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Abstract

The Gauss-Bonnet theorem, like few others in geometry, is the source of many
fundamental discoveries which are now part of the everyday language of the modern
geometer. This is an informal survey of some of the most fertile ideas which grew out
of the attempts to better understand the meaning of this remarkable theorem.

1 A classical result in spherical geometry

Denote by ΣR the round sphere of radius R centered at the origin of the Euclidean
space R

3. Consider three points A,B,C on Σ. Join these three points by arcs of great
circles1 to obtain a spherical triangle. We denote by α, β, γ the angles of this triangle
at A,B and respectively C. We have the following classical result.
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Figure 1: A spherical triangle and its stereographic projection.

∗Talk at the Graduate Student Seminar Fall 2003.
1The great circles are obtained by intersecting the sphere with an arbitrary plane through its center.
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Theorem 1.1 (Legendre).

Area (∆ABC) = (α + β + γ − π)R2. (∗)

In particular the sum of angles of a spherical triangle is bigger than the sum of angles
of an Euclidean triangle.

Proof We could attempt to use calculus to determine this area, but due to the
remarkable symmetry of the sphere an elementary solution is not only possible, but it
is also faster. First some terminology.

For every set of points S ⊂ Σ we denote by S′ the set consisting of the antipodal
points. A lune is one of the regions bounded by two meridians joining two antipodal
points. We will indicate a lune by indicating the angle it is determined by. We thus
obtain the lunes Lα, Lβ , Lγ at A, B and respectively C. The area of a lune depends
linearly on the angle between the two meridians. When the angle is zero the area is
zero, while when the angle is 2π the lune coincides with the whole sphere so the area is
4πR2. Thus the area of a lune of angle θ is 2θR2.

By eventually relabelling the points we can assume A′ 6= B,C. Consider the stere-
ographic projection from A′ of the great circles determining the triangle ABC. We
Obtain the diagram depicted at the bottom of Figure 1. Upon inspecting this figure we
deduce

Lα = R1 ∪ R′
3, Lβ = R1 ∪ R4, Lγ = R1 ∪ R2.

We denote by ai the area of Ri. Since Area (R′
i) = Area (Ri) we deduce

a1 + a2 = 2γR2, a1 + a3 = 2αR2, a1 + a4 = 2βR2.

Now observe that the regions R1, · · · , R4 cover the hemisphere containing the point A
and bounded by the great circle BCB′C ′ so that

a1 + a2 + a3 + a4 = 2πR2.

Thus

2(α + β + γ)R2 = 3a1 + a2 + a3 + a + 4 = 2a1 + (a1 + a2 + a3 + a4) = 2a1 + 2π

so that
a1 = (α + β + γ)R2 − πR2.

Remark 1.2. The condition that the edges of the triangle ABC are arcs of great
circles is obviously essential. Indeed, it easy to deform these arcs while keeping the
angles between them fixed while changing the area they surround. One may ask what
is so special about these great circles. The answer is simple: on the round sphere the
great circles play the same role the straight lines play in the plane. More precisely, the
shortest path between two nearby points on the sphere is the unique arc of great circle
determined by these two points. To rephrase this in modern language, the great circles
are precisely the geodesics of the round sphere.

2 Enter the curvature

To put Legendre’s theorem in some perspective we need to give a different interpretation
of the right-hand-side of (∗). Let us perform the following ideal experiment.
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Consider a vector ~v tangent to the sphere at the point A. Denote by θ the angle
between ~v and the arc AB. We measure the angles in counterclockwise fashion. Let
us now parallel transport this vector along the perimeter of this triangle. This means
that we move the vector along the perimeter of the geodesic triangle ABC, in counter-
clockwise fashion, such that during the motion the angle between the vector and the
corresponding edge of the triangle stays constant. At the end of this experiment the
vector ~v will not return to the initial position. In fact is has turned in counterclockwise
fashion exactly by the angle (α + β + γ) − π. The rotation performed by ~v during this
transport along the perimeter is called the holonomy along the triangle ABC.

Consider more generally a geodesic polygon A1 · · ·An on Σ, i.e a polygon whose
edges are geodesics. We denote its angles by α1, · · · , αn. We define the defect of this
polygon to be the amount by which the sum of the angles of this polygon differs from
the sum of angles of an Euclidean polygon with the same number of edges,

δ(A1 · · ·An) = (α1 + · · · + αn) − (n − 2)π.

Arguing as above we see that the defect measures the holonomy around the polygon,
i.e. the size of the rotation suffered by a vector during a (counterclockwise) parallel
transport around the polygon.

