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Counting Zeros of Random Functions
Liviu I. Nicolaescu

Abstract. What is the expected number of roots of a polynomial whose coefficients are ran-
dom? More generally, what is the expected number of zeros of a random one-variable func-
tion? The Kac-Rice formula is meant to answer such questions. This paper is an introduction
to this less familiar formula and some of its one-dimensional applications.

1. INTRODUCTION. It is well known that a degree n polynomial

P = Anx
n + · · ·+A1x+A0, (1)

has at most n complex roots. Assuming that its coefficients Ak are random real num-
bers the following vaguely formulated question seems natural.

How many real roots should we expect (1) to have?

Throughout this paper we will adhere to the probabilists’ convention to capitalize
the names of random quantities.

To simplify the presentation we assume that the coefficients A0, . . . , Ak are inde-
pendent continuous random variables. Let pk(a)da denote the probability distribution
of Ak and denote by Z = Z(A0, . . . , An) the number of zeros of the polynomial (1).
The number Z is a random variable and the answer to the above question is precisely
the expectation of Z, denoted byE

(
Z ). Then

E
(
Z
)

=
n∑
k=0

kP
(
Z = k

)
,

where P
(
E
)

denotes the probability of an event E.
To proceed further, let us denote by Rk the region in the space R1+n consisting of

the points (a0, a1, . . . , an) such that Z(a0, . . . , an) = k. Then

E
(
Z
)

=
n∑
k=0

k

∫
Rk

p0(a0) · · · pn(an)da0 · · · dan.

Let us illustrate these ideas on the first nontrivial case, that of random quadratic poly-
nomials. We assume that the coefficients are independent and uniformly distributed
in [−N,N ], where N →∞. In this case the random variables A0, A1, A2 have the
same distribution p(a)da, where

p(a) =
1

2N

{
1, |a| ≤ N,
0, |a| > N.

Note that P
(
A2 = 0

)
= 0 since A2 is a continuous random variable, so the polyno-

mial P has almost surely degree 2. Moreover,

R0 =
{

(a0, a1, a2) ∈ R3; a2
1 < 4a0a2

}
,
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so that

P
(
Z = 0

)
= P

(
A2

1 ≤ 4A0A2

)

=
1

8N3

∫
0≤a0a2≤N2/4
|a0|,|a2|≤N

(∫ 2
√
a0a2

−2
√
a0a2

da1

)
da0da2 +

1

8N3

∫
a0a2≥N2/4
|a0|,|a2|≤N

(∫ N

−N
da1

)
da0da2

=
1

2N3

∫
0≤a0a2≤N2/4
|a0|,|a2|≤N

√
a0a2da0da2 +

1

4N2

∫
a0a2≥N2/4
|a0|,|a2|≤N

da0da2

(a0 = Nx0, a2 = Nx2)

=
1

2

∫
0≤x0x2≤1/4
|x0|,|x2|≤1

√
x0x2dx0dx2 +

1

4

∫
x0x2≥1/4
|x0|,|x2|≤1

dx0dx2

=

∫
0≤x0,x2≤1

√
x0x2dx0dx2 +

1

2

∫
x0x2≥1/4

0≤x0,x1≤1

(
1− 2

√
x0x2

)
dx0dx2

=

(∫ 1

0

√
xdx

)2

+
1

2

∫ 1

1/4

(∫ 1

1/(4x0)

(
1− 2

√
x0x2

)
dx2

)
dx0

=
4

9
+

1

2

∫ 1

1/4

(
1− 1/(4x0)

)
dx0 −

∫ 1

1/4

2

3

√
x0

(
1− 1

8
x
−3/2
0

)
dx0 ≈ 0.3727.

This can be alternatively confirmed running a Monte-Carlo simulation using the fol-
lowing R code.

#N is the number of samples
N<-250000
a<-c(runif(N,-1,1))
b<-c(runif(N,-1,1))
c<-c(runif(N,-1,1))
sum(b^2-4*a*c<0)/N

Observe that P
(
Z = 1

)
= 0. Indeed, the event {Z = 1} is described by the sur-

face a2
1 = 4a0a2 in the Euclidean space with coordinates (a0, a1, a2) and the 3-

dimensional volume of this surface is zero.
We deduce that P

(
Z = 2

)
= 1 − P

(
Z = 0

)
≈ 0.6272. Thus, with the above

concept of randomness, a random degree 2 polynomial, more likely than not, will
have two roots. The expected number of real roots of such a polynomial is then

E
(
Z
)

= 2P
(
Z = 2

)
≈ 1.2544.

Can we run the same argument with higher degree polynomials?
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First, we need to understand the regionsRk. The good news is that Sturm’s theorem
[3, Sec. 2.2.2] provides explicit descriptions of these regions in terms of polynomial
inequalities involving the coefficients ai. The bad news is that these descriptions are
too complicated to be of concrete use in computing the probabilities P(Rk).

The Kac-Rice formula is an alternate way of computingE
(
Z
)

which is successful
in many other instances. In this paper, to avoid delicate probabilistic issues, we discuss
only a special, yet sufficiently powerful case of this formula.

Here is briefly the organization of the paper. In Section 2 we introduce the concept
of random function and state the general one-dimensional Kac-Rice formula (5). Sec-
tion 3 presents a few classical examples of random functions, while in Section 4 we
present a complete proof of (5) in the Gaussian case, Theorem 8. We conclude with
two sections of applications. In Section 5 we discuss the zeros of several classes of
random polynomials while in Section 6 we present two geometric applications.

