) the pushforward (Lϕ)#(Γ) is a centered Gaussian γϕ measure on
R.

The measure Γ is completely determined by its covariance form which is the symmetric, nonneg-
ative definite bilinear map

KΓ : C∞(E∗ ⊗ |ΛM |)× C∞(E∗ ⊗ |ΛM |)→ R
given by

KΓ(ϕ,ψ) = EΓ

(
Lϕ · Lψ

)
, ∀ϕ,ψ ∈ C∞(E∗ ⊗ |ΛM |),

and EΓ denotes the expectation with respect to the probability measure Γ.
Results of Fernique [5, Thm.II.2.3 + Thm.II.3.2] imply that KΓ is separately continuous. Accord-

ing to Schwartz’ kernel theorem [6, Chap.I, §3.5] the covariance form can be identified with a linear
functional on the topological vector space

CΓ ∈ C∞
(

(E∗ ⊗ |ΛM |) � (E∗ ⊗ |ΛM |)
)

= C∞
(

(E∗ � E∗)⊗ |ΛM×M |
)
,

i.e., CΓ ∈ C−∞(E � E). We will refer to CΓ as the covariance kernel of Γ.

Theorem 1.2 (Minlos, [9]). Given a generalized section ∈ C−∞(E � E) such that the associated
bilinear form

K : C∞(E∗ ⊗ |ΛM |)× C∞(E∗ ⊗ |ΛM |)→ R
is symmetric and nonnegative definite, there exists a unique Gaussian measure on C−∞(E) with
covariance kernel C. ut
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Definition 1.3. A Gaussian measure Γ on C−∞(E) is called smooth if CΓ is given by a smooth
section of E �E. We will refer to it as the covariance density. We will refer to the smooth Gaussian
measures on C−∞(E) as Gaussian ensemble of smooth sections of E. ut

A smooth section C of E � E can be viewed as a smooth family of bilinear maps

C̃x,y : E∗x × E∗y → R, x,y ∈M,

given by
C̃x,y(u∗,v∗) :=

〈
u∗ ⊗ v∗, Cx,y

〉
, ∀u∗ ∈ E∗x, v∗ ∈ E∗y,

where 〈−,−〉 denotes the natural pairing between a vector space and its dual. In the sequel we will
identify Cx,y with the associated bilinear map C̃x,y.

The next result, proved in Appendix A, explains the role of the smoothness condition.

Proposition 1.4. If the Gaussian measure Γ on C−∞(E) is smooth, then Γ
(
C∞(E)

)
= 1 . In other

words, a random generalized section in the Gaussian ensemble determined by Γ is a.s. smooth. ut

Using Propositions 1.1 and 1.4 we deduce that a smooth Gaussian measure on C−∞(E) induces
a Borel probability measure on C∞(E). Since C∞(E) is a standard space1 in the sense of [5] this
measure is also a Radon measure. Observe also that for any x ∈M the induced map

C∞(E)→ Ex, C∞(E) 3 ϕ 7→ ϕ(x) ∈ Ex

is Borel measurable. The next result, proved in Appendix A, shows that the collection of random
variables (ϕ(x) )x∈M is Gaussian.

Proposition 1.5. Suppose that Γ is a smooth Gaussian measure on E with covariance density C. Let
n be a positive integer. Then for any points x1, . . . ,xn ∈ M and any u∗i ∈ E∗xi , i = 1, . . . , n the
random vector

C∞(E) 3 ϕ 7→
(
X1(ϕ), . . . , Xn(ϕ)

)
∈ Rn, Xi(ϕ) := 〈u∗i , ϕ(xi) 〉, i = 1, . . . , n,

is Gaussian, Moreover
E(XiXj) = Cxi,xj (u

∗
i ,u

∗
j ), ∀i, j. (1.1)

ut

A section C ∈ C∞(E � E) is called symmetric if

Cx,y(u∗,v∗) = Cy,x(v∗,u∗), ∀x,y ∈M, ∀u∗ ∈ E∗x, v∗ ∈ E∗y.
If C is the covariance density of a smooth Gaussian measure Γ on C−∞(E), then Proposition 1.5
shows that C is symmetric.

A symmetric section section C ∈ C∞(E � E) is called nonnegative/positive definite if all the
symmetric bilinear formsCx,x are such. Clearly the covariance density of a smooth Gaussian measure
Γ on C−∞(E) is symmetric and nonnegative definite.

Definition 1.6. (a) A correlator on E is a section C ∈ C∞(E �E) which is symmetric and positive
definite.
(b) A Gaussian ensemble of smooth sections of E is called nondegenerate if its covariance density is
a correlator. ut

Lemma 1.7. There exist nondegenerate Gaussian ensembles of smooth sections of E.

1Fernique’s standard spaces are also known as Lusin spaces.
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Proof. We follow the ideas in [14]. Fix a finite dimensional subspace U ∈ C∞(E) which is ample,
i.e., for any x ∈M the evaluation map

evx : U → Ex, u 7→ u(x)

is onto. By duality we obtain injections

ev∗x : E∗x → U∗.

Fix an Euclidean inner product (−,−)U on U and denote by γ the Gaussian measure on U canoni-
cally determined by this product. Its covariance pairingU∗×U∗ → R coincides with (−,−)U∗ , the
inner product onU∗ induced by (−,−)U . More precisely, this means that for any ξ, η ∈ U∗ we have

(ξ, η)U∗ =

∫
U
〈ξ, s〉〈η, s〉γ(ds). (1.2)

The measure γ defines a smooth Gaussian measure γ̂ on C−∞(E) such that γ̂(U) = 1. Concretely,
γ̂ is the pushforward of γ via the natyural inclusion U ↪→ C∞(E). This is a smooth measure. Its
covariance density C is computed as follows: if x,y ∈M , u∗ ∈ E∗x, v∗ ∈ E∗y, then

Cx,y(u∗,v∗) =

∫
U
〈u∗, s(x)〉〈v∗, s(y)〉γ(ds) =

∫
U
〈ev∗x u

∗, s〉〈ev∗y v
∗, s〉γ(ds)

(1.2)
= (ev∗x u

∗, ev∗y v
∗).

In particular, when x = y we observe that Cx,x coincides with the restriction to E∗x of the inner
product (−,−)U∗ . In particular, the form Cx,x is positive definite. ut

Definition 1.8. A Gaussian ensemble of smooth sections of E with associated Gaussian measure Γ
on C−∞(E) is said to have finite type if there exists a finite dimensional subspaceU ⊂ C∞(E) such
that Γ(U) = 1. ut

The Gaussian ensemble constructed in Lemma 1.7 has finite type. Moreover, all the nondegenerate
finite type Gaussian ensembles of smooth sections can be obtained in this fashion. However, there
exist nondegenerate gaussian ensembles which are not of finite type.

Definition 1.9. A correlator C ∈ C∞(E � E) is called stochastic if it is the covariance density of a
nondegenerate Gaussian ensemble smooth sections of E. ut

Minlos’ Theorem1.2 shows that not all correlators are stochastic.

1.3. Statements of the main results. The main goal of this paper is to investigate some of the
rich geometry of a nondegenerate Gaussian ensemble of smooth sections of E. By definition, the
correlator C of such an ensemble defines a metric on the dual bundle E∗, and thus on E as well.
Less obvious is that the correlator C also induces a connection ∇C on E compatible with the above
metric. We will refer to this metric/connection as the correlator metric/connection. We prove this fact
in Proposition 2.4.

This connection depends only on the first order jet of C along the diagonal of M . Using the
corellator metric we can identify the bilinear form Cx,y with a linear map Tx,y : Ey → Ex. The
definition of the connection shows that its infinitesimal parallel transport is given by the first order jet
of Tx,y along the diagonal x = y. The construction of ∇C feels very classical, but we were not able
to trace any reference.

