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ABSTRACT. I discuss low dimensional incarnations of cohomology and illustrate how basic cohomo-
logical principles lead to a proof of Sperner’s lemma.
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1. CHAINS AND COCHAINS WITH Z/2-COEFFICIENTS

To keep the formalism at a minimum I will concentrate only on triangulated spaces of dimension
≤ 2. These are compact spaces equipped with a decomposition as a finite union of points vertices (or
0-simplices), edges (or 1-simplices) and triangles (or 2-simplices). Two edges can have in common
at most one end-point, triangles can have in common only an edge or only a single vertex. An edge
and a triangle can have in common either a single vertex, or the edge could be an entire edge of the
triangle; see Figure 1.
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FIGURE 1. Triangulated spaces.
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To such a triangulated space X we can associate three finite sets, the set of 0-simplices S0(X),
the set of 1-simplices S1(X) and the set of 2-simplices. The triangulation is then defined by the
sets Sk(X) togheter with a collection of gluing instructions that describe how these simplices are put
together. I will use the letter ∆ to indicate a triangulation of a space.

For the space A in Figure 1 we see that S0(A) consists six vertices while S1(A) consists of five
segments. For the space B in Figure 1 we see that S0(B) consists of nine vertices, S1(B) consists of
17 edges and S2(B) consists of nine triangles.

If X is a triangulated space of dimension ≤ 2, and k = 0, 1, 2, then a chain of dimension k in X
with Z/2 coefficients is a formal sum of the form

c =
∑

σ∈Sk(X)

cσ[σ], cσ ∈ Z/2.

In the above sum it is convenient to think of c as the union of all the simplices σ such that cσ 6= 0.
The “number” cσ is called the multiplicity of the simplex σ in the chain c. Thus, a 0-chain could be
visualized as a union of vertices, a 1-chain as a union of edges etc.

We can add chains of the same dimension,

c =
∑

σ∈Sk(X)

cσ[σ], c′ =
∑

σ∈Sk(X)

c′σ[σ] =⇒ c+ c′ =
∑

σ∈Sk(X)

(cσ + c′σ)[σ].

We also can multiply a chain c by a scalar λ ∈ Z/2,

λ ·
∑

σ∈Sk(X)

cσ[σ] =
∑

σ∈Sk(X)

λcσ[σ].

This shows that the set of k-dimensional chains is a vector space over Z/2. We denote it by Ck(X).
Observe that the collection {

[σ]; σ ∈ Sk(X)
}

is a basis of Ck(X). We will refer to the chains [σ], σ ∈ Sk(X), as basic chains. For later use we
define C−1(X) = 0.

There are some remarkable linear operators

∂k : Ck(X)→ Ck−1(X), k = 0, 1, 2,

defined by their action on the bases of Ck(X) as follows.
• ∂0 = 0.
• For any edge σ ∈ S1(X) we define ∂[σ] ∈ C0(X) to be the formal sum of vertices of σ
• For any triangle σ ∈ S2(X) we define ∂[σ] to be the formal sum of edges of σ.

These operators are called the boundary operators of the triangulated space X . When the various
dimensions are clear from the context I will drop the subscript from the notation of the boundary
operators, so I will write ∂ instead of ∂k.

For example, in Figure 2(a) we have

∂
(

[s1] + · · ·+ [s5]
)

= [v0] + [v1],

while in Figure 2(b) we have
∂
(

[s1] + · · ·+ [s6]
)

= 0.
A dual notion is that of cochain. If X is a triangulated space of dimension ≤ 2, then a cochain of
degree k is a function

α : Sk(X)→ Z/2, σ 7→ α(σ)
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FIGURE 2. Computing boundaries of chains.

Thus, a degree 0-cochain is a gadget that associates a “number” in Z/2 to every vertex. A degree
1-cochain is a gadget that associates a number in Z/2 to every edge etc. We define the support of a
cochain of degree k to be the set

suppα :=
{
σ ∈ Sk(X); α(σ) 6= 0

}
.

Thus, the support of a 1-cochain consists of those edges of the triangulation that are assigned nonzero
numbers by α.