2. RANDOM FUNCTIONS. A random function is really a probability measure on
the space of functions from a set of parameters T to R. In this paper we will not work
in such generality.

The sample space of our story will be a finite dimensional vector spaceF of smooth
functions T → R, where T ⊂ R is a nontrivial interval of the real axis. The random-
ness is defined by a probability measure P(dF ) on F . Following the terminology of
statistical physics we will refer to the pair (F ,P) as an ensemble of functions.

Here is how such ensembles are produced. Fix a basis f0, f1, . . . , fN of F . Then,
any function f ∈ F is a linear combination

f =
N∑
i=0

xifi,

and we can identify f with a vector (x0, x1, . . . , xN) ∈ RN+1. This becomes a ran-
dom vector once we fix a probability distribution

p(x0, . . . , xN)dx0 . . . dxN (2)

on RN+1. We then think of F as a random linear combination

F =
N∑
k=0

Xkfk, (3)

where X0, X1, . . . , Xn are random variables, and (2) is their joint distribution.
For every t ∈ T , the evaluation at t defines a linear functional

evt : F → R, evt
(
F
)

:= F (t).

If F is a random function as above, then its value F (t) at a point t ∈ T is a random
variable. This leads to the usual point of view adopted in the theory of stochastic
process, namely, a random function is a family of random variables F (t) parametrized
by t ∈ T .

We recall that the distribution of a normal (Gaussian) random variable Y with mean
m and variance v > 0 is given by the probability density

γm,v(y) =
1√
2πv

e−
(y−m)2

2v . (4)
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A very important case is when the random coefficientsXi are independent, mean zero,
Gaussian random variables. In this case we say that F is a (centered) Gaussian random
function. If F is a Gaussian random function, then F (t), its value at t, is a mean zero
Gaussian random variable.

We denote by Z
(
F,T

)
the number of zeros of F in the interval T . This is a non-

negative random variable1 and we denote by Ẑ(F,T ) its expectation. More generally,
for any continuous bounded function w : T → R we set

Zw
(
F
)

:=
∑
F (t)=0

w(t).

This is a weighted count of zeros of F with the function w as weight. Again, Zw
(
F
)

is a random variable and we denote by Ẑw
(
F
)

its expectation, provided it exists.
The Kac-Rice formula gives a description of Ẑw

(
F
)

in terms of statistical invari-
ants of the random function F . Some conditions need to be imposed. We mention two
of them that are needed to state the formula.
• For any t ∈ T the random variable F (t) has a distribution,

pF (t)(x)dx,

where the density pF (t) is continuous at 0.
• For any t ∈ T , the random variable F ′(t) conditioned on F (t) = 0 is a continuous

random variable with distribution qt(y)dy. Intuitively, if pt(x, y)dxdy is the joint
distribution of the the random vector

(
F (t), F ′(t)

)
, then

pF (t)(x) =

∫
R
pt(x, y) dy, qt(y) =

pt(0, y)

pF (t)(0)
.

We define C : T → R

C(t) := E
(
|F ′(t)|

∣∣F (t) = 0
)
pF (t)(0) =

(∫
R
|y|qt(y)dy

)
pF (t)(0).

Then, the Kac-Rice formula states that

Ẑw(F ) =

∫
T

w(t)C(t)dt. (5)

In particular,

Ẑ(F,T ) =

∫
T

C(t)dt. (6)

The applicability of the Kac-Rice formula is limited by our ability of computing the
conditional expectationE

(
|F ′(t)|

∣∣F (t) = 0
)
.

When F is a Gaussian random function, this computation simplifies considerably
and C(t) can be expressed in terms of the covariance kernel of the random function
(2). This is the function K : T × T → R defined by

K(s, t) := E
(
F (s) · F (t)

)
=

N∑
j,k=0

fj(s)fk(t)E(XjXk).

1We tacitly assumed that Z
(
F,T

)
is measurable. This can be verified directly in each concrete case.
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Thus, K(s, t) encodes the correlations between the values of the random function F
at the points s, t ∈ T . Since E(X2

k) = vk and the variables Xk are independent, we
have

E(XjXk) = E(Xj)E(Xk) = 0, ∀j 6= k.

We deduce

K(s, t) =
N∑
k=0

vkfk(s)fk(t). (7)

Theorem 8 describes C(t) explicitly in terms of K(s, t).
The Kac-Rice formula was first proved by M. Kac [10] in 1943 in the special case

of polynomials with random Gaussian coefficients. In a 1945 report, S.O. Rice, an en-
gineer by profession, considered the case of Gaussian random linear combinations of
trigonometric functions of the form sin(λt) cos(λt) and gave a “physicist proof” for
the expected number of zeros of such functions; see [19, Sec. 3.3]. The first rigorous
proofs of the one-dimensional the Gaussian case appeared in 1960s. Proofs of the gen-
eral case (general random functions in several variables) appeared only in the 1980s;
see [1, 2].

In Section 4 we offer a plausibility argument for (5) in general, and a complete
proof of a special case that includes both situations considered by M. Kac and S.O.
Rice.

3. SOME EXAMPLES OF GAUSSIAN RANDOM FUNCTIONS.

Example 1 (Gaussian random polynomials). Fix N + 1 independent normal
random variables X0, . . . , XN , with mean 0 and variances var(Xk) = vk, k =
0, . . . , N . Then

F (t) = X0 +X1t
k + · · ·+XN t

N

is a polynomial of degree ≤ N whose coefficients are independent random normal
variables. Its covariance kernel is

K(s, t) =
N∑
k=0

vk(st)
k.