The inspiration for this construction came from our earlier work [14] where we associated a metric
and a compatible connection to an arbitrary finite type, nondegenerate Gaussian ensemble of sections
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of E. As we have explained in [14], the results of Narasimhan and Ramanan [10] show that any
metric together with a connection compatible with it are the metric and connection of a correlator
associated to a finite type Gaussian ensemble of sections.

In Example 2.1 we show that any embedding of the manifoldM in an Euclidean space canonically
defines a correlator on TM . The correlator metric is then the metric induced by the embedding
and the correlator connection coincides with the Levi-Civita connection. In fact this correlator is a
stochastic correlator.

If the correlator C is stochastic, then the connection ∇C and its curvature can be given a proba-
bilistic interpretations. The equality (2.5) gives a purely probabilistic description of the connection
∇C . Proposition 2.6 gives a purely probabilistic description of its curvature. This result contains as a
special case Gauss’ Theorema Egregium.

The connection determined by a Gaussian ensemble through its correlator C has other useful prob-
abilistic properties. In Corollary 2.8 we show that if u is a random section of the ensemble, and ∇C
is the correlator connection, then for any x ∈ M the random vectors ∇Cu(x) ∈ T ∗xM ⊗ Ex and
u(x) ∈ Ex are independent. This independence is an immediate consequence of the probabilistic
equality (2.5).

In [1, §12.2] Adler and Taylor associate to a Gaussian random function u on a smooth mani-
fold M a Riemann metric and they gave a probabilistic description to the corresponding Levi-Civita
connection and its curvature, the Riemann tensor. Their construction is a special case of correlator
connection. More precisely, the random function u defines a Gaussian random section du of T ∗M .
The induced metrics on TM and T ∗M are the metrics associated to the correlator of this random sec-
tion. Moreover, the correlator connection coincides with the Levi-Civita connection of the correlator
metric.

Section 3 contains the main result of this paper. Here we assume that both M and E are oriented,
and the rank of E is even and not greater than the dimension of M . Given a nondegenerate Gaussian
ensemble of smooth sections of E we obtain as we know a metric and a connection ∇ on E. The
Chern-Weil construction associates to this connection an Euler form e(E,∇) ∈ Ωr(M). This form is
closed and, as the name suggests, its cohomology class is the Euler class of E (with real coefficients),
We refer to[11, Chap.8] for more details.

If u is a smooth section of E transversal to the zero section, then its zero set Zu is a compact,
codimension r-submanifold of M equipped with a canonical orientation. As such it defines a closed
integration current [Zu] of dimension (m − r) whose cohomology class is independent of of the
choice of transversal section u. This means that if u,v are two sections of E transversal to the zero
section, then for any closed form η ∈ Ωm−r(M) we have∫

Zu

η =

∫
Zv

η.

The classical Gauss-Bonnet-Chern theorem gives a geometric description of the cohomology class of
the zero-set current [Zu]; see cite[Sec. 8.3.2]N1. More precisely, it states that∫

Zu

η =

∫
M
η ∧ e(E,∇), ∀η ∈ Ωm−r(M), dη = 0. (1.3)

Suppose now that the Gaussian ensemble of sections is transversal, i.e., a random section u of this
ensemble is a.s. transversal to the zero section. (In Remark 3.3 we describe several conditions on the
ensemble guaranteeing transversality.) In Theorem 3.4 we prove a stochastic Gauss-Bonnet formula
stating that the expectation of the random current [Zu] is equal to the current defined by the Euler
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form e(E,∇), i.e.,

E

(∫
Zu

η

)
=

∫
M
η ∧ e(E,∇), ∀η ∈ Ωm−r(M). (1.4)

Let us point out that the cohomological formula (1.3) is a consequence of the above equality. How-
ever, the stochastic formula is stronger than the cohomological one because the Euler class ofE could
be zero yet there exist metric connections on E whose associated Euler forms are nonzero.

We prove the stochastic formula (1.4) result by reducing it to the the Kac-Rice formula [2, Thm.
6.1] using a bit of differential geometry and certain Gaussian computations we borrowed from [1].
For the reader’s convenience we have included in Appendix B a brief survey of these facts.

In our earlier work [14] we proved a special case of this stochastic Gauss-Bonnet formula for
nondegenerate Gausian ensembles of finite type. These are automatically the proof. The proof in [14]
is differential geometric in nature and does not extend to the general situation discussed in the present
paper.

In [13] we used related probabilistic techniques to prove a cohomological Gauss-Bonnet-Chern
formula of the type (1.3) in the special case when E = TM , and the connection∇ is the Levi-Civita
connection of a metric on TM . Still in the case E = TM , one can used rather different probablistic
ideas (Malliavin calculus) to prove the cohomological Gauss-Bonnet; the case when ∇ is the Levi-
Civita connection of a metric on M was investigated by E. Hsu [8], while the case of a general metric
connection on TM was recently investigated by H. Zhao [16].

2. THE DIFFERENTIAL GEOMETRY OF CORRELATORS

A correlator on a real vector bundle E → M naturally induces additional geometric structures on
E. More precisely, we will show that it induces a metric on E together with a connection compatible
with it.

Before we proceed to describing the geometric structures naturally associated to a correlator we
want to present a few circumstances that lead to correlators.

Example 2.1. (a) Suppose that M is a properly embedded submanifold of the Euclidean space U .
Then the inner product (−,−)U on U induces a correlator C ∈ C∞(T ∗M � T ∗M) defined by the
equalities

Cx,y(X,Y ) = (X,Y )U , ∀x,y ∈M, X ∈ TxM ⊂ U , Y ∈ TyM ⊂ U .
(b) For any real vector space U and any smooth manifold M we denote by UM the trivial vector
bundle over M with fiber U

UM = U ×M →M.

Suppose that U is a real, finite dimensional Euclidean space with inner product (−,−). We denote
by (−,−)∗ the induced inner product on U∗. Suppose that E → M is a smooth real vector bundle
over M and

P : U → E

is a fiberwise surjective bundle morphism. In other words, E is a quotient bundle of a trivial real
metric vector bundle. This induces an injective bundle morphism

P ∗ : E∗ → U∗M .

Hence E∗ is a subbundle of a trivial metric real vector bundle.
For any x ∈ M and any u∗ ∈ Ex we obtain a vector P ∗xu

∗ ∈ Ux = the fiber of UM at x ∈ M .
This allows us to define a correlator C ∈ C∞(E � E) given by

Cx1,x2(u∗1,u
∗
2) =

(
P ∗x1

u∗1, Px2u
∗
2

)
, ∀xi ∈M, u∗i ∈ Exi i = 1, 2.
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(c) Suppose that (Ω,F,P) is a probability space and

f : Ω×M → R, (ω,x) 7→ fω(x),

is a Gaussian random function on M such that the sample functions fω : M → R are almost surely
(a.s.) smooth. Assume for simplicity that

EP(fω(x)
)
= 0, ∀x ∈M.

We define C ∈ C∞(T ∗M � T ∗M) as follows: if x,y ∈ M and X,Y are smooth vector fields on
M , then

Cx,y(Xx, Yy) := EP
(
Xf(x) · Y f(u)

)
.

This is clearly a symmetric section. Note also that Cx,x : TxM × TxM → R can be identified with
the covariance form of the gaussian vector

Ω 3 ω 7→ dfω(x) ∈ T ∗xM.