It is clear that the cochains of degree k form a vector space over Z/2 that we denote by Ck(X).
For later usage we set C3(X) = 0.

Let us observe that we have a bilinear map

〈−,−〉 : Ck(X)× Ck(X)→ Z/2, Ck(X)× Ck(X) 3 (α, c) 7→ 〈α, c〉 ∈ Z/2

defined as follows. If α ∈ Ck(X) and c =
∑

σ∈Sk(X) cσ[σ] ∈ Ck(X), then

〈α, c〉 =
∑

σ∈Sk(X)

cσα(σ) ∈ Z/2.

This pairing is called the Kronecker pairing and the “number” 〈α, c〉 can be viewed as the integral of
α over c. For this reason we will sometime use the notation∫

c
α := 〈α, c〉. (I)

Just like in the case of chains, there are some remarkable linear operator

dk : Ck(X)→ Ck+1(X), k = 0, 1, 2

defined as follows.
• d2 = 0.
• If α is a cochain of degree 1, then d1α is the degree 2 cochain that associates to each triangle
σ the sum of the numbers associated by α to the boundary edges of σ, dα(σ) := 〈α, ∂σ〉
• If α is a cochain of degree 0 then d0α is the degree 1 cochain that associates to each segment σ

the sum of the numbers associated by α to the the boundary vertices of σ, dα(σ) := 〈α, ∂σ〉.
The operators dk are called the coboundary operators of the triangulated space X . The boundary

and coboundary operators are related by an important equality called the discrete Stokes’ formula

∀k = 0, 1, 2, c ∈ Ck(X), α ∈ Ck−1(X) : 〈dα, c〉 = 〈α, ∂c〉. (1.1)

Using the integral notation (I) we can rewrite (1.1) as∫
c
dα =

∫
∂c
α. (1.2)
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This resembles the classical Stokes formula in multivariable calculus.
The proof of (1.1) is very simple. Invoking the bilinearity of the Kronecker pairing it suffices to

prove (1.1) in the special case when c is a basic chain. In this case the equality follows immediately
from the definition of d.

2. APPLICATION TO SPERNER LEMMA

I want to explain how the above elementary arguments yield a cute proof of the very beautiful
Sperner Lemma. I will begin with the 1-dimensional version of Sperner’s lemma. This is rather
trivial, but I want to give an argument that involves the above tricks and has the added advantage that
it extends to higher dimensions.

Suppose the interval [0, 1] is partitioned into n-subintervals

0 = x0 < x1 < · · · < xn = 1, σi := [xi−1, xi],

and the vertices of these intervals are colored with two colors, 0 and 1. We denote by αi the color
of the vertex xi. A subinterval σi is called perfect if its vertices have different colors, αi−1 6= αi.
The one dimensional Sperner lemma states that if α0 = 0 and α1 = 1, then the number of perfect
subintervals is odd.

Here is a cohomological proof of this fact. I will regard the coloring of the vertices as a degree 0
cochain that associaties to the vertex xi the number αi mod 2. Then dα is the 1-cochain

dα(σi) =

{
1, if σi is perfect
0, otherwise.

Denote by c the 1-dimensional cochain defined as the sum of all the segments in the partition, i.e.,

c =
n∑
i=1

[σi].

Then ∫
c
dα =

n∑
i=1

dα(σi) = the number of perfect segments mod 2. (2.1)

On the other hand, we have ∂c = [x0] + [x1] and thus∫
∂c
α = α0 + α1 = 1. (2.2)

Using Stokes formula (1.1) we deduce

the number of perfect segments mod 2 = α0 + α1 = 1

which proves the 1-dimensional Sperner lemma.
The 2-dimensional version of Sperner’s lemma is more complicated. Start with a triangle T whose

vertices are labeled 0, 1, 2. Fix an arbitrary triangulation of T . An admissible labeling of the trian-
gulation is a labeling of the vertices of the triangulation with one of the labels 0, 1, 2 subject to the
following rule.
(R) If a vertex v of the triangulation lies on an edge e of T , then the label of v must be equal to
one of the labels of the vertices of e; see Figure 3.