Let us observe that the defect is additive with respect to polygonal decompositions
(see Figure 2)

δ(A0A1, · · ·An) = δ(A1 · · ·An) + δ(A0A1An).

Thus the defects of very small geodesic polygons completely determine the defects of
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Figure 2: Decomposing a geodesic polygon into smaller geodesic triangles.

any geodesic polygon in the following simple fashion: partition the large polygon into
smaller ones and then add up their defects. In other words, the defect behaves very
much like a measure and thus we expect it to have the (Radon-Nicodym) form

defect = function × area.

Given this fact it is natural to define the (gaussian) curvature function

K : ΣR → R, κ(x) = lim
P↘x

δ(P)

Area (P)
, (2.1)

where the above limit is taken over smaller and smaller geodesic polygons P which
converge to the point x ∈ ΣR. To compute the defect of a geodesic polygon it suffices
to integrate the curvature function

δ(P) =

∫

P

K(x)dA(x),
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where dA(x) denotes the area element on the sphere ΣR. We can reformulate Legendre’s
theorem as a statement about the curvature of ΣR, more precisely

KΣR
≡

1

R2
. (∗∗)

This formulation has one clear advantage over (∗): it relies entirely on quantities intrin-
sic to the surface ΣR, i.e. quantities which can be measured by an observer living on
this surface and has no idea that this surface lies in the bigger three dimensional space
R

3.
As Gauss noticed, the definition (2.1) extends word for word to Riemann surfaces.

These are two dimensional manifolds along which the smooth curves have well defined
lengths. It is convenient to think of such a surface as made of canvas: it is flexible but
inelastic so that the “fibers” of this canvas do not change their length as it is deformed
in one way or another.

We will denote the Riemann surfaces by pairs (M, g) where M is a 2-manifold and
g is a Riemann metric, i.e. an assignment of an inner product in each tangent space
TmM of M which depends smoothly on m ∈ M . We denote by KM : M → R the
curvature of such a surface defined by the equality (2.1). The defect of a region R ⊂ M
is by definition the quantity

δ(R) =

∫

R

KMdAg,

where dAg denotes the area element of (M, g). Here is a nice consequence of these
simple observations.

Corollary 2.1. We cannot wrap a planar piece of canvas around a round sphere of
radius R.

Proof Indeed the defect of any planar region is zero. If we could wrap a planar piece
of canvas C around a region of ΣR then we would conclude from (∗∗) that the defect
of this piece, viewed as a region of ΣR is equal to Area (C)/R2 > 0.

Theorem 2.2 (Bonnet). Suppose (M, g) is a closed, oriented Riemann surface. Then

δ(M) = 2πχ(M), (2.2)

where χ(M) = 2 − 2genus (M) denotes the Euler characteristic of M .

Proof Consider a triangulation of M consisting of geodesic triangles ∆1, · · · ,∆T .
Denote by V the number of vertices and by E the number of edges of this triangulation.
Then

χ(M) = V − E + T.

Now observe that since each edge separates exactly two triangles we have and since each
triangle consists of three edges we deduce that

3T = 2E ⇐⇒ χ(M) = V −
T

2
.

If αi, βi, γi denote the angles of the geodesic triangle ∆i we deduce that

δ(M) =
∑

i

δ(∆i) =
∑

i

(αi + βi + γi) − Tπ.

The angles of all the triangles ∆i fill up the angles formed at the vertices of the trian-
gulation. The sum of the angles formed at one vertex is 2π so that

δ(M) = 2πV − Tπ = 2π
(

V −
T

2

)

= 2πχ(M).
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Corollary 2.3 (Gauss). If (M, g) is as above then

1

2π

∫

M

KMdAg = χ(M). (2.3)

Definition 2.4. For any oriented Riemann surface (M, g) we denote by e(M, g) the
2-form on M

e(M, g) =
1

2π
KMdAg.

This 2-form is called the Euler form of the Riemann surface (M, g).

For example, Legendre theorem implies that

e(ΣR) =
1

2πR2
dAΣR

.

3 The Gauss map and Theorema Egregium

The above considerations are very intuitive but computationally unfriendly. To see how
one can get numbers out of these heuristic considerations we will follow the path opened
by C.F. Gauss in his famous memoir “ Disquisitiones generales circa superficies curvas”

(see [7, vol. II, Chap.3] for an English translation and commentaries on the fundamental
ideas of contained in this very important work).