We see that C is a correlator on T ∗M if and only if the Gaussian random vector df(x) is nondegen-
erate for any x ∈M . ut

Remark 2.2. We want to point out the construction in Example 2.1 (a) is a special case of both (b) and
(c). The correlator in (c) is obviously stochastic. The proof of Lemma 1.7 shows that the correlators
defined in (a) and (b) are also stochastic. ut

Observe that, by definition, a correlator C ∈ C∞(E � E) induces a metric on E∗ and thus, by
duality, a metric on E. We will denote both these metric by (−,−)E∗,C and respectively (−,−)E,C .
When no confusion is possible will will drop the subscript E or E∗ from the notation. To simplify
the presentation we adhere to the following conventions.

(i) We will use the Latin letters i, j, k to denote indices in the range 1, . . . ,m = dimM .
(ii) We will use Greek letters α, β, γ to denote indices in the range 1, . . . , r = rank (E).

Using the metric duality we obtain an induced correlator C† on E∗ defined by bilinear forms

C†x,y : Ex × Ey → R.

If (eα) is a local frame of E defined over an open coordinated neighborhood O with coordinates
(xi), and (eα) is the dual frame of E∗ defined over the same neighborhood, then the correlator C is
described by the matrices

Cx,y =
(
Cα,β(x, y)

)
1≤α,β≤r, Cα,β(x, y) = Cx,y(e

α(x), eβ(y)), x, y ∈ O.

We denote by C(x) the matrix

C(x) := Cx,x =
(
Cα,β(x, x)

)
1≤α,β≤r.

The isomorphismDx : Ex → E∗x induced by the metric (−,−)E,C ,〈
Dxu,v

〉
= (u,v)E,C , ∀u,v ∈ Ex,

is described in the bases (eα(x)) and (eβ(x)) by the inverse matrix

C−1
x,x =

(
Cα,β(x)

)
1≤α,β≤r,

∑
β

Cαβ(x)Cβγ(x, x) = δγα.

More precisely,
Dxeα(x) =

∑
β

Cβα(x)eβ(x).
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Note that
C†x,y

(
eα(x), eβ(y)

)
= Cx,y

(
Dxeα(x),Dyeβ(y)

)
=
∑
α′,β′

Cα′α(x)Cα
′β′(x, y)Cβ′β(y).

Taking into account that Cx,x is a symmetric matrix we can rewrite the above equality in a more
compact form

C†x,x = C−1
x,xCx,yC

−1
y,y .

In particular
C†x,x = C−1

x,x.

Using the metric (−,−)C we can identify Cx,y ∈ Ex ⊗ Ey with an element of

Tx,y ∈ Ex ⊗ E∗y ∼= Hom(Ey, Ex).

We will refer to Tx,y as the tunneling map associated to the correlator C. If (eα(x) )1≤α≤r is a local,
(−,−)C-orthonormal frame, then we have

Cαβ(x, x) = δαβ = Cαβ(x, x),

Cx,y =
∑
α,β

Cα,β(x, y)eα(x)⊗ eβ(y),

and
Tx,y =

∑
α,β

Cα,β(x, y)eα(x)⊗Dyeβ(y) =
∑
α,β,γ

Cα,β(x, y)Cγβ(y)eα(x)⊗ eγ(y)

=
∑
α,β,γ

Cα,β(x, y)Cβγ(y)eα(x)⊗ eγ(y) =
∑
α,β,γ

Cα,β(x, y)eα(x)⊗ eβ(y).

We can write this
Tx,y = Cx,y.

Note that Tx,x = 1Ex . If we denote by T ∗x,y ∈ Hom(Ey, Ex) the adjoint of Tx,y with respect to the
metric (−,−)E , then the symmetry of C implies that

Ty,x = T ∗x,y.

We recall that for any vector space V and any smooth manifoldX we denote by V X the trivial bundle
V ×X → X .

Lemma 2.3. Fix a point p0 ∈M and local coordinates (xi)1≤i≤m in a neighborhood O of p0 in M .
Suppose that

e(x) = (eα(x))1≤α≤r

is a local (−,−)C-orthononomal frame of E|O which we regard as an isomorphism of metric bundles

RrO → E|O.

We obtain a smooth map

T (e) : O× O→ Hom(Rr), (x, y) 7→ T (e)x,y = e(x)−1Tx,ye(y).

Then for any i = 1, . . . ,m the operator

∂xiT (e)x,y|x=y : Rry → Rry,

is skew-symmetric.
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Proof. We identify O × O with an open neighborhood of (0, 0) ∈ R × R with coordinates (xi, yj).
Introduce new coordinates

zi = xi − yi, sj = xj + yj ,

so that
∂xi = ∂zi + ∂si .

We view the map T (e) as depending on the variables z, s. Note that

T (e)0,s = 1, T (e)−z,s = T (e)∗z,s, ∀z, s.
We deduce that

∂siT (e)|0,s = ∂siT (e)|∗0,s = 0,

∂xiT (e)|0,s = ∂ziT (e)|0,s + ∂siT (e)|0,s = ∂ziT (e)|0,s,(
∂xiT (e)|0,s

)∗
= ∂xiT (e)∗|0,s = −∂ziT (e)|0,s + ∂siT (e)|0,s = −∂xiT (e)|0,s.

ut

Given a coordinate neighborhood with coordinates (xi) and a local isomorphism of metric vector
bundles (local orthonormal frame)

e : RrO → E|O
as above, we define skew-symmetric endomorphisms

Γi(e) : RrO → RrO, i = 1, . . . ,m = dimM, Γi(e)y = −∂xiTx,y|x=y. (2.1)

We obtain a 1-form with mattix coefficients

Γ(e) =
∑
i

Γi(e)dyi.

The operator
∇e = d+ Γ(e) (2.2)

is then a connection on RrO compatible with the metric natural metric on this trivial bundle. The
isomorphism e induces a metric connection e∗∇e on E|O.

Suppose that f : RrO → E|O is another orthonormal frame of EO related to e via a transition map

g : O→ O(r), f = e · g.
Then

T (f)x,y = g−1(x)T (e)x,yg(y).

We denote by dx the differential with respect to the x variable. We deduce

Γ(f)y = −dxT (f)x,y|x=y

= −
(
dxg
−1(x)

)
x=y
· T (e)y,y︸ ︷︷ ︸

=1

·g(y)− g−1(y)
(
dxT (e)x,y

)
|x=yg(y)

(d(g−1) = −g−1 · dg · g−1)

= g−1(y)dg(y)g−1(y) · g(y) + g−1(y)Γ(e)yg(y) = g(y)−1dg(y) + g−1(y)Γ(e)yg(y).

Thus
Γ(e · g) = g−1dg + g−1Γ(e)g.

This shows that for any local orthonormal frames e, f of E|O we have

e∗∇e = f∗∇
f .

We have thus proved the following result.
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Proposition 2.4. If E → M is a smooth real vector bundle, then any correlator C on M induces a
canonical metric (−,−)C on E and a connection ∇C compatible with this metric. More explicitly,
if O ⊂ M is an coordinate neighborhood on M and e : RrO → E|O is an orthogonal trivialization ,
then∇C is described by

∇C = d+
∑
i

Γi(e)dxi,

where the skew-symmetric r × r-matrix Γi(e) is given by (2.1). ut

Remark 2.5. (a) In [14] we have shown that any pair metric on E + connection on E compatible
with the metric is determined by the correlator of a finite type Gaussian ensemble of smooth sections
of E.
(b) In the special case described in Example 2.1, the connection associated to the corresponding
correlator coincides with the Levi-Civita connection of the metric induced by the correlator.