If σ is an edge or a triangle of the triangulation then we define L(σ) to be the set consisting of all
the labels of its vertices. A triangle τ of the triangulation is called perfect if L(τ) = {0, 1, 2}.
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FIGURE 3. A triangulation of a triangle.

Theorem 2.1 (2D Sperner Lemma). For any triangulation ∆T of a triangle T and any admissible
labeling of its vertices the number of perfect triangles is odd. In particular, there exists at least one
perfect triangle.

Proof. The following proof is a cohomological rendition of the elegant approach of D. Cohen [2]
which in turn is also a variation of Sperner’s original argument [6].

I will denote by S0(∆T ) (respectively S1(∆T ), S2(∆T )) the set of vertices (respectively edges,
triangles) of the traingulation ∆T .

The labeling of the vertices of the triangulation is a map ` : S0(∆T )→ {0, 1, 2}. Using the map `
we construct a 1-cochain α such that for any edge s of the triangulation we have

α(s) =

{
1, L(s) = {0, 1}
0, otherwise.

We say that an edge s is special if it lies in the support of α, i.e., Ls = {0, 1} = 1. For the
triangulation depicted in Figure 3 we have indicated the special edges by a star. We can now give a
simple description to the coboundary dα. For any triangle τ of the triangulation we have

dα(τ) = (the number of special edges of τ ) mod 2.

Let us observe that if τ is a perfect triangle then exactly one of the edges of τ is special, while if τ is
inperfect then the number of special edges of τ is even. We can rewrite this as follows

dα(τ) =

{
1, τ is perfect
0, otherwise.

(2.3)

Let [∆T ] ∈ C2(∆T ) denote the 2-chain defined as the sum of all the triangles of the triangulation

[∆T ] =
∑

τ∈S2(∆T )

[τ ].

The equality (2.3) implies that∫
[∆T ]

dα = (the number of perfect triangles of ∆T ) mod 2. (2.4)

We now want to apply Stokes formula. We can write

∂[∆T ] =
∑

s∈S1(∆T )

µs[s].
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Form the definition of ∂ we deduce that

µs = (the number of triangles of ∆T that contain s as an edge) mod 2.

This implies that

µs =

{
1, s is contained in an edge of T
0, otherwise.

Hence
∂[∆T ] = bT = the sum of the edges of ∆T contained in an edge of T . (2.5)

Now observe that∫
∂[∆T ]

α = (the number of special edges of ∆T contained in an edge of T ) mod 2. (2.6)

The special edges of ∆T that lie on the boundary of T must be contained in the edge [0, 1] of T . From
the 1-dimensional case of Sperner’s lemma we deduce that this number is even. The 2-dimensional
case now follows from (2.4), (2.6) and Stokes formula. ut

Remark 2.2. Theorem 2.1 was first proved by E. Sperner [6] in 1928 when he was 23. His proof was
also based on a parity argument. Moreover, he showed that Theorem 2.1 implies Brower’s fixed point
theorem which states that any continuous function T → T has at least one fixed point. We refer to
[5, §2.3] for more details and higher dimensional generalizations. ut

3. WHERE IS THE COHOMOLOGY?

If X is triangulated space of dimension ≤ 2 then we can form the Z/2-vector spaces Ck(X) and
the linear operators

dk : Ck(X)→ Ck−1(X).
Let us first remark that the above terminology is a bit sloppy. The above vector spaces depend on a
choice of an additional structure on X , namely a triangulation ∆. To emphasize the dependence on
the triangulation ∆ we ought to denote these spaces by Ck(X,∆).

Next let us observe the definition of the boundary operators implies immediately that for any k the
composition

Ck−1(X,∆)
dk−1−→ Ck(X,∆) dk−→ Ck−1(X,∆)

is trivial, i.e., dk ◦ dk−1 = 0. We set

Zk(X,∆) = ker dk ⊂ Ck(X,∆), Bk = range dk−1 ⊂ Ck(X,∆).

Since dk ◦ dk+1 = 0 we deduce that

Bk(X,∆) ⊂ Zk(X,∆).