Suppose M ↪→ R
3 is a closed oriented surface smoothly embedded in the 3-dimensional

Euclidean space. Since we can measure the lengths of curves in R
3 we can measure the

lengths of smooth curves on M , i.e. M is equipped with a natural Riemann metric
called the induced metric. We denote it by gind.

Since M is oriented every tangent space TmM is equipped with a natural orientation.
For every m ∈ M we denote by ~n(m) ∈ R

3 the unit vector uniquely determined by the
properties

~n(m) ⊥ TmM, ~n(m) ∧ orientation (TmM) = orientation (R3).

The ensuing smooth map

GM : M → Σ1, m 7→ ~n(m)

is called the Gauss map of the embedding M ↪→ R
3. The following result explains the

importance of the Gauss map.

Proposition 3.1.

deg GM =
1

2
χ(M).

Sketch of proof. We sketch below an intuitive argument explaining why such an
equality could be true. This argument could be arranged into a completely argument
proof. For the technical details we refer to [4, §6, Thm.1].

Loosely speaking the degree of the map GM is the number of points in a fiber G
−1
M (~v0),

~v0 ∈ Σ1, i.e. the number of solutions of the equation

~n(m) = ~v0, m ∈ M,

where ~v0 is a fixed generic point in Σ1. For every m ∈ M we denote by Xm the
orthogonal projection of ~v0 onto the tangent plane TmM ⊂ R

3. Xm is a vector field on
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M which vanishes exactly when ~n(m) = ±~v0. Thus the number of zeroes of the vector
field Xm should be twice the degree of the Gauss map. According to the Poincaré-Hopf
theorem the number of zeroes of a vector field is equal to the Euler characteristic of M .

In the memoir quoted above Gauss proved the following fundamental result.

Theorem 3.2 (Theorema Egregium). The pullback of the Euler form on Σ1 via the
Gauss map is the Euler form of (M, gind), i.e.

G∗
Me(Σ1) = e(M, gind). (†)

We refer to [6, §4.2.4] for a proof of this result closer to the spirit of our discussion.
Here we only want to comment on the meaning of this result which Gauss himself

thought to be fundamental. First the name, Theorema Egregium (Golden Theorem)
was chosen by Gauss to emphasize how fundamental he considers this result. Why is
this result surprising?

The right hand side of (†) is a quantity intrinsic to the Riemann surface (M, gind),
i.e. it can be determined by doing measurements only inside M . The left-hand-side
G∗

Me(Σ1) is by definition an extrinsic invariant of M since its determination requires a
good understanding of how the unit normal field ~n changes along M .

Roughly speaking the equality (†) states that the Gauss map takes a small neighbor-
hood of a point m0 ∈ M and wraps along a small region of the unit sphere containing
the point ~n(m0). During this process the area of this neighborhood of m0 is distorted
by a factor equal to the curvature of M at m0.

☞ Why should we be amazed by Theorema Egregium? The surface of a sphere in R
3

perceived to be “curved” because the human eye detects the changes in the position of
the outer normal from one point to another. Theorema Egregium states that even if we
live on the surface and we cannot ”see” this variation in the position of the normal we can
still compute the “rate of change” per unit of area by performing only two-dimensional
measurements. Here is what you have to do. Pick a small geodesic triangle, measure
its angles and then its defect and area. The ratio defect/area is measures the rate of
change in the position of the normal per unit area.

The meaning of this rate of change can however be deceiving. The surface of a
cylinder looks curved to the human eye, yet the “rate of change” in position per unit
area is zero for the following simple reason. We can roll a planar sheet of paper over a
cylinder. This rolling over process does not modify the lengths of curves on the paper
and thus the cylinder has the same curvature as a plane which is zero.

The Gauss-Bonnet identity (2.3) follows immediately from (†). Indeed we have

1

2π

∫

M

KMdAg =

∫

M

e(M, gind) =

∫

M

G∗e(Σ1)

= deg G ·

∫

Σ1

e(Σ1) = 2 deg G = χ(M).

The Gauss-Bonnet formula is a beautiful example of a local-to-global result: it assem-
bles in an ingenious fashion local information (gaussian curvature) to reach a global
conclusion (the value of the Euler characteristic). It is perhaps less surprising that the
operation of integration is involved in such a process.
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4 Higher dimensional generalizations

It is natural to enquire if any of the above results has a higher dimensional counterpart.
More precisely we are seeking a universal procedure which would associate to each
closed oriented n-dimensional Riemann manifold (M, g) an Euler form e(M, g). This
should be a differential n-form with the following properties.

