RANDOM MORSE FUNCTIONS AND SPECTRAL GEOMETRY

LIVIU I. NICOLAESCU

ABSTRACT. We study random Morse functions on a Riemann manifold (M, g) defined as random
Gaussian weighted superpositions of eigenfunctions of the Laplacian of the metric g. The weight is
biased against the high eigenmodes in the superposition. We investigate the behavior of the expected
distribution of critical values of such a random function under the singular rescaling g — ¢~ %g, € — 0.
We first show that this behavior is independent of (M, g) and the expected distribution of critical values
is closely related to the expected distribution of eigenvalues of certain universal ensemble of random
(m+1) x (m+1) symmetric matrices. Next we prove a central limit theorem describing what happens
to the expected distribution of critical values when the dimension of the manifold is very large. Finally,
we explain how to use the statistics of the Hessians of the random function for small ¢ to recover the
Riemannian geometry of (M, g).
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1. OVERVIEW

1.1. The setup. The present paper is a natural sequel to [26, 27]. Suppose that (M, g) is a smooth,
compact, connected Riemann manifold of dimension m > 1. We denote by |dVj| the volume density
on M induced by g. We assume that the metric is normalized so that

volg(M) = 1. ()

For any u,v € C°°(M) we denote by (u,v),, their L? inner product defined by the metric g. The
L?-norm of a smooth function u is denoted by ||u]|.
Let Ay : C°°(M) — C°°(M) denote the scalar Laplacian defined by the metric g. Fix an or-
thonormal Hilbert basis (¥, )x>o of L?(M) consisting of eigenfunctions of A,
AgUp = AW, [[Tk] =1, ko < k1= Agy < Agy.
Fix an even Schwartz function w : R — [0, 00). For £ > 0 we set
we(t) == w(et), VteR.
Consider random functions on M of the form
ue =Y up Wy, (1.1)
k>0
where the coefficients uy, are independent Gaussian random variables with

E(uk) == O, Uar(uk) = wg('\/ )\k) (1.2)

Note that
ANy, = Z ANupWy, YN > 0.
k>0
The fast decay of w, the Weyl asymptotic formula, [10, VI.4], coupled with the Borel-Cantelli lemma
imply that for any N > 0 the function AN, is almost surely (a.s.) in L. In particular, this shows
that wu, is a.s. smooth.
The covariance kernel of the Gaussian random function u. is given by the function

M xM =R, &(p,q) =E(u(p)uc(q)) = > we(V ) Vi(p)Vi(q).
k>0
The eigenfunctions W, satisfy the known pointwise estimates (see [22, Thm. 17.5.3] or [28, Thm
1.6.1)),
m+tv
1Wkllcv iy = O(x\k 2 ) as k — oo, Vv >0.

Since w is rapidly decresing the above estimates imply that & is a smooth function. More precisely,
&* is the Schwartz kernel of the smoothing operator
w(eVA) : C®(M) — C™®(M).

Let us observe that if w(0) = 1, then as € Y\, 0 the function w. converges uniformly on compacts
to the constant function wo(t) = 1 and w.(v/A) converges weakly to the identity operator. The
Schwartz kernel of this limiting operator is the d-function on M x M supported along the diagonal.
It defines a generalized random function in the sense of [16] usually known as white noise. For this
reason, we will refer to the ¢ — 0 limits as white noise limits.

The asymptotic estimates in Proposition 2.2 show that the random field du, satisfies the hypotheses
of [1, Cor. 11.2.2] for ¢ < 1. Invoking [1, Lemma 11.2.11] we obtain the following technical result.

Proposition 1.1. The random function u. is almost surely Morse if ¢ < 1. O
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For any u € C (M) we denote by Cr(u) C M the set of critical points of u and by D(u) the set
of critical values' of w. To a Morse function w on M we associate a Borel measure i, on M and a
Borel measure o, on R defined by the equalities

pu = Y Op, Owi=u(p) = Y [ (t) N Cr(w)|d.

pECr(u) teR
Observe that
supp py, = Cr(u), suppo, = D(u).
When w is not Morse, we set

fu = |dVy|, o4 = dy = the Dirac measure on R concentrated at the origin.

Observe that for any Morse function u and any Borel subset B C R the number o, (B) is equal to the
number of critical values of w in B counted with multiplicity. We will refer to o, as the variational
complexity of w.