Observe that

F (−t) =
N∑
k=0

(−1)kXkt
k.

The random variables (−1)kXk are also independent normal variables with mean 0
and variances vk. Thus, the random polynomials F (t) and F−(t) = F (−t) have the
same statistics and we deduce

Ẑ
(
F, [0,∞)

)
= Ẑ

(
F, (−∞, 0]

)
.

Suppose additionally that the variances vk satisfy the symmetry conditions

vk = vN−k, ∀k = 0, 1, . . . , N. (8)
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In this case the random polynomials F (t) and

F ∗(t) = tNF (t−1) =
n∑
k=0

XN−kt
k

have the same statistics and we deduce that

Ẑ
(
F, (0, 1)

)
= Ẑ

(
F ∗, (0, 1)

)
= Ẑ

(
F, (1,∞)

)
.

We deduce that if F satisfies the symmetry conditions (8), then

Ẑ
(
F,R

)
= 4Ẑ

(
F, (0, 1)

)
= 4Ẑ

(
F, (1,∞)

)
. (9)

ut

Example 2 (The Kac ensemble). In this case the random variables have the same
variances vj = 1, ∀j = 0, . . . , N . We deduce that the covariance kernel is

K(s, t) =
N∑
k=0

(st)k =
1− (st)N+1

1− st
. (10)

This ensemble satisfies (8). ut

Example 3 (The Kostlan ensemble). In this case the variances are

vk =

(
N

k

)
, 0 ≤ k ≤ N,

and the covariance kernel is

K(s, t) =
N∑
k=0

(
N

k

)
(st)k =

(
1 + st

)N
. (11)

For an explanation of the strange choice of variances in the Kostlan ensemble we refer
to [14]. This ensemble also satisfies (8) ut

.

Example 4 (The Legendre ensemble). Recall that the Legendre polynomials are ob-
tained from the sequence of monomials (tk)k≥0 by applying the Gramm-Schmidt pro-
cedure with respect to the inner product in L2([−1, 1], dt).

Concretely, the degree n Legendre polynomial is

pn(t) :=

√
2n+ 1

2
`n(t), `n(t) :=

1

2nn!

dn

dtn
(
t2 − 1

)n
. (12)

We can construct a random polynomial

FN(t) =
N∑
k=0

Xkpk(t),
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whereXk are independent standard normal random variables, ∀k. Using the Christoffel-
Darboux theorem [20] we deduce that its covariance kernel is given by

KN(s, t) =
N∑
k=0

pk(s)pk(t) =
N + 1

2
· `N+1(t)`N(s)− `N+1(s)`N(t)

t− s
. ut

Example 5 (Random trigonometric polynomials). We assume T = [0, 2π], N is
even, N = 2m and

f0 = 1, f2k−1(t) = sin(kt), f2k(t) = cos(kt).

Assume that v2k−1 = v2k = 2rk > 0. For uniformity we set r0 := v0. In this case we
have

K(s, t) = r0 +
m∑
k=1

2r0

(
cos(ks) cos(kt) + sin(ks) sin(kt)

)
= r0 + 2

m∑
k=1

rk cos k(t− s) = r0 +
m∑
k=1

rk
(
eik(s−t) + e−ik(t−s)). (13)

In the special case when r0 = r1 = · · · = rm = 1 we deduce

K(s, t) = 1 + 2
m∑
k=1

cos k(t− s) =
sin (2m+1)(t−s)

2

sin t−s
2

. (14)

ut

4. THE ONE-DIMENSIONAL KAC-RICE FORMULA. We want to present a
proof of (5) when F is a Gaussian random function satisfying certain additional con-
ditions. The key to the proof is Kac’s counting formula, [10]. For any ε > 0 define
(see Figure 1 where ε = 1

4
)

ηε : R→ R, ηε(y) =

{
1
2ε
, |y| < ε,

0, |y| ≥ ε.

Let us point out that the family ηε converges as ε→ 0 to Dirac’s δ-function, i.e.,
for any continuous function f : R→ R we have

lim
ε↘0

∫
R
ηε(t)f(t)dt = f(0).

For every C1-function F : T → R we set

Zε(F,T ) :=

∫
T

ηε
(
F (t)

)
|F ′(t)|dt.

More generally, if w : T → R is a bounded continuous function, we set

Zε(F,w) :=

∫
T

w(t)ηε
(
F (t)

)
|F ′(t)|dt.
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Figure 1. Approximating the Dirac function.

Definition 6. (a) Fix a compact interval [a, b]. A C1-function f : [a, b]→ R is called
convenient if the following hold.

• f(a) · f(b) 6= 0.
• All the zeros of f are nondegenerate, i.e., if f(t) = 0, then f ′(t) 6= 0.

(b) We say that a C1-function F : R→ R is convenient if it is proper and all its zeros
are nondegenerate. ut

Lemma 7 (Kac’s counting formula). (a) Suppose that the C1-function F : [a, b]→
R is convenient and w : [a, b]→ R is continuous. Then

Zw(F ) = lim
ε↘0

Zε(F,w). (15)

(b) Suppose that the C1-function F : R → R is convenient and w : R → R is
continuous and bounded. Then

Zw(F ) = lim
ε↘0

Zε(F,w). (16)

(c) Let T = [a, b] or T = R and suppose that F : T → R is a C1-convenient
function with ν zeros and κ <∞ critical points. Then, for any ε > 0, we have∣∣Zε(F,w)

∣∣ ≤ ‖w‖Zε(F ), Zε(F ) ≤ ν + 2κ, (17)

where ‖w‖ := supt∈T
∣∣w(t)

∣∣.
Proof. (a) Since F is convenient, it has finitely many zeros τ1 < · · · < τν . The set
C of critical points of F is compact and disjoint from the zero set of F because F is
convenient. Thus

ε0 := min
x∈C
|F (x)| > 0.