(i) The coefficients of e(M, g) depend only on the local geometry of (M, g). In other
words, to compute the form e in a neighborhood U of a point we only need to perform
computations inside this neighborhood, an not very far away from this point. In par-
ticular, if two points m1,m2 have isometric neighborhoods U1, U2 then along U1 the
differential form e should look exactly as on U2.

(ii) The integral of the Euler form should be the Euler characteristic of the manifold
∫

M

e(M, g) = χ(M).

Denote by Sn−1(R) the sphere of radius R centered at the origin of R
n. We denote

by An−1(R) its n-dimensional “area”

An−1(R) = An−1R
n−1, An−1 = An−1(1) =

2πn/2

Γ(n/2)
,

where
Γ(1) = 1, Γ(1/2) = π1/2, Γ(x + 1) = xΓ(x), ∀x.

Using the general principles (i) and (ii) above it is easy to figure out what e(Sn) should
be. Since any two points in Sn have isometric neighborhoods we deduce that

e(Sn) = const · dVSn ,

where dVSn is the Euclidean volume from on Sn. Since we must have the equality

const

∫

Sn

dVSn = χ(Sn)

we guess that

e(Sn) :=
χ(Sn)

An
dVSn . (4.1)

We take (4.1) as the definition of the Euler form of the round n-dimensional sphere of
radius 1.

To seek an expression for the Euler form of an arbitrary Riemann n-manifold we try
to guess its shape in some more special cases. The two-dimensional Theorema Egregium
will be our guide.

Suppose Mn ↪→ R
n is a smooth, closed, oriented, hypersurface in R

n. As in the case
n = 2 we see that it is equipped with an induced metric gind. Using the orientation we
obtain an unit normal vector field ~n along M which defines a Gauss map

GM : M → Sn.

Arguing as in the proof of Proposition 3.1 we deduce the following.

Proposition 4.1. Suppose M is even dimensional. Then

deg GM =
1

2
χ(M).
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We could then attempt to set2

e(M, gind) := G∗
Me(Sn) =

χ(Sn)

An
G∗

MdVSn . (4.2)

This would be a good definition provided G∗
MdVSn is a local quantity intrinsic to M ,

i.e. it is an algebraic expression involving only of the Riemann metric tensor gind and
its partial derivatives. Fortunately this is the case.

Theorem 4.2 (Higher dimensional Theorema Egregium). G∗
MdVSn is a local

quantity intrinsic to (M, gind).

For a proof of this fact we refer to [6, §2.2.4]. In the case n = 2 this local intrinsic
quantity coincides up to a multiplicative universal constant with the curvature function.
In higher dimensions this quantity can be expressed as a polynomial in the curvature
of M . This last statement needs a bit of explaining.

The key to understanding the curvature is the notion of parallel transport. In dimen-
sion 2 it was easy to visualize this process. To obtain a higher dimensional description
of this process we first need to come up with an alternate 2-dimensional description,
one which is better suited for generalization.

Suppose Mn ↪→ R
n+1 is an oriented hypersurface with unit (oriented) normal vector

field ~n. Denote by 〈•, •〉 the Euclidean inner product in R
n+1. Choose local coordinates

(u1, · · · , un) in a neighborhood of a point m0 such that ui(m0) = 0. In other words we
are given a one-to-one smooth map ~r(u1, u2) from a neighborhood of the origin in the
(u1, · · · , un)-space onto a neighborhood of m0 in M

~r : R
n ⊃ (U, 0) → (M,m0).

We set ∂i = ∂
∂ui and gij := 〈∂i~r, ∂j~r〉. Consider a smooth path γ : [0, 1] → M ,

γ(t) = ~r(u1(t), · · · , un(t)) such that γ(0) = m0. For any tangent vector field Y (t) =
Y 1∂1~r+ · · ·+Y n∂2~r along γ(t) the derivative Ẏ has an orthogonal decomposition into a
normal component Ẋν and a tangential component. We have the following fundamental
result due to Gauss.

Theorem 4.3 (Gauss).

Ẏ τ =
n

∑

i=1

Ẏ i∂i~r +
n

∑

i,j,k=1

Γi
jkY j u̇k∂i~r, (4.3)

where the quantities Γi
jk are algebraic expressions in the coefficients gij and their first

order partial derivatives,

Γ`
ij =

1

2

n
∑

k=1

gk`
(

∂igjk − ∂kgij + ∂jgik

)

, ∀i, j, k, (Γ)

where
(

gk`
)

1≤k,`≤n
denotes the matrix inverse to

(

gij

)

1≤i,j≤n
. In other words, Ẏ τ is

an intrinsic quantity, which can be determined by performing computations only inside
the manifold M .