To the random function u. we associate the random (or empirical) measure o,_. Its expectation

0 =E(oy,)

is the measure on R uniquely determined by the equality

| sto%dn ~ £ ( / f(t)dcruE(dt)) ,

for any continuous and bounded function f : R — R. In §2.1 we show that the measure o° is well
defined for ¢ < 1.We will refer to it as the expected variational complexity of the random function
Ue.

(1) Describe the white noise limit of o¢.

(ii) Recover the geometry of (M, g) from white noise statistics of the random function ..

Before we state precisely our main results we believe that it is instructive to discuss some elemen-
tary topologic and geometric features of the white noise behavior of u.. For simplicity we assume
that w(0) = 1 so that u. does converge to the white noise on M.

It is not hard to prove that for any given Morse function f : M — R and any / > 0, the probability
that || f — uc||cs < R is positive for € sufficiently small. If f happens to be a stable Morse function,
i.e., it has at most one critical point per level set, then for A sufficiently small, any C3-function
g : M — R satisfying || f — g||cs < h is topologically equivalent to f. Thus as ¢ — 0 the random
function u. samples all the topological types of Morse functions.

The rescaling w, can be alternatively realized as as follows. Consider the rescaled metric g. :=
£72g. As e — 0 the metric g. becomes flatter and flatter. The Laplacian of g, is Ay = 52Ag.
Its eigevalues are A\j = £2)\;, and the collection Ve = 2 U, is an orthonormal eigen-basis of
L*(M,|dV,,|). We define the random function

Ve = Z X \/ﬁ\I’%
k>0

where v; = w(y/A;,) and the coefficients X, are independent Gaussian random variable with mean

zero and variance 1. Observe that v. = % u,. This shows that the expected distribution o¢(v) of
critical values of v, is a rescaling of o°.

We will prove a universality result stating that as ¢ — 0 the measures o°(v) converge weakly to
a finite measure on R that depends only the moments of w of orders m — 1,m + 1, m + 3, but it is

IThe set D(w) is sometime referred to as the discriminant set of .
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independent of the metric g. This limit measure is intimately related to the distribution of eigenvalues
in a Gaussian Wigner ensemble of symmetric (m + 1) x (m + 1)-matrices.

The probabilistic reconstruction of the metric in the white noise limit is possible, but it is a rather
delicate undertaking. The metric g together with the Riemann tensor can be recovered from the
statistics of the Hessians of u.. However, this is not a first-order phenomenon. We extract the
information about the metric by looking at finer scales and investigating the rate of convergence of
u, to the white noise.

1.2. Statements of the main results. Observe that if u© : M — R is a fixed Morse function and c is
a constant, then

Cr(c+u)=Cr(u), fietu = fu,
but
D(u+c)=c+ D(u), oytc=>0c%0y,
where * denotes the convolution of two finite measures on R. More generally, if X is a scalar random
variable with probability distribution vy, then the expected variational complexity of the random

function X + w is the measure E( 0 x 1 ) = Vx * 04. If w itself is a random function, and X is
independent of w, then the above equality can be rephrased as

E(oxiu) =vx *x E(o,).

In particular, if the distribution vx is a Gaussian, then the measure E(o,) is uniquely determined by
the measure E (o x14,) since the convolution with a Gaussian is an injective operation. It turns out
that it is easier to understand the statistics of the variational complexity of a perturbation of u. with
an independent Gaussian variable of cleverly chosen variance.

To explain this perturbation we need to introduce several quantities that will play a crucial role
throughout this paper. We define

1 / 1 )
S 1= w(|z])dz, dp, = / xiw(|z|)dx,
(2m)™ Jgm o 2m)™ Jgm o
1

P = G /]Rm a3zdw(|z|)dz.

The statistical relevance of these quantities is explained in Proposition 2.2. If we set

I (w) := /00 w(r)rkdr, (1.4)
0

then we deduce from [25, Lemma 9.3.10]

1.3)

M Sm = x w _ e w
(2)"sm = ( [, >> o1 (0) = s bna 1),

 Smh  ome Iy (w) L 3(w)
d%l o m + 2 Im+1(w)2
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The Cauchy inequality implies that 7,1 (w)? < I,—1(w)I13(w) so that

m
> 1.5
qm_m+2 (1.5)

The sequence (¢ )m>1 can be interpreted as a measure of the tail of w, the heavier the tail, the faster
the growth of g, as m — oo; see Section 3 for more details. We set

rp = max(1, q,),

and define w,, > 0 via the equality

Sm + wm)h
o = Emt mlhm, (16
m
Set $,,, := Sy, + Wy, SO that
gmhm
Tm = . (1.7)
Observe that
W, = 0&=qm = rm 2> 135, = Sm, (1.8)
while the inequality (1.5) implies that
lim 2™ — 0, lim - =1. (1.9)
m—o0 Sy, m—00