The metric and the connection associated to the correlator described in Example 2.1(c) where
discussed in great detail by Adler and Taylor, [1, §12.2]. In this case the connection determined by
the correlator coincides with the Levi-Civita connection of the metric determined by the correlator.
(c) Suppose that we fix local coordinates (xi) near a point p0 such that xi(p0) = 0. We denote by
Px,0 the parallel transport of∇C from 0 to X along the line segment from 0 to x. Then

P0,0 = 1E0 = T0,0, ∂xiPx,0|x=0 = −Γi(0) = ∂xi,0Tx,0|x=0.

We see that the tunneling map Tx,0 is a first order approximation at 0 of the parallel transport map
Px,0 of the connection∇C . ut

For later use, we want to give a more explicit description of the curvature of the connection∇C in
the special case when the correlator C stochastic and thus it is the covariance density of a nondegen-
erate Gaussian ensemble of smooth sections of E.

Proposition 2.6. Suppose thatC is a stochastic correlator onE defined by the nondegenerate Gauss-
ian ensemble smooth random sections of E. Denote by u a random section in this ensemble. Fix a
point p0, local coordinates (xi) on M near p0 such that xi(p0) = 0 ∀i, and a local (−,−)C-
orthonormal frame

(
eα(x)

)
1≤α≤r of E in a neighborhood of p0 which is is synchronous at p0,

∇Ceα|p0
= 0, ∀α.

Denote by F the curvature of∇C ,

F =
∑
ij

Fij(x)dxi ∧ dxj , Fij(x) ∈ End(Ep0
).

Then Fij(0) is the endomorphism of Ep0
which in the frame eα(p0) is described by the r × r matrix

with entries

Fαβ|ij(0) := E
(
∂xiuα(x)∂xjuβ(x)

)
|x=0 −E

(
∂xjuα(x)∂xiuβ(x)

)
|x=0, 1 ≤ α, β ≤ r, (2.3)

where uα(x) is the random function

uα(x) :=
(
u(x), eα(x)

)
C
.

Proof. The random section u has the local description

u =
∑
α

uα(x)eα(x).
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Then T (x, y) is a linear map Ey → Ex given by the r × r matrix

T (x, y) =
(
Tαβ(x, y)

)
1≤α,β≤r, Tαβ(x, y) = E(uα(x)uβ(y)

)
.

The coefficients of the connection 1-form Γ =
∑

i Γidx
i are endomorphisms of Ex given by r × r

matrices
Γi(x) =

(
Γαβ|i(x)

)
1≤α,β≤r.

More precisely, we have
Γαβ|i(x) = −E

(
∂xiuα(x)uβ(x)

)
. (2.4)

Because the frame
(
eα(x)

)
is synchronous at x = 0 we deduce that, at p0, we have Γi(0) = 0 and

F (p0) =
∑
i<j

Fij(x)dxi ∧ dxj ∈ End(Ep0
)⊗ Λ2T ∗p0

M, Fij = ∂xiΓj(p0)− ∂xjΓi(p0).

The coefficients Fij(x) are r × r matrices with entries Fαβ|ij(x), 1 ≤ α, β ≤ r. Moreover

Fαβ|ij(0) = ∂xjΓαβ|j(0)− ∂xjΓαβ|i(0)

(2.4)
= ∂xjE

(
∂xiuα(x)uβ(x)

)
|x=0 − ∂xiE

(
∂xjuα(x)uβ(x)

)
|x=0

= E
(
∂2
xjxiuα(x)uβ(x)

)
|x=0 +E

(
∂xiuα(x)∂xjuβ(x)

)
|x=0

−E
(
∂2
xixjuα(x)uβ(x)

)
|x=0 −E

(
∂xjuα(x)∂xiuβ(x)

)
|x=0

= E
(
∂xiuα(x)∂xjuβ(x)

)
|x=0 −E

(
∂xjuα(x)∂xiuβ(x)

)
|x=0.

ut

Remark 2.7. When C is the stochastic correlator defined in Example 2.1, Proposition 2.6 specializes
to Gauss’ Theorema Egregium. ut

Corollary 2.8. Suppose that u is a nondegenerate, Gaussian smooth random section of E with co-
variance density C ∈ C∞(E � E). Denote by (−,−)C and respectively ∇C the metric and respec-
tively the connection on E defined by C. Then for any p0 ∈ M the random variables u(p0) and
∇Cu(p0) are independent.

Proof. We continue to use the same notations as in the proof of Proposition 2.6. Observe first that(
u(p0),∇u(p0)

)
∈ Ep0

⊕ Ep0
⊗ T ∗p0

M,

is a Gaussian random vector. The section u has the local description

u(x) =
∑
β

uα(x)eβ(x).

Then
∇Cxiu(p0) =

∑
α

∂xiuα(0)eα(0),

and

0 = Γαβ|i(x)
(2.4)
= −E

(
∂xiuα(0)uβ(0)

)
.

Since (uβ(0), ∂xiuα(0) ) is a Gaussian vector, we deduce that the random variables uβ(0), ∂xiuα(0)
are independent. ut
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Remark 2.9. The local definition of the connection coefficients Γi shows that the above independence
result is a special case of a well known fact in the theory of Gaussian random vectors: if X,Y are
finite dimensional Gaussian vectors such that the dirrect sum X ⊕ Y is also Gaussian, then for a
certain deterministic linear operator A the random vector X − AY is independent of Y ; see e.g. [2,
Prop. 1.2]. More precisely this happens when

A = cov(X,Y ) · cov(Y )−1.

Corollary 2.8 follows from this fact applied in the special case X = du(0) and Y = u(0).
If we use local coordinates (xi) and a local orthonormal frame (eα) in a neighborhood O, then we

can view O as an open subset Rm and u as a map

u : O→ Rr.

as such, it has a differential du(x) at any x ∈ O. The formula (2.4) defining the coefficients of the
correlator connection ∇C and the classical regression formula [2, Prop.1.2] yield the following a.s.
equality: for any point x ∈ O we have

∇Cu(x) = du(x)−E
(
du(x) | u(x)

)
. (2.5)

Above, the notationE( var | cond ) stands for the conditional expectation of the variable var given
the conditions cond. The above equality implies immediately that the random vectors du(x) and
u(x) are independent. ut

3. KAC-RICE IMPLIES GAUSS-BONNET-CHERN

In this section we will prove a refined Gauss-Bonnet equality involving a nondegenerate Gauss-
ian ensembles of smooth sections of E satisfying certain ampleness condition. We will make the
following additional assumption.

• The manifold M is oriented.
• The bundle E are oriented and its rank is even, r = 2h.
• r ≤ m = dimM .

3.1. The setup. We denote by Ωk(M) the space of k-dimensional currents, i.e., the space of linear
maps Ωk(M) → R which are continuous with respect to the natural locally convect topology on the
space of smooth k-forms on M . If C is a k-current and k is a smooth k-form, we denote by 〈η, C〉
the value of C at η.

Suppose that we are given a metric on E and a connection∇ compatible with the metric. Observe
that if u : M → E is a smooth section of E transversal to the zero section, then its zero set Zu is a
smooth codimension r submanifold of M and there is a canonical adjunction isomorphism

au : TZuM → E|Zu ,

where TZuM = TM |Zu/TZu is the normal bundle ofZu ↪→M . For more details about this map we
refer to [14, Sec. 2]. From the orientability ofM andE and from the adjunction induced isomorphism

TM |Zu
∼= E|Zu ⊕ TZu

we deduce that Zu is equipped with a natural orientation uniquely determined by the equalities

or(TM |Zu) = or(E|Zu) ∧ or(TZu)
(r∈2Z)

= or(TZu) ∧ or(E|Zu).