For a proof we refer to [8, §. 3-2]. The formulæ (Γ) make sense on any Riemann
manifold and following Levi-Civita’s insight we can take (4.3) as the definition of the
derivative of a tangent vector field Y along a smooth path γ in an arbitrary Riemann

2Note that this definition implies automatically that e(M) = 0 if M is odd dimensional since in this case
χ(Sdim M ) = 0.
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manifold. Traditionally one uses the notation ∇γ̇Y , and this operation is referred to as
the Levi-Civita covariant derivative of the vector field Y along the path γ.

Suppose now that n = 2 and γ(t) is a geodesic3. Assume X0 ∈ Tm0
M is a tangent

vector such that X0 ⊥ γ̇(0) and |X0| = 1. The parallel transport of X0 along γ(t) is
the smooth vector field X(t) ∈ Tγ(t)M such that

X(0) = X0, |X(t)| = 1, X(t) ⊥ γ̇(t), ∀t.

We have the following fact.

Proposition 4.4. The vector field Y (t) is the parallel transport of X0 along the geodesic
γ(t) iff Y (0) = X0 and ∇γ̇Y = 0.

Suppose now that we are on an arbitrary Riemann manifold (M, g). Choose local
coordinates (u1, · · · , un) near a point m0 and set ∂i := ∂

∂ui . Using the Levi-Civita
covariant derivative we can now define an abstract notion of parallel transport along a
path. Thus the vector field Y (t) will be parallel along the path γ iff ∇γ̇Y = 0. In this
case we say that Y (t) is the parallel transport of Y (0) along γ. We denote by Rij the
parallel transport along the perimeter of an infinitesimal parallelogram spanned by the
tangent vectors ∂i, ∂j at m0. This is a linear operator

Rij : Tm0
M → Tm0

M, Rij∂` =
∑

k

Rk
`ij∂k.

This is known as the Riemann curvature tensor. The Euler form of a hypersurface provi-
sionally defined by (4.2) can be expressed as an universal polynomial in the components
of this tensor. This polynomial is called the pfaffian (of the curvature). In particular
the pfaffian makes sense for any Riemann manifold and this the one we choose as our
candidate of the Euler form (see [6, Chap.8]) or [7, vol.5, Chap.13] for more details on
the pfaffian). In 1944 S.S. Chern succeeded in proving that this guess was right.

Theorem 4.5 (Chern). The integral of the pfaffian of the Riemann tensor of a closed,
oriented, even dimensional Riemann manifold is equal to the Euler characteristic of the
manifold.

For a proof we refer to the original paper [1].

5 The story is about to become even more interesting

It may seem that Chern’s theorem closes the book on the Gauss-Bonnet theorem. There
is no obvious way to generalize this formula any more. In Chern’s formulation is a state-
ment about all the Riemann manifolds. Fortunately, Chern had the remarkable insight
that the Gauss-Bonnet formula is not just a statement about a Riemann manifold: it
is a statement about an oriented vector bundle (the tangent bundle) together with a
special connection on it (the Levi-Civita connection). The shift of emphasis from the
manifold to the vector bundle is fundamental. He noticed that the Higher Dimensional
Theorema Egregium is only the tip of a massive iceberg.

To understand Chern’s revolutionary ideas consider an oriented submanifold Mn ↪→
R

N . Each tangent space TmM is an oriented n-dimensional subspace of R
N . The family

of such oriented subspaces can be structured as a smooth manifold. It is called the the
grassmanian of oriented n-panes in R

N and it is denoted by G+(n,N). We obtain in
this fashion a map

GM : M → G+(n,N), m 7→ TmM.

3This is equivalent to the condition that the acceleration vector γ̈ is parallel to the normal vector ~n.
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For example, when M is a surface in R
3, so that n = 2, N = 3, then any oriented

plane in R
3 is uniquely determined by the its unit normal uniquely determined by the

condition

orientation (normal) ∧ orientation (plane) = orientation (R3).

Thus G+(2, 3) can be identified with the family of unit length vectors in R
3, i.e. with

the unit round sphere S2. The map GM in this case is an old acquaintance, namely the
Gauss map GM .

The grassmanian G+(n,N) is equipped with a tautological rank n oriented vector
bundle En,N and by definition

G
∗
MEn,N = TM.