8 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121
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Fix ε ∈ (0, ε0). Then∫ b

a

w(t)ηε
(
F (t)

)
|F ′(t)|dt =

1

2ε

∫
{|F |<ε}

w(t)|F ′(t)|dt.

The connected components of the open set {|F | < ε} are open intervals (c, d) ⊂ [a, b]
with the following properties:

i. They are disjoint from the critical set.
ii. |F (c)| = |F (d)| = ε and F (c)F (d) < 0.

Indeed, if F (c)F (d) > 0, then F (c) = F (d) = ±ε, and Rolle’s theorem would
imply that the interval (c, d) contains a critical point of f .

Since ε < ε0, the derivative F ′(t) has constant sign on a connected component of
{|F | < ε} and thus F has a unique zero in each such component.

We deduce that the set {|F | < ε} is a disjoint union of open intervals
(
ci(ε), di(ε)

)
,

i = 1, . . . , ν such that

τi ∈
(
ci(ε), di(ε)

)
, ∀i.

Moreover, for any connected component (c, d) of{|F | < ε}, we have∫ d

c

|F ′(t)|dt =

∣∣∣∣∣
∫ d

c

F ′(t)dt

∣∣∣∣∣ = |F (d)− F (c)| = 2ε.

Thus, ∀ε ∈ (0, ε0), we have∫ b

a

w(t)ηε
(
F (t)

)
|F ′(t)|dt =

1

2ε

ν∑
i=1

∫ di(ε)

ci(ε)

w(t)|F ′(t)|dt

=
ν∑
i=1

∫ di(ε)
ci(ε)

w(t)|F ′(t)|dt∫ di(ε)
ci(ε)
|F ′(t)|dt

.

Since ci(ε)↗ τi and di(ε)↘ τi as ε↘ 0 we deduce

lim
ε↘0

∫ di(ε)
ci(ε)

w(t)|F ′(t)|dt∫ di(ε)
ci(ε)
|F ′(t)|dt

= w(τi).

(b) The function F is proper so there exists a compact interval [−a, a] such that
|F (t)| > 1 for |t| > a. The restriction of F to [−a, a] is convenient and we have

Z(F |[−a,a], w) = Z(F,w).

Next observe that for ε ∈ (0, 1) we have ηε(F (t)) = 0, ∀|t| > a so∫
R
w(t)ηε(F (t))|F ′(t)|dt =

∫ a

−a
w(t)ηε(F (t))|F ′(t)|dt.

January 2014] ZEROS OF RANDOM FUNCTIONS 9
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Hence

lim
ε↘0

∫
R
w(t)ηε(F (t))|F ′(t)|dt = lim

ε↘0

∫ a

−a
w(t)ηε(F (t))|F ′(t)|dt = Z(F,w).

(c) Since F has only finitely many critical points we deduce from Rolle’s theorem that
for any c ∈ R the equation F (t) = c has only finitely many solutions.

Fix an arbitrary ε > 0. The connected components of the set {|F | < ε} are
bounded intervals (a, b) such that |F (a)| = |F (b)| = ε. Rolle’s theorem shows that
the equation |F (t)| = ε has only finitely many solutions. We deduce that {|F | < ε}
has only finitely many components

J` = (a`, b`), ` = 1, . . . , L.

We have

Zε(F,w) =

∫
T

w(t)ηε(F (t))|F ′(t)|dt =
1

2ε

L∑
`=1

∫
J`

w(t)|F ′(t)|dt.

Denote by k` the number of turning points of F (t) in J`, i.e., the number of points
where F ′(t) changes sign. Let us observe that if J` contains no turning points, then
F is either increasing or decreasing on this interval so F (a`)F (b`) < 0 and thus J`
contains a unique zero of F . In particular, if J` contains no turning point, then∫

J`

|F ′(t)|dt =

∣∣∣∣∫
J`

F ′(t)dt

∣∣∣∣ = 2ε.

We set

L0 :=
{
`; J` contains no turning point

}
, L1 :=

{
`; J` contains turning points

}
.

The above discussion shows that #L0 ≤ ν, #L1 ≤ κ, and thus

1

2ε

L∑
`=1

∫
J`

|F ′(t)|dt =
1

2ε

∑
`∈L0

∫
J`

|F ′(t)|dt+
1

2ε

∑
`∈L1

∫
J`

|F ′(t)|dt

≤ ν +
1

2ε

∑
`∈L1

∫
J`

|F ′(t)|dt.

Let ` ∈ L1 and suppose that the turning points of F in J` are t1 < · · · < tk` . We set
t0 := a` and tk`+1 := b`. Then∫

J`

|F ′(t)|dt =

k`+1∑
j=1

∣∣F (tj)− F (tj−1)
∣∣ ≤ 2ε(k` + 1).

Hence

1

2ε

∑
`∈L1

∫
J`

|F ′(t)|dt ≤
∑
`∈L1

(2k` + 1) ≤ κ+ #L1 ≤ 2κ.

ut
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Let us outline the strategy for proving (5). We want to apply Kac’s counting formula
to the random function in (3)

F : T → R, F =
N∑
k=0

Xkfk.

Here we assume that T is either a compact interval, or T = R. We make a first as-
sumption about the random function.