Thus the zero set Zu with this induced orientation defines an integration current [Zu] ∈ Ωm−r(M)

Ωm−r(M) 3 η 7→ 〈η, [Zu]〉 :=

∫
Zu

η.
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To a metric (−,−) on E and a connection ∇ compatible with the metric we can associate a closed
form

e(E,∇) ∈ Ωr(M).

Its construction involves the concept of Pfaffian discussed in great detail in Appendix B and it goes
as follows.

Denote by F the curvature of ∇ and set

e(E,∇) :=
1

(2π)h
Pf(−F ) ∈ Ωr(M),

where the Pfaffian Pf(−F ) has the following local description. Fix a positively oriented, local or-
thonormal frame e1(x), . . . , er(x) of E defined on some open coordinate neighborhood O of M .
Then F |O is described by a skew-symmetric r × r matrix (Fαβ)1≤α,β≤r, where

Fαβ ∈ Ω2(O), ∀α, β.

If we denote by Sr the group of permutations of {1, . . . , r = 2h}, then

Pf
(
−F
)

=
1

2hh!

∑
σ∈Sr

ε(σ)Fσ1σ2 ∧ · · · ∧ Fσ2h−1σ2h ∈ Ω2h(O), (3.1)

where ε(σ) denotes the signature of the permutation σ ∈ Sr.

Remark 3.1. The r× r-matrix (Fαβ) depends on the choice of positively oriented local orthonormal
frame (eα(x)). However, the Pfaffian Pf(−F ) is a degree r-form on O that is independent of the
choice of positively oriented local orthonormal frame. ut

As explained in [11, Chap.8], the degree 2h-form e(E,∇) is closed and it is called the Euler form
of the connection E. Moreover, its DeRham cohomology class is independent of the choice of the
metric connection∇. The Euler form defines an (m− r)-dimensional current

e(E,∇)† ∈ Ωm−r(M), Ωm−r(M) 3 η 7→ 〈η, e(E,∇)†〉 :=

∫
M
η ∧ e(E,∇).

Definition 3.2. We say that a Gaussian ensemble of smooth sections of E is transversal if a random
section in this ensemble is a.s. transversal to the zero section of E. ut

Remark 3.3. (a) As explained in [14, Lemma 2.2], any finite type nondegenerate Gaussian ensemble
of smooth sections of E is transversal.

(b) If m = dimM = rankE = r, then [2, Prop. 6.5] shows that any Gaussian ensemble of smooth
sections of E is ample.

(c) Consider a nondegenerate Gaussian ensemble of smooth sections of E with associated correlator
C. Denote by u a random section in this ensemble. In [2, Prop. 6.12] it is shown that a sufficient
condition for the transverselity of the ensemble is the requirement that for any x ∈ M the Gaussian
random vector∇Cu(x) ∈ Ex ⊗ T ∗xM is nondegenerate.

(d) We are inclined to believe that any nondegenerate Gaussian ensemble of smooth sections is
transversal, but at this moment we do not have a proof for this claim. ut
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3.2. A stochastic Gauss-Bonnet-Chern theorem. We can now state the main theorem of this paper.

Theorem 3.4 (Stochastic Gauss-Bonnet-Chern). Assume that the manifold M is oriented, the bundle
E is oriented and has even rank r = 2h ≤ m = dimM . Fix a transversal, nondegenerate Gaussian
ensemble of smooth sections ofE. Denote byu a random section of this ensemble, byC the correlator
of this Gaussian ensemble, by (−,−)C the metric on E induced by C and by ∇ the connection on E
determined by this corellator. Then the expectation of the random (m− r)-dimensional current [Zu]
is equal to the current e(E,∇)†, i.e.,

E
(
〈η, [Zu]〉

)
=

∫
M
η ∧ e(E,∇), ∀η ∈ Ωm−r(M) (3.2)

Proof. The linearity in η of (3.2) shows that it suffices to prove this equality in the special case when
η is compactly supported on an coordinate neighborhood O of a point p0 ∈ M . Fix coordinates
x1, . . . , xm on O with the following properties.

• xi(p0) = 0, ∀i = 1, . . . ,m.
• The orientation of M along O is given by the top degree form ωO := dx1 ∧ · · · ∧ dxm.

Invoking again the linearity in η of (3.2) we deduce that it suffices to prove it in the special case
when η has the form

η = η0dx
r+1 ∧ · · · ∧ dxm, η0 ∈ C∞0 (O).

In other words we have to prove the equality

E
( 〈
η0dx

r+1 ∧ · · · ∧ dxm, [Zu]
〉 )

=

∫
O

η0dx
r+1 ∧ · · · ∧ dxm ∧ e(E,∇), ∀η0 ∈ C∞0 (O). (3.3)

For any subset
I = {i1 < · · · < ik} ⊂ {1, . . . ,m}

we write
dxI = dxi1 ∧ · · · ∧ dxik .

We set
I0 := {1, . . . , r}, J0 := {r + 1, . . . ,m}.

We can rewrite (3.3) in the more compact form

E
( 〈
η0dx

J0 , [Zu]
〉 )

=

∫
O

η0dx
J0 ∧ e(E,∇), ∀η0 ∈ C∞0 (O). (3.4)

Fix a local, positively oriented, −(,−)C-orthonormal frame (eα(x))1≤α≤r of E|O. The restriction
to O of the curvature F of∇ is then a skew-symmetric r × r-matrix

F = (Fαβ)1≤α,β≤r, Fαβ ∈ Ω2(O), ∀α, β.
Each of the 2-forms Fαβ admits a unique decomposition

Fαβ =
∑

1≤i<j≤m
Fαβ|ijdx

i ∧ dxj .

For each subset I ⊂ {1, . . .m} we write

F Iαβ :=
∑
i<j
i,j∈I

Fαβ|ijdx
i ∧ dxj ∈ Ω2(O).

We denote by F I the skew-symmetric r × r matrix with entries F Iαβ .
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The degree r-form Pf(−F ) admits a canonical decomposition

Pf(−F ) =
∑
|I|=r

Pf
(
−F I

)
=
∑
|I|=r

pf(−F )I dx
I , pf(−F )I ∈ C∞(O).

The equality (3.4) is then equivalent to the equality

E
( 〈
η0dx

J0 , [Zu]
〉 )

=
1

(2π)h

∫
O

η0 pf(−F )I0ωO, ∀η0 ∈ C∞0 (O), (3.5)

where we recall that ωO = dx1 ∧ · · · ∧ dxm. To prove the above equality we will use the following
two-step strategy.

Step 1. Invoke the Kac-Rice formula to express the left-hand side of (3.5) as an integral over O

E
( 〈
η0dx

J0 , [Zu]
〉 )

=

∫
O

η0(x)ρ(x)ωO,

where ρ(x) is a certain smooth function on O.
Step 2. Use the Gaussian computations in Appendix B to show that

ρ(x) = pf(−F )I0(x), ∀x ∈ O.

Let us know implement this strategy. We view O as an open neighborhood of the origin in Rm
equipped with the canonical Euclidean metric and the orientation given by ωO . Denote byE0 the fiber
of E over the origin. Using the oriented, orthonormal local frame (eα) we can view the restriction to
O of the random section u as Gaussian smooth random map

u : O→ E0
∼= Rr, x 7→ (uα(x))1≤α≤r,

where again Rr is equipped with the canonical Euclidean metric and orientation given by the volume
form

ωE = du1 ∧ · · · ∧ dur.
The fact that the frame ( eα(x) ) is orthonormal with respect to the metric (−,−)C implies that for
any x ∈ O the probability distribution of random vector u(x) is the standard Gaussian measure on
the Euclidean space Rr. We denote by pu(x) the probability density of this vector so that

pu(x)(u) =
1

(2π)h
e−

1
2
|u|2 , (3.6)

where | − | denotes the canonical Euclidean norm on Rr.
The zero set Zu is a.s. a submanifold of U and as such it is equipped with an Euclidean metric and

an induced volume density |dVZu |.
Recall that if T : U → V is a linear map between two Euclidean spaces such that dimU ≥ dimV ,

then its Jacobian is the scalar
JacT :=

√
det(TT ∗).