The elements of Zk are called cocycles, while the elements of Bk are called coboundaries. We can
then form the quotient

Hk(X,∆) :=
Zk(X,∆)
Bk(X,∆)

.

This is a finite dimensional vector space over Z/2. Any cocycle α ∈ Zk(X,∆) determines an element
in H1(X,∆) called the cohomology class of α and denoted by [α]. Note that [α] = 0 if and only if
there exists β ∈ Ck−1(X,∆) such that dβ = α.

A priori, the group Hk(X,∆) may seem to depend on the choice of the triangulation ∆. A rather
deep theorem [4, Thm. 2.27, Cor. 3.4] shows that this is not the case. In other words, the isomorphism
class of the group Hk(X,∆) is independent of the triangulation ∆. It is called the k-th cohomology
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group of X with Z/2-coefficients, and it is denoted by Hk(X,Z/2). The dimension of this vector
space is a topological invariant called the k-th Betti number of X with Z/2-coefficients and it is
denoted by bk(X).

It is very easy to compute the cohomology of a triangle T using the obvious triangulation consisting
of a single triangle, T itself, the three edges of T and the three vertices of T . In this case we deduce

Hk(T,Z/2) =

{
Z/2, k = 0
0, k > 0.

(3.1)

Suppose now that T is a triangle with vertices labeled 0, 1, 2. Fix a triangulation ∆T of T and an
admissible labeling.

We want to explain why the equality (3.1) is responsible for the existence of perfect triangles. We
argue by contradiction and we assume that there exist no perfect triangles.

We denote by C the boundary of T . The triangulation of T induces a triangulation ∆C of C.
Observe that Sk(∆C) ⊂ Sk(∆T ) and thus we have natural restriction maps

rk : Ck(∆T )→ Ck(∆C).

Consider again the cochain defined in the proof of Theorem 2.1. In Figure 4 we have indicated by
stars the special edges s.
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FIGURE 4. A triangulation of a triangle, and the induced triangulation on the boundary.

The equality (2.3) implies that if there exist no perfect triangles then dα = 0. At this point we
want to invoke the equality H1(T ) = 0 which implies that there exists a 0-cycle β ∈ C0(∆T ) such
that

dβ = α.

If we denote by αC and βC the restrictions of α and respectively β to the triangulation ∆C we deduce
that

dβC = αC in C1(∆C).
This shows that the cohomology class [αC ] ∈ H2(C) is trivial.

Now let us observe that the 1-dimensional Sperner lemma implies that support of αC consists of
an odd number of edges. This implies that ∫

bT

αC = 1,
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where bT ∈ C1(∆C) is the 1-chain defined in (2.5). Note that ∂bT = 0. Invoking Stokes formula we
deduce

1 =
∫
bT

αC =
∫
bT

dβC =
∫
∂bT

βC = 0.

We have reached a contradiction!
Note that the above proof shows another interesting fact. If we let α ∈ C1(∆C) be the 1-cochain

such that for any edge s we have

α(s) =

{
1, L(s) = {0, 1}
0, otherwise,

then α is a coycle, dα = 0 but it is not a coboundary since
∫
bT
α 6= 0. This proves that H1(C) 6= 0.

More precisely, H1(C) ∼= Z/2 and the cohomology class of α is a generator of this group.

4. WHAT NEXT?

The above arguments may seem like a bit of accidental magic. In fact, they are very special
manifestations of a very general technology called cohomology theory. This has varied incarnations
in topology, geometry, number theory, algebra, but all are governed by a core set of principles. In one
form or another, the cohomology theory attempts to collect local data and produce meaningful global
information.

Where can you learn more about these things? Everyone has his/her own favorites. I have two.
The first is the classical book by Bott and Tu [1]. It takes you from humble beginnings to glorious
heights while making sure that the geometric intuition is as in your face as possible.

The other one is the survey [3]. This is not for beginners and assumes a good familiarity with at
least one incarnation of cohomology. It takes a panoramic view of the subject and provides a very
illuminating look at the structure cohomology theory that is present in all its incarnations.
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