Choose a scalar Gaussian random variable X,y with mean 0 and variance w(g) := wy,e~"™ inde-
pendent of u. and form the new random function

U, 1= Xw(e) + u..
We denote by ¢ the expected variational complexity of #.. We have the equality

0".5 = ’Yw(g) * 0.67 w(a) = wmeima (110)

N°¢ = /R & (dt) = /R o°(dt)

is the expected number of critical points of the random function ..

To formulate our main results we need to briefly recall some terminology from random matrix
theory.

For v € (0,00) and N a positive integer we denote by GOEY; the space Sym y; of real, symmetric
N x N matrices A equipped with a Gaussian measure such that the entries a;; are independent,
zero-mean, normal random variables with variances

Note that

var(a;) = 2v, var(a;) =v, Y1 <i<j <N.

Let pno : R — R be the normalized correlation function of GOEY;. It is uniquely determined by
the equality

N

for any continuous bounded function f : R — R. The function py,,(A) also has a probabilistic
interpretation: for any Borel set B C R the expected number of eigenvalues in B of a random
A € GOEY is equal to

/R FNpa(NdA = ~ Bops (tr £(A)),

N / pN,v()‘)d)"
B
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For any ¢ > 0 we denote by R; : R — R the rescaling map R > « — tx € R. If p is a Borel
measure on R we denote by (R;).p its pushforward via the rescaling map R;. The celebrated Wigner
semicircle theorem, [3, 24], states that as N — oo the rescaled probability measures

R ) A)dA
(R )« (prvw(A)dN)
converge weakly to the semicircle measure given by the density

)= -1 x Vav — A2 A\ < V4o
Poot V) = 9w 0, Al > V4.
We can now state the main results of this paper.

Theorem 1.2. Forv > 0and N € Z~q we set

322
Hﬁv () == pNw (z)et 1.

(a) There exists a constant C = Cy,(w) that depends only on the dimension m and the weight w such
that

N® ~ Cp(w)e™™ (14 0(¢)) ase — 0. (1.11)
More precisely
1 b \Z . (m+3
Con(w) = 251, D700 [ 0 Jomdy. 12)
27Tdm 2 R m

(b) As € \, 0 the rescaled probability measures

N (® o).

converge weakly to a probability measure &, on R uniquely determined by the proportionalities

&m X (Vo1 %001 (y) )1 (y)dy (1.13a)
o 9,;%% *Yrm=1 (y)dy. (1.13b)

One immediate consequence of Theorem 1.2 is the following universality result.

Corollary 1.3 (Universality). As ¢ — 0 the rescaled probability measures

1
N* (R \/Smle > * o
converge weakly to a probability measure o, uniquely determined by the convolution equation

Yem * O = O .
Sm

Wigner’s semicircle theorem [3, Thm. 2.1.1] allows us extract a bit more about the measure o,
for m large, provided that the behavior of w at co is not too chaotic.

Theorem 1.4 (Central limit theorem). Suppose that the weight w is regular, i.e., the sequence r,
has a limit r € [1, 00| as m — oo. Then

lim o, = yr+1.
m—0o0 T
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The above regularity assumption on w is a constraint on the behavior of its tail. In Section 3 we
describe many classes of regular weights.

Corollary 1.5. As m — oo we have
8 m—+3 hom
cnt)~ 7t (%5°) ()
2 d
o dm - (1.14)
8 r(™ +3 21 +3(w) 2
VTm 2 w(m+ 2) L1 (w) '

Following [1, §12.2] we define symmetric (0, 2)-tensor h° on M given by

m
2

m—+42

dm
where X v denotes the derivative of the smooth function u along the vector field X.

hE(X,Y) = °

E(Xuc(p),Yu:(p)), Vpe M, X,Y € Vect(M), (1.15)

Theorem 1.6 (Probabilistic reconstruction of the geometry). (a) For € > 0 sufficiently small the
tensor h® defines a Riemann metric on M.

(b) For any vector fields X,Y on M the function h*(X,Y') converges uniformly to g(X,Y ) as € \, 0.
(c) The sectional curvatures on h® converge to the corresponding sectional curvatures of g as € “\ 0.