The random function F is almost surely convenient. (18)

Let w : T → R be continuous and bounded. The Kac’s counting formula implies that

Zw(F ) = lim
ε↘0

Zε(F,w).

Suppose that we can prove that

E
(

lim
ε↘0

Zε(F,w)
)

= lim
ε↘0

E
(
Zε(F,w)

)
. (19)

We deduce

Ẑw(F ) = lim
ε↘0

E

(∫
T

w(t)ηε
(
F (t)

)
|F ′(t)|dt

)
dt

= lim
ε↘0

∫
T

w(t)E
(
ηε
(
F (t)

)
|F ′(t)|

)
dt.

(20)

If pt(x, y)dxdy is the joint distribution of the random vector
(
F (t), F ′(t)

)
, then

E
(
ηε
(
F (t)

)
|F ′(t)|

)
=

1

2ε

∫ ε

−ε

(∫
R
|y|pt(x, y)dy

)
dx.

Under mild constraints on pt one can show that, as ε↘ 0, the last integral converges
to ∫

R
|y|pt(0, y)dy =

(∫
R
|y| pt(0, y)

pF (t)(0)
dy

)
pF (t)(0)

= E
(
|F ′(t)|

∣∣F (t) = 0
)
pF (t)(0), pF (t)(0) =

∫
R
pt(0, y)dy.

We get (5) by passing to the limit under the integral (19), if this were possible.
The assumption (19) is the tricky part. It happens if we make the additional assump-

tion

∃C > 0 such that, almost surely, Z(F,T ) + Z(F ′,T ) < C. (21)

Indeed, with this assumption we can use Lemma 7(c) and Dominated Convergence
Theorem to prove (19).
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We also need to justify the passage to limit in the second integral of (20). There are
other practical issues. For example, determining the joint density pt(x, y), or the con-
ditional expectationE

(
|F ′(t)|

∣∣F (t) = 0
)
, could be quite difficult if not impossible

to compute, thus limiting the usefulness of (5).
Things simplify considerably if we assume that F is a Gaussian random function.

This is what we assume in the sequel. We also assume that (19) holds for one reason
or another, e.g., because (21) holds.

In this case, for each t ∈ T , the random vector

F 3 F 7→
(
F (t), F ′(t)

)
∈ R2

is Gaussian since it is the limit as h→ 0 of the Gaussian vectors.

Vt,h =

(
F (t),

F (t+ h)− F (t)

h

)
.

Indeed

F (t+ h)− F (t)

h
=

N∑
j=0

Xj

fj(t+ h)− fj(t)
h

L1

−→
N∑
j=0

Xjf
′
j(t) = F ′(t).

By construction, E
(
F (t)

)
) = 0. Moreover, E

(
F ′(t)

)
= 0 since F ′(t) is a L1-

limit of mean zero random variables. Hence, the distribution of the random vector(
F (t), F ′(t)

)
is determined by its covariance matrix

Ct =

[
at bt
bt ct

]
,

where

at = E
(
F (t)2

)
, bt = E

(
F (t)F ′(t)

)
, ct = E

(
F ′(t)2

)
.

This is a symmetric positive semidefinite matrix.
We can describe the entries of Ct in terms of the covariance kernel K(s, t) =

E(F (s)F (t)). More precisely, we have

at = K(t, t), bt = K ′t(s, t)|s=t, ct = K ′′st(s, t)|s=t. (22)

We set ∆t := detCt = atct − b2
t , and we make another assumption on F (t), namely

that Ct is positive definite, i.e.,

at > 0, ∆t > 0, ∀t ∈ T . (23)

The joint distribution of the random vector
(
F (t), F ′(t)

)
is the Gaussian measure

ΓCt

ΓCt(dxdy) =
1

2π
√

∆t

e
− 1

2∆t
(ctx

2−2btxy+aty
2)
dxdy. (24)

We then have

E
(
ηε
(
F (t)

)
|F ′(t)|

)
=

1

2ε

∫
|x|<ε
|y|ΓCt(dxdy)

12 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121



Mathematical Assoc. of America American Mathematical Monthly 121:1 August 8, 2022 8:33 a.m. Counting˙zeros.tex page 13

=
1

2ε

∫ ε

−ε

1

2π
√

∆t

(∫
R
|y|e−

1
2∆t

(ctx
2−2btxy+aty

2)
dy

)
dx.

A direct elementary computation shows that

(ctx
2 − 2btxy + aty

2) = at

(
y − btx

at

)2

+
∆t

at
x2.

We deduce that

1

2π
√

∆t

∫
R
|y|e−

1
2∆t

(ctx
2−2btxy+aty

2)
dy

=
1√

2πat
e−

x2

2at × 1√
2π∆t

at

∫
R
|y|e−

at
2∆t

(
y− btx

at

)2

dy

(vt := ∆t/at)

(4)
=

1√
2πat

e−
x2

2at

∫
R
|y|γbtx/at,vt(dy) =: Φt(x).

Thus

E
(
ηε
(
F (t)

)
|F ′(t)|

)
=

1

2ε

∫ ε

−ε
Φt(x)dx.

We have

lim
ε↘0

E
(
ηε
(
F (t)

)
|F ′(t)|

)
= Φt(0) =

1√
2πat

∫
R
|y|γvt(dy). (25)

We would like to conclude that

Ẑw(F ) = lim
ε↘0

∫
T

w(t)E
(
ηε
(
F (t)

)
|F ′(t)|

)
dt

=

∫
T

w(t) lim
ε↘0

E
(
ηε
(
F (t)

)
|F ′(t)|

)
dt =

∫
T

w(t)Φt(0)dt.