We define the Jacobian at x ∈ O of a smooth map F : O→ E0 to be the scalar

JF (x) = JacdF (x) =
√

det dF (x)dF (x)∗,

where dF (x) : Rm → E0 is the differential dF (x) of F at x. We set

T := Hom(Rm, E0),

so that have a Gaussian random map

du : O→ T, x 7→ du(x).
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This random map is a.s. smooth and the random map

O→ E0 × T, x 7→
(
u(x), du(x)

)
,

is also a Gaussian random map. Suppose that g : T → R is a bounded continuous function. We then
have the following Kac-Rice formula, [2, Thm. 6.10].

Theorem 3.5 (Kac-Rice). Let g : T → R be a bounded continuous function. Then, for any λ0 ∈
C0(O), the random variable

u 7→
∫
Zu

λ0(x)g
(
du(x)

)
|dVZu(x)|

is integrable and

E

(∫
Zu

λ0(x)g
(
du(x)

)
|dVZu(x)|

)
=

∫
O

λ0(x)w(x)ωO(x), ∀η0 ∈ C0(O), (3.7a)

w(x) = E
(
Ju(x)g( du(x) )

∣∣ u(x) = 0
)
pu(x)(0)

(3.6)
=

1

(2π)h
E
(
Ju(x)g( du(x) )

∣∣ u(x) = 0
)
.

(3.7b)

In particular the function x 7→ λ0(x)ρ(x) is also integrable. ut

The above equality extends to more general g’s.

Definition 3.6. We say that a bounded measurable function g : T → R is admissible if there exists a
sequence of bounded continuous functions with the following properties.

(i) The sequence gn converges a.e. to g.
(ii) supn ‖gn‖L∞ <∞.

ut

Lemma 3.7. Theorem 3.5 continues to hold if g is an admissible function T → R.

Proof. Fix an admissible function g : W → R and a sequence of bounded measurable functions
gn : W → R satisfying the conditions in Definition 3.6. Set

K := sup
n
‖gn‖L∞ .

Then ∣∣∣∣∫
Zu

λ0(x)gn
(
du(x)

)
|dVZu(x)|

∣∣∣∣ ≤ K ∫
Zu

|λ0(x)||dVZu(x)|.

The random variable
u 7→ K

∫
Zu

|λ0(x)||dVZu(x)|

is integrable according the Theorem 3.5 in the special case when g ≡ K and λ0 = |λ0|. The
dominated converge theorem implies that

lim
n→∞

E

(∫
Zu

λ0(x)gn
(
du(x)

)
|dVZu(x)|

)
= E

(∫
Zu

λ0(x)g
(
du(x)

)
|dVZu(x)|

)
.

A similar argument shows that

limn→∞E
(
Ju(x)g( du(x) )

∣∣ u(x) = 0
)

= E
(
Ju(x)g( du(x) )

∣∣ u(x) = 0
)
.

ut
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To apply the above Kac-Rice formula we need to express the integral over Zu of a form as an
integral of a function with respect to the volume density. More precisely, we seek an equality of the
type ∫

Zu

dxJ0 =

∫
Zu

η0(x)g
(
du(x)

)
|dVZu(x)|,

for some admissible function g. This is achieved in the following technical result whose proof can be
found in Appendix A.

Lemma 3.8. Suppose that 0 is a regular value of u. Set uα(x) = (u, eα(x) ). Then

dxJ0 |Zu =
∆I0(du)

Ju
,

where Ju : O → R≥0 is the Jacobian of u and ∆I0(du) is the determinant of the r × r matrix ∂u
∂xI0

with entries
∂uα
∂xj

, α, j ∈ I0. ut

Any linear map T ∈ T = Hom(Rm, E0) is represented by an r ×m matrix. For any subset J of
{1, . . . ,m} we denote by ∆J(T ) the determinant of the r × r minor TJ determined by the columns
indexed by J .

Denote by T∗ the subset of T consisting of surjective linear maps Rm → E0. The complement
T \ T∗ is a negligible subset of T Observe that

T ∈ T∗⇐⇒ JacT 6= 0.

Define

G : T → R, g(T ) =

{
∆I0

(T )

JacT
, T ∈ T∗,

0, T ∈W \W ∗.
Lemma 3.8 shows that that if 0 is a regular value of u, then∫

Zu

η0dx
J0 =

∫
Zu

η0(x)G(du(x))|dVZu(x)|, ∀η0 ∈ C0(O).

Lemma 3.9. The measurable function G : T → R is admissible.

Proof. We first prove that G is bounded on T∗. This follows from the classical identity

Jac2
T =

∑
|J |=r

∆J(T )2.

This proves that ∣∣∣∣∆I0(T )

JacT

∣∣∣∣ ≤ 1.

Now define

Gn(T ) :=
∆I0(T )√
n−2 + Jac2

T

, ∀T ∈ T.

Observe that Gn(T )↗ G(T ) on T∗ as n→∞ and

sup
n
‖Gn‖L∞ ≤ 1.

ut
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We deduce that

E
( 〈

η0(x)dxJ
0
, [Zu]

)
= E

(∫
Zu

η0(x)G
(
du(x)

)
|dVZu(x)|

)
(3.7a)

=
1

(2π)h

∫
O

η0(x)E
(
Ju(x)G( du(x) )

∣∣∣ u(x) = 0
)
ωO

=
1

(2π)h

∫
O

η0(x) E
(

∆I0

(
du(x)

) ∣∣∣ u(x) = 0
)

︸ ︷︷ ︸
=:ρ(x)

ωO.

We have thus proved the equality

E
( 〈

η0(x)dxJ
0
, [Zu]

〉 )
=

1

(2π)h

∫
O

ρ(x)ωO, ∀η0 ∈ C∞0 (O). (3.8)

The density ρ(x) in the right-hand-side of the above equality could appriori depend on the choice of
the (−,−)C-orthonormal frame because it involved the frame dependent matrix ∂u

∂xI0
. On the other

hand, the left-hand-side of the equality (3.8) is plainly frame independent. This shows that the density
ρ is also frame independent. To prove (3.5) and thus Theorem 3.4 it suffices to show that

E
(

∆I0

(
du(x)

) ∣∣∣ u(x) = 0
)

= pf(−F )I0(x), ∀x ∈ O. (3.9)

We will prove the above equality for x = 0. Both sides are frame invariant and thus we are free to
choose the frame ( eα(x) ) as we please. We assume that it is synchronous at x = 0, i.e.,

∇eα(0), ∀α.
Then ∇Cu(0) = du(0). Corollary 2.8 now implies that the Gaussian vectors du(0) and u(0) are
independent. Hence

E
(

∆I0

(
du(0)

) ∣∣∣ u(x) = 0
)

= E
(

∆I0

(
du(0)

) )
,

and thus we have to prove that

E
(

∆I0

(
du(0)

) )
= pf(−F )I0(0). (3.10)

The random variable ∆I0

(
du(0)

)
is the determinant of the r × r Gaussian matrix S := ∂u

∂xI0
with

entries
Sαi := ∂xiuα(0), 1 ≤ α, i ≤ r.

Its statistics are determined by the covariances

Kαi|βj := E
(
SαiSβj

)
= E

(
∂xiuα(0)∂xjuβ(0)

)
.