The C°-convergence of h® towards the original metric was observed earlier by S. Zelditch [33].
The main novelty of the above theorem is part (c) which, as detailed below, implies the C*° con-
vergence of h¢ to g. However, the qualitative jump from C? to C'°°-converges requires requires a
substantial amount of extra work.

The construction of the metrics h® generalizes the construction in [6]. Note that for any € > 0 we
have a smooth map =, : M — L?(M, g)

M >pe E.(p) = (SZ:);Z%(\/E)

k>0

=

\I/k(p)\l’k € Lz(M, g).

Then hf is the pullback by Z. of the Euclidean metric on L?(M, g). Let us point out that [6, Thm.5]
is a special case of Theorem 1.6 corresponding to the weight w(t) = et

Theorem 1.6 coupled with the results in [30] imply that the metrics h° converge C'1* to g as
€ \¢ 0. The convergence of sectional curvatures coupled with the technique of harmonic coordinates
in [2, 30] can be used to bootstrap this convergence to a C'>° convergence.

We should add a few words about the nontrivial analytic result hiding behind Theorem 1.6. Fix
a point p € M and normal coordinates () at p. The techniques pioneered by L. Hormander [20]
show that as € ™\, 0 we have the 1-term asymptotic expansions

E(@gixiue(p) . 8§jzju€(p)> = By (m+4) ( 14+ 0(e?) ), (1.16a)
E(@gixjua(p) . Giixjue(p)) = By (M) ( 14+ 0(?) ) (1.16b)

These and several other similar 1-term asymptotic expansions involving the Schwartz kernel of wa(\/Z)
(see Proposition 2.2) are responsible for Theorem 1.2. All these 1-term expansions are independent
of the background metric g. Note that (1.16a) and (1.16b) imply the estimate

B( 02,7 (p) - 02,0 (p) ) — B( 92,0 (p) - 92,0 (p) ) = O(s™0" ). (117)
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Theorem 1.6 is equivalent with the following sharp estimate
E(fﬁixiua(p) : 5§j1ju5(p)) — E(&imua(p) : 5§imju5(p)) ~ dpn K (p)e ™),

where K’ fj (p) denotes the sectional curvature of g at p along the 2-plane spanned by 0,:, d,; which
is an obvious refinement of (1.17). In fact the proof of Theorem 1.6 is based on refinements of the
1-term expansions (1.16a) and (1.16b) to 2-term expansions.

The Schwartz kernel of w.(v/A) has a complete asymptotic expansion as £ \, 0 (see [31, Chap.
XI1I]) and Theorem 1.6 shows that the metric g becomes visible, and it is completely detected by the
second order terms of this expansion.

The convergence of the metrics h® leads to a cute probabilistic proof of the Gauss-Bonnet theorem
for the original metric g (and thus for any metric on M). Here is the simple principle behind this
proof.

Assume for simplicity that M is oriented and m = dim M is even. To a Morse function f we

associate the signed measure
vy = Z (_1)ind(f,p)5p7

df (p)=0
where ind( f, p) denotes the Morse index of the critical point of the Morse function f. The Poincaré-
Hopf theorem implies that

/ vy = x(M). (1.18)
M

We can also think of v as a degree O-current. The random function u* then determines a random
O-current v,¢. It turns out (see Section 4) that the expectation of this current is a current represented
by a rather canonical top degree form. More precisely, we prove that,

E(vys ) = eps (M), (1.19)

where ey, (M) is the Euler form defined by the metric h° which appears in the Gauss-Bonnet theorem.
Using (1.18) we conclude that

| ewan= [ B(une)=B </M ym) — x(M),

and as a bonus we the Gauss-Bonnet theorem for the metric ~°. Letting € — 0 we obtain the Gauss-
Bonnet theorem for ¢ since h° — ¢ and ep (M) — e4(M). In particular, this shows that E( v, )
converges in the sense of currents to e, (M ), the Euler form determined by the metric g.

1.3. Organization of the paper. The remainder of the paper is organized as follows. Section 2
contains the proofs of the main results. In Section 3 we describe many classes of regular weights w.
In particular, these examples show that the limit » = lim,, o 7, that appears in the statement of
Theorem 1.4 can have any value in [1, cco]. Section 4 contains the details of the probabilistic proof of
the Gauss-Bonnet theorem outlined above.