To do this we will invoke the Dominated Convergence Theorem.
Any random variable Y with finite mean E(Y ) and finite variance var(Y ) satis-

fies the inequality

E(|Y |) ≤
√
E(Y 2) =

√
var(Y ) +E(Y )2.

Applying this inequality in the special case when Y is Gaussian with mean btx
at

and
variance vt we deduce∫

R
|y|γbtx/at,vt(dy) ≤

√
vt + b2

tx2/a2
t ≤
√
vt +

|btx|
at

.
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Now observe that Φt(x) is positive and, for any |x| ≤ 1, we have

Φt(x) ≤ 1√
2πat

(√
vt +

|bt|
at

)
=

1√
2π

(√∆t

at
+
|bt|
a

3/2
t

)
=: µ(t).

We now add another requirement to our random function F (t), namely,∫
T

µ(t)dt <∞. (26)

We deduce

E
(
ηε
(
F (t)

)
|F ′(t)|

)
=

1

2ε

∫ ε

−ε
Φt(x)dx ≤ µ(t).

Invoking (19), (25), (26), and the Dominated Convergence Theorem, we conclude that

Ẑw(F )
)

= lim
ε↘0

∫
T

w(t)E
(
ηε
(
F (t)

)
|F ′(t)|

)
dt

=

∫
T

w(t) lim
ε↘0

E
(
ηε
(
F (t)

)
|F ′(t)|

)
dt =

∫
T

w(t)Φt(0)dt.

Observe that

Φt(0) =
2√

2πat

∫ ∞
0

yγvt(y)dy =
1

π
√
atvt

∫ ∞
0

ye−
y2

2vt dy =
1

π
ρt,

ρt :=

√
∆t

at
.

Note that we can describe ρt in a more compact form,

ρ2
t =

atct − b2
t

a2
t

=
K(s, t)s=tK

′′
st(s, t)s=t −K ′t(s, t)2

s=t

K(s, t)2
s=t

= ∂2
st logK(s, t)s=t.

We have thus proved the Gaussian Kac-Rice formula.

Theorem 8. Let T = [a, b] or T = R. Suppose that f0, f1, . . . , fN : T → R are
smooth functions and Xk, k = 0, . . . , N are independent normal random variables
with mean zero and variance vk. Consider the random function

F : T → R, F (t) =
N∑
k=0

Xkfk(t)

with covariance kernel K(s, t) = E
(
F (s)F (t)

)
.

If the random function F satisfies the assumptions (18), (21), (23), (26), then, for
any bounded continuous function w : T → R, we have

Ẑw(F ) =
1

π

∫
T

w(t)ρtdt, (27)
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where

ρt =

√
K(s, t)K ′′st(s, t)−K ′t(s, t)2

K(s, t)2

∣∣∣
s=t

=
√
∂2
st logK(s, t)s=t. (28)

In particular, the expected number of zeros of F in T is

Ẑ(F,T ) =
1

π

∫
T

ρtdt. (29)

Remark 9. (a) The requirement (26) is easily verifiable. It follows automatically if
the interval T is compact and the random function satisfies the ampleness condition

at > 0, ∀t. (30)

Clearly (30) follows from (23). Note that if (30) holds but (23) is violated, then ∆t = 0
for some t. For this t the Gaussian measure (24) is degenerate: it is supported on the
line y = bt

at
x.

The requirement (26) is also satisfied for the random polynomials in Example 1
because in this case at is a polynomial of degree 2N , bt is a polynomial of degree
2N − 2, ct is a polynomial of degree 2N − 2 and ∆t is an even polynomial of degree
≤ 4N − 3. In particular, deg ∆t ≤ 4N − 4 and we deduce

√
∆t

at
+
|bt|
a

3/2
t

= O(t−2) as |t| → ∞.

(b) In the Gaussian case, the assumption (18) follows from the ampleness condition
(30) if T is a compact interval. This is a consequence of a probabilistic version of
Sard’s theorem, [17, Prop. 1.12].
(c) The assumption (21) is the most difficult to verify in concrete situations. When
T = R, it holds if the functions f0, . . . , fN are polynomials. When the interval T is
compact it holds if the functions f0, . . . , fN are real analytic on an open interval I that
contains T . For example, it holds if they are trigonometric polynomials. In this case
the random function is the random noise considered by S.O. Rice in [19].
(d) Theorem 8 is a very special case of the general Kac-Rice formula. In particular, the
general version shows that

if T is compact, then the equality (27) holds assuming only (30).

The available proofs of this fact avoid the tricky assumption (19) and they are signifi-
cantly more involved. For details we refer to [1, Chap. 11] or [2, Thm.3.2]. ut

.

5. ZEROS OF RANDOM POLYNOMIALS. Let us apply Theorem 8 to study the
number of real zeros of random polynomials. As we will soon see, the expected num-
ber of zeros is sensitive to the concept of randomness we use.
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Example 10 (The Kac ensemble). Suppose that FN(t) is the degree N random Kac
polynomial

FN(t) =
N∑
k=0

Xkt
k, (31)

where the random variablesXk are independent standard normal variables. We denote
by ZN the number of zeros of FN . In this case the covariance kernel is

KN(s, t) =
1− (st)N+1

1− st
.

Then

∂2
st logKN(s, t)s=t =

1

(t2 − 1)2
− (N + 1)2t2N

(t2N+2 − 1)2
=: fN(t)dt.