As in Appendix B we consider the (2, 2)-double form

ΞK =
∑

α<β, i<j

Ξαβ|ijv
α ∧ vβ ⊗ vi ∧ vj ∈ Λ2,2V ∗,

where
Ξαβ|ij :=

(
Kαi|βj −Kαj|βi

)
, ∀1 ≤ α, β ≤ r, 1 ≤ i, j ∈ I0.

Then
E
(

∆I0

(
du(0)

) ) (B.10)
=

1

h!
tr Ξ∧hK . (3.11)

Now observe that (2.3) implies that

Ξαβ|ij = Fαβ|ij(0) = ∀1 ≤ α, β ≤ r, 1 ≤ i, j ∈ I0.
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We deduce that

ΞK = Ω−F I0 (0)

(B.2)
:=

∑
α<β, i<j,
i,j∈I0

Fαβ|ijduα ∧ duβ ⊗ dxi ∧ dxj

Using (B.6) and (B.9) we deduce

Pf(−F I0)x=0 = pf(−F )I0(0) dxI0 =
1

h!

(
tr Ω∧h−F I0 (0)

)
dxI0

=
1

h!

(
tr Ξ∧hK

)
dxI0

(3.11)
= E

(
∆I0

(
du(0)

) )
dxI0 .

This proves (3.10) and thus completes the proof of Theorem 3.4. ut

Remark 3.10. When the rank of E odd, the Euler class with real coefficients is trivial. In this case if
u is a section of E transversal to the zero section, then we have the equality of currents

[Z−u] = −[Zu].

If u is a random section of a smooth, ample Gaussian ensemble, then the above equality implies

E([Zu]) = 0. ut

APPENDIX A. PROOFS OF VARIOUS TECHNICAL RESULTS

Proof of Proposition 1.1. Following Fernique [5] we say that a topological space X is standard if it
admits a continuous bijection f : P → X , where P is a Polish space, i.e., complete, separable metric
space. (L. Schwartz [15] refers to Fernique’s standard spaces as Lusin spaces.)

(i) Since M is compact, the space C∞(E) is a Fréchet-Montel space. Using [5, Thm.I.5.1] we
deduce that C−∞(E) with the strong topology is a standard space. The claim now follows from [5,
Thm.I.2.5].

(ii) This follows from [5, Thm. I.3.2] or [15, Thm.9, p.122].
(iii) The space C∞(E) with its natural topology is a separable Fréchet space. It is thus standard

according to [5, Thm. I.5.1]. Thus any Borel subset B of C∞(E) is a standard space with the induced
topology. The inclusion

i : C∞(E) ↪→ C−∞(E)

is continuous with respect to the weak topology onC−∞(E). SinceC−∞(E) with the weak topology
is standard, we deduce from [5, Thm. Prop. I.2.2 (b)] that the image i(B) is a standard subspace of
C−∞(E) with the weak topology. We can now invoke [5, Thm. Prop. I.2.2 (a)] to conclude that i(B)
is a weak Borel subset of C−∞(E). From part(i) we deduce that i(B) is also a strong Borel subset of
C−∞(E). ut

Proof of Proposition 1.4. Fix a metric g on M , a metric and a compatible connection on E. For each
nonnegative integer k we can define the Sobolev spaces Hk consisting of L2-sections of E whose
generalized derivatives up to order k are L2-sections. We have a decreasing sequence of Hilbert
spaces

H0 ⊃ H1 ⊃ · · ·
whose intersection is C∞(E). The natural locally convex topology on C∞(E) is then the projective
limit of this family of Hilbert spaces. For k ≥ 0 we denote by H−k the topological dual of Hk so that
we have a decreasing family of Hilbert spaces

· · · ⊂ H1 ⊂ H0 ⊂ H−1 ⊂ · · · .
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The union of this family of spaces is C−∞(E), and the strong topology on C−∞(E) is the locally
convex inductive limit of this family. Arguing as in the proof of Proposition 1.1 we deduce that each
of the subsets Hk ⊂ C−∞(E), k ∈ Z, is a Borel subset. Using Minlos’s theorem [9, Sec. 4, Thm. 2]
we deduce that if the covariance kernel CΓ is smooth then

Γ(Hk) = 1, ∀k ∈ Z. ut
Proof of Proposition 1.5. Fix a Riemann metric g on M . For each i = 1, . . . , n choose a sequence
(δν,i)ν≥0 of smooth functions on M supported in a coordinate neighborhood of xi such that

lim
ν→∞

δν,i|dVg| = δxi = the Dirac measure concentrated at xi.

Fix trivializations of E near each xi. Let t1, . . . , tn. Now define

Φν =

n∑
i=1

tiu
∗
i ⊗ δν,i|dVg| ∈ C∞(E∗ ⊗ |ΛM |),

an form the random variable

C−∞(E) 3 ϕ 7→ Yν = Yν(ϕ) = LΦν (ϕ).

This is a Gaussian random variable with variance

EΓ(Y 2
ν ) = KΓ(Φν ,Φν) =

∑
i,j

titj

∫
M×M

Cx,y(u
∗
i ,u

∗
j )δν,i(x)δν,j(y)|dVg(x)dVg(y)|.

Now observe that

lim
ν→∞

Yn(ϕ) =
n∑
i=1

tiXi(ϕ).

We deduce that Yν converges in law to
∑n

i=1 tiXi. In particular, this random variable is Gaussian and
its variance is

lim
ν→∞

E(Y 2
ν ) = lim

ν→∞

∑
i,j

titj

∫
M×M

Cx,y(u
∗
i ,u

∗
j )δν,i(x)δν,j(y)|dVg(x)dVg(y)|

=
∑
i,j

titjCxi,xj (u
∗
i ,u

∗
j ).

This completes the proof of Proposition 1.5. ut

Proof of Lemma 3.8. We follow a strategy similar to the one used in the proof of [12, Cor. 2.11].
Fix a point p0 ∈ Zu. Now choose local coordinates (t1, . . . , tm) on O near p0 and local coordinates
y1, . . . , yr on E0 near 0 ∈ E0 with the following properties.

• In the (t, y)-coordinates the map u is given by the linear projection

yj = tj , j = 1, . . . , r.

• The orientation of E0 is given by dy = dy1 ∧ · · · ∧ dyr.
We set

dtJ0 := dtr+1 ∧ · · · ∧ dtr, dtI0 := dt1 ∧ · · · ∧ dtr.
The coordinates tJ0 can be used as local coordinates on Zu near p0 and we assume that dtJ0 defines
the induced orientation of Zu. We can then write

ωO = ρOdt
J0 ∧ dtI0 , ωE = ρEdy = ρEdy

1 ∧ · · · ∧ dyr, dVZu = ρudt
J0 , (A.1)

where ρO, ρE and ρu are positive smooth functions on their respective domains.
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In the t-coordinates we have

dxJ0 = λdtJ0 + other exterior monomials,

where λ is the determinant of the (m− r)× (m− r) matrix ∂xJ0

∂tJ0
with entries

∂xi

∂tj
, i, j ∈ J0.

Thus

dxJ0 |Zu = λdtJ0
(A.1)
=

λ

ρu
dVZu .

We have

dxJ
0 ∧ u∗ωE = ϕωO, ϕ = ϕ = ∆I0(du) = det

(
∂u

∂xI0

)
. (A.2)

On the other hand,

dxJ
0 ∧ u∗ωE = ρEdx

J0 ∧ dtI0 (A.1)
= λρEdt

J0 ∧ dtI0 =
λρE
ρO

ωO. (A.3)

Using this in (A.2) we deduce

ϕ =
λρE
ρO

. (A.4)

Now observe that along Zu we have
ϕ

Ju
dVZu

(A.1)
=

ϕ

Ju
ρudt

J0 (A.4)
=

λρEρu
JuρO

dtJ
0

=
ρEρu
JuρO

dxJ
0 |Zu .