To smooth the flow of the presentation we gathered in Appendices various technical results used in
the proofs of the mains results. In Appendix A we describe the jets of order < 4 along the diagonal of
the square of the distance function dist, : M x M — R which are needed in the two-step asymptotics
of the correlation kernel. This feels like a classical problem, but since precise references are hard to
find we decided to include a complete proof. Our approach, based on the Hamilton-Jacobi equation
satisfied by the distance function is similar to the one sketched in [12, p.281-282].

In Appendix B we describe small € asymptotics of the Schwartz kernel of w(ev/A) using a strategy
pioneered L. Hormander [20] based on a good understanding of the short time asymptotics for the
wave kernel. For the applications in this paper we need explicit, two-term asymptotics. The central
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result in this appendix is Theorem B.5 which seems to be new. It essentially states that the Riemann
curvature tensor can be recovered from the second order terms of the e — 0 asymptotics of the fourth
order jets along the diagonal of the Schwartz kernel of w(e \/Z)

In Appendix C we describe a few facts about Gaussian measures in a coordinate free form suitable
for our geometric purposes. Finally, in Appendix D we have collected some facts about a family of
Gaussian random symmetric matrices that appear in our investigation.

2. PROOFS

2.1. A Kac-Rice type formula. The key result behind Theorem 1.2 is a Kac-Rice type result which
we intend to discuss in some detail in this section. This result gives an explicit, yet quite complicated
description of the measure °. More precisely, for any Borel subset B C R, the Kac-Rice formula
provides an integral representation of ¢ (B) of the form

/ﬁB|Wur

for some integrable function f, g : M — R. The core of the Kac-Rice formula is an explicit
probabilistic description of the density f: .
Fix a point p € M. This determines three Gaussian random variables

i (p) € R, du.(p) € T,M, Hessp(u.) € Sym(TpM), (RV)
where Hessp(u.) : TpM x TpM — R is the Hessian of u,, at p defined in terms of the Levi-Civita

connection of g and then identified with a symmetric endomorphism of 7, M using again the metric
g. More concretely, if (z")1<;<y, are g-normal coordinates at p, then

Hessp ()0, = g zx?ug i -

For € > 0 sufficiently small the covariance form of the Gaussian random vector du.(p) is positive
definite; see (2.3). We can identify it with a symmetric, positive definite linear operator

S(due(p)) : TpM — TpM.

More concretely, if (2")1<;<m are g-normal coordinates at p, then we identify S( du.(p)) with a
m X m real symmetric matrix whose (4, j)-entry is given by

Sij ( dﬂg(p) ) = E( 8%115(17) : 8951115(17) )
Theorem 2.1. Fix a Borel subset B C R. For any p € M define

fon(p) i= (det(27S(ie(p) ) ) * B( | det Hessp(i.)| - Tp(ie(p)) | dute(p) =0 ),

where E( var | cons ) stands for the conditional expectation of the variable var given the con-
straint cons. Then

”&—LkMMM@L @.1)

O

This theorem is a special case of a general result of Adler-Taylor, [1, Cor. 11.2.2]. Proposition 2.2
below shows that the technical assumptions in [1, Cor. 11.2.2] are satisfied if ¢ < 1.

For the above theorem to be of any use we need to have some concrete information about the
Gaussian random variables (RV'). All the relevant statistical invariants of these variables can be
extracted from the covariance kernel of the random function ..
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2.2. Proof of Theorem 1.2. Fix ¢ > 0. For any p € M, we have the centered Gaussian random

vector
(te(p), dite(p), Hessp(t.) ) € R & Ty M & Sym(TpM).

We fix normal coordinates (l’i)lgigm at p and we can identify the above Gaussian vector with the
centered Gaussian vector

(6e(p), (Opittc(p) )1<i<m, 02y (Ue(P) )1<ij<m ) € RS R™ @ Sym,, .

The next result is the key reason the Kac-Rice formula can be applied succesfully to the problem at
hand.

Proposition 2.2. Forany 1 < i, j, k,{ < m we have the uniform in p asymptotic estimates as € \ 0

E(u.(p)?) = dme ™(1+ 0(e?)), (2.2a)

E(8,:0:(p)0,y0:(p) ) = dme™ ™25, (1+ O(e?)), (2.2b)

E(92 ,0:(D)0% 0te(D)) = hune™ ™ (81080 + b0 + 0:00;) (1 + O(€Y)),  (2.2¢)
E(a.(p)d? ;0:(p) ) = —dme ™25,;(1+ 0(e?)), (2.2d)