Note that the embedding R
N ↪→ R

N+1 induces a sequence of embeddings

G+(n,N)
iN

↪→ G+(n,N + 1) ↪→ G+(n,N + 2) ↪→ · · ·

and we denote by G+(n,∞) the inductive limit of these spaces. Note that

i∗NEn,N+1 = En,N ,

so that the space G+(n,∞) is equipped with a tautological oriented rank n real vector
bundle En,∞. Each of the manifolds G+(n,N) is equipped with a natural, symmetric
Riemann metric. Moreover, the group SO(N) acts in a tautological fashion on this
space. This action is transitive and an old result of Elie Cartan states that the coho-
mology of G+(n,N) with real coefficients is isomorphic as a vector space with the space
of differential forms invariant under this SO(N) action. Fortunately, in his classic work
[9], H. Weyl has explained how to compute invariants of groups and thus we can get
a very explicit description of the cohomology of this manifold. In particular we get an
explicit description of H∗(G+(2n,∞), R). It is the quotient of the polynomial ring

R[p1, · · · , pn,e], deg e = 2n, deg pk = 4k,

modulo the ideal generated by the polynomial e2 − pn. Gauss-Bonnet theorem for a
submanifold in M2n ↪→ R

N can now be rephrased as a two part statement.

• Theorema Egregium: G
∗
Me is an intrinsic invariant of (M, gind).

•
∫

M

G
∗
Me = χ(M). (5.1)

It is perhaps more illuminating to rephrase the second statement using the Poincaré-
Hopf theorem: the signed count of zeroes of a vector field on a closed oriented manifold
is equal to the Euler characteristic of the manifold.

If X is a vector field with nondegenerate zeroes then we can construct the 0-cycle
on M

[X−1(0)] =
∑

X(p)=0

ind (X, p) · p ∈ H0(M, R),

so that if ε : H0(M, R) → R denotes the natural augmentation map then

ε([X−1(0)]) :=
∑

X(p)=0

ind (X, p) = χ(M).

The equality (5.1) can now be rephrased as follows: the cohomology class G
∗
Me is the

Poincaré dual of the homology class carried by the zero set of a generic section of the
tangent bundle.
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Suppose now that M is a closed oriented manifold and E is an oriented real vector
bundle over M of rank 2n. One can show that there exists a continuous map GE : M →
G+(2n,∞) such that

E = G
∗
EE2n,∞.

Moreover, any two such Gauss maps are homotopic so that we get a canonic morphism

G
∗
E : H∗(G+(2n,∞), R) → H∗(M, R).

We set
e(E) := G

∗
E(e) ∈ H2nM, R).

This cohomology class is called the Euler class of E. The final generalization of the
Gauss-Bonnet formula is the following.

Theorem 5.1. (a) The pfaffian of the curvature of any connection on E is a closed
differential form of degree 2n whose DeRham cohomology class is e(E).

(b) The Euler class of E is the Poincaré dual of the homology class carried by the zero
set of a generic section of E.

The Euler class is one very special instance of a more general construction called
characteristic class.

6 What next?

The notion of characteristic class is key to most developments in geometry and topology
during the past fifty years. The facts presented so far had only one modest goal in mind:
to awaken your curiosity for a more in depth look at this subject. I strongly believe you
cannot call yourself a geometer (or topologist) if you do not have some idea of what
these objects can do for you. There are many places where you can read of these things.
The classical reference [5] is always a good place to start with.

Chern’s original approach, is not as efficient or polished as the one in [5] but contains
a tremendous amount of geometrical jewels which are hard to find in any other source. I
strongly recommend the original article [2] or the beautiful presentation in [3, §1.5,§3.3]
which is closer to Chern’s original line of thought. For a differential geometric approach
to characteristic classes you can consult [6, Chap. 8].

Theorem 5.1 and the notion of characteristic class do not represent the final word in
the Gauss-Bonnet saga. We can still try to seek an extension of this statement to more
general spaces, namely spaces whose points are solutions of polynomial equations. These
are known as algebraic varieties, and while they look almost everywhere as manifolds,
the develop singularities which require special consideration. This direction is still under
investigation.

A less obvious yet extremely useful generalization has its origin in an analytic in-
terpretation of the Euler characteristic as the index of an elliptic partial differential
operator. From this perspective the Atiyah-Singer index theorem can be regarded as a
very broad generalization of the Gauss-Bonnet theorem. The characteristic classes play
a key role in the formulation and the proof of the index theorem.
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