We deduce that

ẐN := E(ZN) = 4Ẑ
(
FN , [1,∞)

)
=

4

π

∫ ∞
1

√
fN(t)dt.

For example,

f2(t) =
1

(t2 − 1)2
− 9t4

(t6 − 1)2

=
1

(t2 − 1)2

(
1− 9t4

(t4 + t2 + 1)2

)
=

t4 + t2 + 1

(t4 + t2 + 1)2
.

Hence

Z2 =
4

π

∫ 1

0

1√
t4 + t2 + 1

dt ≈ 0.5055.

In particular we deduce that

P (Z2 > 0) =
1

2
E(Z2) ≈ 0.25.

Thus the quadratic Kac polynomials are more likely to have no real roots. ut

Remark 11. (a) Let ZN denote the number of zeros of a random Kac polynomial of
degree N . As N →∞ we have (see [5, §2.5])

ZN =
2

π

(
logN + C

)
+ o(1). (32)

Thus, we expect the Kac polynomials of large degree to have relatively few real roots.
(b) The graph of

ρN(t) =

√
1

(1− t2)2
− (N + 1)2t2N

(1− t2N+2)2
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Figure 2. The density of zeros of a random Kac polynomial of degree 25.

is depicted in Figure 2.
It has two “peaks” at t = ±1 which suggests that the real roots of a Kac random

polynomial tend to concentrate near t = ±1. This statement can be made much more
precise.

In [9, §2, Lemma 1] it is shown that, for any s ∈ (0, 1), the expected number of
roots in the interval (−1 + (logN)−s, 1 − (logN)−s)) ⊂ (−1, 1) is � logN as
N →∞. More precisely,

Ẑ
(
FKac,

(
−1 +

1

(logN)s
, 1− 1

(logN)s

))
= O((logN)s log logN).

(b) A weaker version of the asymptotic estimate (32) is valid for more general classes
of random polynomials. More precisely, Ibragimov and Maslova have shown in [9]
that if Fn(t) is a random degree N polynomial of the form

FN(t) =
N∑
k=0

Xkt
k,

where (Xk)k≥0 are independent identically distributedL2-random variables and, if we
denote by ZN the number of real zeros of FN , then

E
(
ZN

)
∼ 2

π
logN as N →∞. (33)

The proof in [9] is much more complicated and is based on ideas developed by Erdös-
Offord [6] where they discuss the special case when Xk are Bernoulli variables taking
values ±1 with equal probability.

The asymptotic behavior of the variance VN of ZN was described by N.B. Maslova,
[11]. More precisely, she proved that

VN ∼
1

4π

(
1− 2

π

)
logN as N →∞.
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If Xk ∈ Lp for some p > 2, then the random variables ZN satisfy a central limit
theorem. More precisely, Maslova showed in [12] that if Xk ∈ Lp for some p > 0
then

1√
VN

(
Zn −E

(
ZN

) )
converges in distribution to a standard normal random variable.

Recently Nguyen-Nguyen-Vu [15] proved that, under the same assumptions,

µN := E
(
ZN

)
=

2

π
logN +O(1).

If the random variables Xk are not identically distributed, then E(ZN) can have dif-
ferent asymptotic behavior as the example below shows. Moreover O. Nguyen and V.
Vu [16] proved that the central limit result holds (under additional assumptions), even
when Xk are merely independent and not necessarily identically distributed, as in the
case of Kostlan polynomials. ut

Example 12 (The Kostlan statistics). Consider the Kostlan random polynomials in-
troduced in Example 3. In this case the covariance kernel is K(s, t) = (1 + st)N and
we have

logK(s, t) = N log(1 + st), ∂t logK(s, t) =
Ns

1 + st
,

∂2
st logK(s, t) =

N

(1 + st)2
, ρt =

√
∂2
st logK(s, t)|s=t =

√
N

1 + t2
.

The Kac-Rice formula implies that the expected number of zeros is

E
(
ZN

)
=

2
√
N

π

∫ ∞
0

1

1 + t2
=
√
N.

We see that the Kostlan random polynomials have, on average, more real zeros than
the Kac random polynomials. ut

Example 13 (The Legendre statistics). Let Fn(t) denote the random linear combina-
tions of Legendre polynomials described in Example 4. M. Das [4] has shown that the
expected number of zeros of FN(t) in [−1, 1] is asymptotic to 1√

3
N for large N . The

Legendre ensemble displays an even stronger bias towards a relatively large number
of real roots. ut

6. GEOMETRIC APPLICATIONS. We want to present some immediate but strik-
ing geometric applications of the Kac-Rice formula. We will use the stronger version
mentioned in Remark 9(d).

Example 14 (Fáry-Milnor). Suppose that

[0, L] 3 s 7→ r(s) = (x(s), y(s), z(s)) ∈ R3

is the arclength parametrization of a knot K (embedded, smooth, closed curve) in R3.
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Consider a random linear function

H : R3 → R, H(x, y, z) = Ax+By + Cz,

whereA,B,C are independent standard normal random variables with mean zero and
variance 1. Denote by µ(H) = µ(A,B,C) the number of critical points of the restric-
tion of H to the knot. These are the points on the knot where the vector (A,B,C) is
perpendicular to the tangent vector to the curve at that point.

The restriction of H to K is described by the Gaussian random function

F (s) = Ax(s) +By(s) + Cz(s).

Note that the critical points of H|K correspond to the zeros of the derivative.

F ′(s) = Ax′(s) +By′(s) + Cz′(s).