E (. (p)0yiti=(p)) = O(e™), E(0,1:(p)d% ,,:(p)) = O~ ™), (2.2¢)

where 3, = Sy + Wy, and the constants Sy, dp,, hy, are defined by (1.3). O

Proof. Denote by &¢ the covariance kernel of the random function
U = Xw(g) + u..
Note that 5
&°(p,q) = w(e) + &°(p, @) = wme™ ™ + E°(p, q).
Fix a point p, € M and normal coordinates at p, defined in an open neighborhood Q¢ of p,. The

restriction of &° to Op x Op can be viewed as a function £°(z, y) defined in an open neighborhood
of (0,0) in R™ x R™. For any «, 8 € (Z>0)|™ we have

E( 8?115(1)0)85(116) ) = 8?85(5"8(% y)ﬂc:yZO-

Proposition 2.2 is now a consequence of the spectral estimates (B.1) in Appendix B. g

From the estimate (2.2b) we deduce that

S(dite(p) ) = dme™ "2 (L, + O(e%)), (2.3)
so that s
[det S(a-(p))] = (dm)Ze™ "2 (14+0(?)) ase — 0. (2.4)

Consider the rescaled random vector
m—+2 m—+4

(§°,0°, H®) == (Egﬂg(p),g 2 duc(p), € 2 V2115(p)).

Form Proposition 2.2 we deduce the following (uniform in p) estimates as € \, 0.

E((5)?) =35m(1+0(e?)), (2.52)

E(viv5) = dmdij(1+ O(e%)), (2.5b)

E(HjHjy ) = him(0ij0ke + 0irbje + 0:065) (1 + O(€?) ), (2.5¢)
E(5H;; ) = —dmdi; (14 0(e?)), (2.5d)

E(5v]) =0(e), E(viHj,) = O(e). (2.5¢)
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The probability distribution of the variable s° is

12
d’ng(e)(x) = me 28m (¢) |d$|’

where

Fix a Borel set B C R. We have

m(m+4)

E(|det V?u.(p)|Ip(u:(p)) | du-(p) =0) = 2 E(\detHE\Isng(és) | v =0)

m(m 23m ()
=e" (2+4)/ E(|det H*| | * =z, v° =0) ¢ |dx|
&‘%B 27T§m (E)
:Iqa,p(a%B)
(2.6)
Using (2.4) and (2.6) we deduce from Theorem 2.1 that
~e —-m 1 B z
5°(B) = ¢ | tenlcE BYosmlavi(o)
27Tdm M
where p. : M — R is a function that satisfies the uniform in p estimate
p<(p) =14+ 0(e) ase — 0. (2.7)
Hence
. I \?
e (Roy ), o°(B) = | tealBro-m)aVip)]. 8)
€ * 2mwd,, M

To continue the computation we need to investigate the behavior of ¢. ,,(B) as €. More concretely,
we need to elucidate the nature of the Gaussian vector

(H6 ‘ ¢ =u, v5:O).
We will achieve this via the regression formula (C.3). For simplicity we set
Y :=(5,v°) e R R™.
The components of Y* are
Yi=35, Ye=0v5, 1<i<m.
Using (2.5a), (2.5b) and (2.5¢) we deduce that for any 1 < 4,5 < m we have
E(Y5YF) = 3mboi + O(e), E(Y{YS) = dndyj + O(c?).
If S(Y¢) denotes the covariance operator of Y, then we deduce that
_ b
dm

We now need to compute the covariance operator Cov(H¢,Y ). To do so we equip Sym,,, with the
inner product

1

(A,B) =tr(AB), A,B € Sym,,

The space Sym,,, has a canonical orthonormal basis

Eij, 1<i<j<m,
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B E;j, =]
“ %Eij, 1 <J
and E;; denotes the symmetric matrix nonzero entries only at locations (i, j) and (j,¢) and these

entries are equal to 1. Thus a matrix A € Sym,,, can be written as

A= Z aijEij = Z dijEij,

i<j 1<y

where

where

~ ) Gy, =17
Qijj = .
ﬂaij, 1< ].
The covariance operator Cov(H¢,Y¢) is a linear map

Cov(H®,Y®): R®R™ — Sym,,,

given by
Cov(H®,Y?) <Z yaea) =Y EH Y,)yaEi; =Y E(H;Y)yaEij,
1<j,x 1<j,o
where eg, ey, ..., e, denotes the canonical orthonormal basis in R & R™. Using (2.5d) and (2.5¢)

we deduce that
Cov(H®,Y") (Z yaea> = —yodm 1Ly + O(e). (2.10)