On the other hand, [12, Lemma 1.2] shows that ρEρuJuρO
= 1 which proves that

dxJ
0 |Zu =

ϕ

Ju
dVZu

(A.2)
=

∆I0(du)

Ju
.

ut

APPENDIX B. PFAFFIANS AND GAUSSIAN COMPUTATIONS

We collect here a few facts about Pfaffians need in the main body of the paper.
Fix a positive even integer r = 2h > 0. Given a commutative R-algebra A we denote by Skewr(A)

the space of skew-symmetric r×r-matrices with entries in A. The Pfaffian of a matrix F ∈ Skewr(A)
is a certain universal homogeneous polynomial of degree h = r/2 in the entries of F . More precisely,
if we denote by Sr the group of permutations of {1, . . . , r = 2h}, then

Pf
(
F
)

=
(−1)h

2hh!

∑
σ∈Sr

ε(σ)Fσ1σ2 · · ·Fσ2h−1σ2h ∈ A, (B.1)

where ε(σ) denotes the signature of the permutation σ ∈ Sr. The Pfaffian can be given an equivalent
alternate description.

Fix an oriented real, r-dimensional Euclidean spaceE and an oriented orthonormal basis e1, . . . , er
in V . Denote by e1, . . . , er the dual basis of V ∗ and consider the A-valued 2-form

ΩE
F = −

∑
1≤α<β

Fαβ ⊗ eα ∧ eβ ∈ A⊗ Λ2E∗, (B.2)

then the Pfaffian of F is uniquely determined by the equality, [11, Sec. 2.2.4],

Pf(F )e1 ∧ · · · ∧ er =
1

h!
(ΩE

F )∧h ∈ A⊗ Λ2hE∗. (B.3)
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We are interested only in a certain special case when

A = ΛevenV ∗ =
⊕

2k≤m
Λ2kV ∗,

where V is a real Euclidean space of dimension m ≥ r and Fαβ ∈ Λ2V ∗, ∀1 ≤ α, β ≤ r. In this
case Pf(F ) ∈ ΛrV ∗ and has the following alternate description.

Fix an orthonormal basis {v1, . . . ,vm) of V . For 1 ≤ α1, α2 ≤ r and 1 ≤ j1, j2 ≤ m we set

Fα1α2|j1j2 := FEi1i2(vj1 ,vj2). (B.4)

Denote by S′r the subset of Sr consisting of permutations (σ1, . . . , σ2h) such that

σ1 < σ2, σ3 < σ4, . . . , σ2h−1 < σ2h.

Then

Pf
(
F
)(
v1, · · · ,vr

)
=

(−1)h

h!

∑
ϕ,σ∈S′r

ε(σϕ)Fσ1σ2|ϕ1ϕ2
· · ·Fσ2h−1σ2h|ϕ2h−1ϕ2h

. (B.5)

For every subset I = {i1 < · · · < ir} ⊂ {1, . . . ,m} we write

v∧I = vi1 ∧ · · · ∧ vir ,
where {v1, . . . ,vm} is the orthonormal basis of V ∗ dual to {v1, . . . ,vm}.

Pf(F ) =
∑
|I|=r

pf(F )Iv
∧I .

For and ordered multi index I we denote by V I the subspace spanned by vi, i ∈ I , and by F Iαβ the
restriction of Fαβ to V I , i.e.,

F Iαβ =
∑
i<j
i,j∈I

F Iαβ|ijv
i ∧ vj ∈ Λ2V ∗I .

We denote by F I the r × r skew-symmetric matrix with entries (F Iαβ)1≤α,β≤r. Note that for any
subset I ⊂ {1, . . . ,m} of cardinality r we have

pf(F )Iv
I = Pf(F I). (B.6)

This shows that the computation of the Pfaffians reduces to the case when dimV = r. This is what
we will assume in the remainder of this section. We fix an orthonormal basis v1, . . . ,vr of V and we
denote by v1, . . . ,vr the dual basis of V ∗.

To proceed further we need to introduce some more terminology. A double form on the above
Euclidean space V is, by definition, an element of the vector space

Λp,qV ∗ := ΛpV ∗ ⊗ ΛqV ∗, p, q ∈ Z≥0.

We have an associative product

∧ : Λp,qV ∗ × Λp
′,q′V ∗ → Λp+p

′,q+q′V ∗

given by
(ω ⊗ η) ∧ (ω′ ⊗ η′) := ω ∧ ω′)⊗ (η ∧ η′),

for any ω ∈ ΛpV ∗, η ∈ ΛqV ∗, ω′ ∈ Λp
′
V ∗, η′ ∈ Λq

′
V ∗.

Observe that the metric on V produces an isomorphism

Λj,jV ∗ ∼= End
(

ΛjV ∗,ΛjV ∗
)
,
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and thus we have a well defined trace

tr : Λj,jV ∗ → R, ∀j = 0, 1, . . . , r.

Observe that an endomorphism T of V can be identified with the (1, 1) double form

ωT =
∑

1≤α,i≤r
Tαiv

α ⊗ vi, Tαi = (vα, Tvi)V .

We the have the equality

detT =
1

r!
trω∧rT . (B.7)

Let us specialize (B.2) to the case when E = V and eα = vα. In particular, this implies that V is
oriented by the volume form

ΩV := v1 ∧ · · · ∧ vr.
If we write

ΩF = −
∑
α<β

Fαβ ⊗ vα ∧ vβ (B.8)

then we observe that ΩF ∈ Λ2,2V ∗,∗ and that the equality (B.3) can be rewritten in the the more
compact form

Pf(F ) =
1

h!

(
tr Ω∧hF

)
ΩV . (B.9)

As explained in [1, §12.3] the formalism of double forms and Pfaffians makes its appearance in certain
Gaussian computation.

Suppose that S is an random Gaussian endomorphism of V with entries

Sαi := (vα, Svi)V , α, i = 1, . . . , r,

centered Gaussian random variables with covariances

Kαi|βj := E
(
SαiSβj

)
, ∀α, β, i, j = 1, . . . , r.

We regard S as (1, 1) double form

S =
∑
α,i

Sαiv
α ⊗ vi,

and we get a random (r, r) double form

S∧r ∈ Λr,rV ∗.

Its expectation can be given a very compact description. Define the (2, 2) double form

ΞK =
∑

α<β, i<j

Ξαβ|ijv
α ∧ vβ ⊗ vi ∧ vj ∈ Λ2,2V ∗,

where
Ξαβ|ij :=

(
Kαi|βj −Kαj|βi

)
, ∀α, β, i, j.

We then have the following equalities, [1, Lemma 12.3.1],

1

r!
E
(
S∧r

)
=

1

h!
Ξ∧hK , E

(
detS

)
=

1

h!
tr Ξ∧hK (B.10)



24 LIVIU I. NICOLAESCU

REFERENCES

[1] R. Adler, R.J.E. Taylor: Random Fields and Geometry, Springer Monographs in Mathematics, Springer Verlag,
2007.

[2] J.-M. Azaı̈s, M. Wschebor: Level Sets and Extrema of Random Processes, John Wiley & Sons, 2009.
[3] V. I. Bogachev: Gaussian Measures, Mathematical Surveys and Monographs, vol. 62, American Mathematical

Society, 1998.
[4] G. De Rham: Variétés differentiable. Formes, courants, formes harmoniques, Hermann, Paris, 1960.
[5] X. Fernique: Processus lin´aires, processus géné ralisés, Ann. Inst. Fouries, 17(1967), no. 1, 1-92.
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