Let (T ,N) denote a Frenet frame along the curve, where T is the unit tangent vector
andN a unit normal vector. The derivative F ′(s) is a Gaussian random function with
covariance kernel

K(s1, s2) = x′(s1)x′(s2) + y′(s1)y′(s2) + z′(s1)z′(s2) = T (s1) • T (s2),

where and • denotes the standard inner product in R3. The Frenet formulæ [21, Sec.
1.9] imply that

∂s2K(s1, s2) = T (s1) • T ′(s2) = κ(s2)T (s1) •N(s2),

where κ denotes the curvature of the curve. Similarly

∂2
s1s2

K(s1s2) = κ(s1)κ(s2)N(s1) •N(s2).

We deduce

K(s, s) = 1, ∂s2K(s, s) = 0, ∂2
s1s2

K(s, s) = κ(s)2, ρs = |κ(s)|.

Hence assumption (30) is satisfied. Remark 9(b) implies that the critical points ofH|K
are almost surely nondegenerate. They come in two types: local minima and local
maxima. We denote by m±(H) the number of local minima/maxima of H|K . Then,
almost surely, m−(H) = m+(H) and µ(H) = m−(H) + m+(H). The Kac-Rice
formula (29) implies that

E
(
µ(H) ) = 2E

(
m+(H) ) =

1

π

∫ L

0

|κ(s)|ds

=
1

π
× the total curvature of the curve.

This result, or rather a version equivalent to it, was first proved independently by I.
Fáry [7] and J. Milnor [13]. In particular, Milnor, who was a Freshman at the time,
used this to prove a conjecture of K. Borsuk stating roughly that to knot a curve you
need to bend it quite a bit. Fáry’s proof is also probabilistic in nature, but he used a
different approach. ut
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Example 15. Suppose that C is a smooth closed curve on the unit n-dimensional
sphere

Sn :=
{

(x0, x1, . . . , xn) ∈ Rn+1; x2
0 + x2

1 + · · ·+ x2
n = 1

}
.

Denote byL the length ofC. Using the Kac-Rice formula we will prove, in one stroke,
two related facts.

i. If L < 2π, then C is entirely contained in a hemisphere.
ii. If L > 2π, then there exists an Equator of the sphere that intersects C in at least

four points.

The case n = 2 of (i) seems to be part of the folklore of mathematics; see e.g.
[21, Problem 1.10.4]. The case n = 2 of (ii) was proved more recently, in a 2008
MONTHLY paper, [8]. The authors refer to it as a 1969 conjecture of Hugo Steinhaus.
Here is a probabilistic proof of these facts.

Parametrize C by arclength, [0, L] 3 s 7→ x(s) :=
(
x0(s), . . . , xn(s)

)
∈ Rn+1.

Since C ⊂ Sn we have |x(s)| = 1, ∀s, where | − | denotes the natural Euclidean
norm. Moreover, since this is arclength parametrization, we have |x′(s)| = 1, ∀s.

Any vector u ∈ Rn+1 determines a linear functional `u : Rn+1 → R, `u(x) =
〈u,x〉, where 〈−,−〉 is the canonical inner product in Rn+1. To prove (i), we have to
show that there exists u 6= 0 such that the restriction of `u toC has no zeros. To prove
(ii), we have to show that there exists u 6= 0 such that the restriction of `u to C has at
least four zeros.

The restriction of `u to C can be identified with the function fu : [0, L] → R,
fu(s) = 〈u,x(s)〉. Choose independent standard random variables (Uk)0≤k≤n and
form the random Gaussian function

FU : [0, L]→ R, FU(s) =
n∑
k=0

Ukxk(s).

Its covariance kernel is K(s, t) = 〈x(s),x(t)〉. We deduce

at = 〈x(t),x(t)〉 = |x(t)|2 = 1,

bt = K ′t(s, t)
∣∣
s=t

= 〈x(t),x′(t)〉 =
1

2

d

dt
|x(t)|2 = 0,

ct = K ′′st(s, t)
∣∣
s=t

=
∣∣x′(t) ∣∣2 = 1.

Thus ∆t = 1, ρt = 1. Condition (30) is satisfied so we can apply (29) to deduce that
the expected number of zeros of FU is ZC = L

π
.

To reach the conclusions (i) and (ii) we need an additional input, topological in
nature. Observe that if fu has only nondegenerate zeros, then it has an even number
of them. Indeed, a nondegenerate zero of fu corresponds to a point where the curve
C crosses the hyperplane {`u = 0} transversally from one side to the other. Since the
curve is closed, it must cross this hyperplane an even number number of times.

As explained in Remark 9(b), condition (30) implies that the zeros of FU are almost
surely nondegenerate. Thus, almost surely, the function FU has an even number of
zeros.
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If L < 2π, then ZC < 2, and the probability that the number of zeros of FU is < 2
is positive. Since FU has an even number of zeros we deduce that the probability that
FU has no zeros is positive. This proves (i).

If L > 2π, then ZC > 2. Hence, the probability that FU has more than two zeros is
positive and we deduce that the probability that FU has at least four zeros is positive.
This proves (ii). ut

Remark 16. The equality ZC = L
π

proved in Example 15 is a Crofton-type formula:
the quantity ZC is the average number of intersection points of the curve C with a
hyperplane through the origin. This is no accident. In [1], the Kac-Rice formula was
used to prove wide ranging generalizations of the classical Crofton formulæ, [18, Sec.
9.3].

The Kac-Rice formula, in its higher dimensional incarnations, has other geometric
applications. For example, as shown in [17], the classical Gauss-Bonnet formula and
all its modern generalizations are special cases of the Kac-Rice formula. ut
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