We deduce that the transpose Cov(H¢®,Y*?)Y satisfies

Cov(H®,Y*)Y Zaw ij | = —dmtr(A)eg + O(e). 2.11)

1<j
Set
Z° = (H?|§ = x,v° =0) — E(H®|$° = z,v° =0).
Above, Z¢ is a centered Gaussian random matrix with covariance operator
S(Z%) = S(H®) — Cov(H®,Y®)S(Y*®) ™! Cov(H®,Y*)".
This means that R R
E(Z%i) = (Eij, S(Z°) E).
Using (2.9), (2.10) and (2.11) we deduce that

2
Cov(H7,Y*)8(v*) " Cov(H=,v*)" | S By :Z—mtr(A)]lm—i—O(s)

1<j
2
E((zw) ) = hm +O(e), E(z5%5;) = hm — (e), Vi<j,
E((25)?) = 3hn, ‘812+0() Vi

and
E(z5;25) = O(e), Yi<j, k<t (i,5) # (k,0).
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We can rewrite these equalities in the compact form

151 15 d2
E(Zijzkf) = <hm

. > (513(5]@5 +h ((5“45]'5 -+ 5i£53k) + O( )
Note that
hm - Cvign (1:7) Im — 1hm
Sm T'm
We set
so that

E(Zz]'zliﬁ) - Q/thm(sij(skf + hm(éikéﬂ + 6%5 k) + O( )
Using (C.4) we deduce that
d
E(H?| = z,0° = 0) = Cov(H®,Y*)S(Y?) ! (zeg) = — "1, + O(e).
5
We deduce that the Gaussian random matrix (H®|5% = x,v° = 0) converges uniformly inp ase — 0
to the random matrix A — L

(2.12)
m
rm (m—+4)
described in Appendix D. Thus

li B) =
lim ¢= p(B) = goo

1., where A belongs to the Gaussian ensemble SymZ2/m:hm
2
xdm,

T
B) :[BESym%fmhm”‘m(‘det( Sm a T
m/E mzemot (| det( A

2

T

672;7
——d
= ) D g
67%
= (hm, El E 26m, det —anyln, dx,
)% [ B (|det(4—anyta) )
where
o - _9m @n 1
" mbhm  \Tm
This proves that
y2
lim R R: (Jaet(A- 1) ]) S mmd
N0 (3m ~34p(B SRS N NG Y-
=:u;(3)

Using the last equality, the normalization assumption (x) and the estimate (2.7) in (2.8) we conclude
R

%L
( ()b ), 0°(B)=¢"™ ( < fim > pm(B) + O(s)) ase — 0. (2.13)
In particular

27d,,
3 —m hm %L
N¢=¢ S, pm(R) +0(e) | ase — 0.
Observe that the density of i, is

(2.14)
a2
o s (fa (- 1) )

(2.15)
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=+ rmA)

(karm =Tm — 1)

V2T
A R

) Yrom—1 % O 1 ) ()71 (Y)-

—QTHT F<m+3
- m

5 ) (Yrm—1 %051 YW (Y).
This proves part (a) and (1.13a) in Theorem 1.2. To prove (1.13b) we distinguish two cases
Case 1. r,,, > 1. From Lemma D.2 we deduce that

ES 2nm,1(‘det<z4— Y
Y Mo,

wakal)
e (2.16)
2 2 .
m+3 m+ 3 1 (A= (12, +1) Y )24 Tm+ Dy
:2 2 ]_—‘ )\ 4‘r VTm 4rm d)\’
( 9 ) \/M/Rperl’l( )6
where
2. Em — Tm—1
e — 1 T 1
Thus
d,um m+ m—+3 1 (Tr2n+127'm)y2/ — L (A—(r241) )2
— =22 F e Adrm A e 4™m m m d)\
dy ( 9 ) D, Rﬂm—f—l,l( )
m+3 _ (m+3 1 L (= (r241) )2 rmyZ
:2 2 F )\ 47'1?” m N 2(7'm+1)d>\.
( 9 )\/m/RperLl( )6
An elementary computation yields a pleasant surprise
2
1 Yy 2 rmy2 1 1 T'm
——— (A= (3 +1 — =Ny ).
ir2 < (7 + )Wm> 2Wrm+1) 4 20rm — 1)\ 2(rm — 1)
Now set
1
Bm = .
We deduce

dy

1 142 _B8
Ne 1M e™
) g Jomea

B (A=vrmy)® g\

O\ = VN

;_3> \/m/R\/mpmH 1(v/rmA)

m+ 3 1 /
9 B e Pm41,1/rm
(/{mrmﬁm = l)

m+t m+ 3 _r
=2 2 F<2 )/Pm+1,1/rm(/\)
R

e T"”Qdyﬁ L (y— A)dA

e~ -0 gy

(A)e—%mvdyﬁ L (y — NdA.
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m+4 m+3 _rm
=2 <2> /Rpm—l—l,l/rm()‘)e TNy (y — N)dA

m

Using the last equality in (2.13) we obtain the case 7,, > 1 (1.13b) of Theorem 1.2.

Case 2. 1, = 1. The proof of Theorem 1.2 in this case follows a similar pattern. Note first that in
this case x,, = 0 so invoking Lemma D.1 we obtain the following counterpart of (2.16)

2
Boow, ([aet(4 -1 ) ) =271 (222 ¥ pina )

Using this in (2.15) we deduce

d m+4 m—+3 =2
dLymZQ 2 F<2>€ i Pm+1,1(Y)

which is (1.13b) in the case 7, = 1. This completes the proof of Theorem 1.2. O

2.3. Proof of Corollary 1.3. According to (1.10) we have

Vo e—m ¥ O = &°.

Thus
fyw*(.’R ) ) aff:(ﬂz ) ) e
Sm Vime—m / * Vome—m /)
Hence )
lim v (R ) o = om
We can now conclude by invoking Lévy’s continuity theorem [23, Thm. 15.23(ii)] or [32, Thm.
2.4]. O
2.4. Proof of Theorem 1.4. We have
. r
G = 79m+1 L K Yrm—1dy .17
m ‘rm rm
where )
— _TmA”
01 () = g, (Ve ™5,
and
- _ _rma?
K, = / 0 1 * Yrm—1 (y)dy = / 0. 4 (Ndr = / Py, (A)e” 1 dA.
R ‘rm ™m R ‘rm R ™m
We set

1
Ron(N) = Py 2 V), Bool) = 5y VA — 22,
Fix ¢ € (0,2). In [26, §4.2] we proved that
lim sup |R,,(z) — Reo()| =0, (2.18a)

m—r0o0 ‘CﬂlSC

sup |Rim(z) — Roo(z)| = O(1) as m — oo. (2.18b)

lz|>c
Then

Tm Tm _ Tm Tm _rmA?
perLé()\) = ERm < m)\) s 9m+1 L()\) = 7Rm < )\) e 4 .

We now distinguish two cases.
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Case 1. r = lim,,_,o0 7, < 00. In particular, 7 € [1, 00). In this case we have

7”m2
Km:,/””/Rm <,/r’"A> e,
m R m

and using (2.18a)-(2.18b) we deduce

- A2 22 4
lim Rm< TA) e dA:ROO(O)/e_ Tdr = Roo(0)4] —.
m—oo Jp m R r
Hence
4
Ky~ K/, :Roo(o),/% as m — oo.
Now observe that
L A = =R ()TN e g
K! ~mtlo- R (0) " m’ ) \Ax

~ e (V) o

Using (2.18a) and (2.18b) we conclude that the sequence of measures

1
— 0 1
K7/n m+1,—

*rm

(A)dA

(2.19)

converges weakly to the Gaussian measure 2. Using this and the asymptotic equality (2.19) in (2.17)

we deduce

lim &, =2 *yr—1 = Yr+1.
m—0o0 T T T

This proves Theorem 1.4 in the case r < oo since
. . Wiy (19
Yw %Oy =0, and  lim v—m(:)O.
Sm m—0o0 Sm

Case 2. lim,,, o0 7y, = 00. In this case we write

- 4 T,
Gmﬂﬁ(k)dA = \/;Rm <\/;/\> 7.2 (A)dA.

Lemma 2.3. The sequence of measures

R, (ﬁx) 72 (A)dA

converges weakly to the measure R (0)dp.

Proof. Fix a bounded continuous function f : R — R. Observe first that

Jim | <Rm ( 7;::/\> — Ry (ﬁx)) F)y.2 (N)dA = 0.

=D,

Indeed, we have

e o (o () 5 () roms o

Vrm

=D},

(2.20)
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+ /
[A|>c

o () ()

~va (A)dA.

™m

Observe that

—_ "
=D

D;n < sup |Rm(x) - Roo(x)
|z|<e

fN)
and invoking (2.18a) we deduce

Y2 (A)dA
|)\\<c\/‘/1% m

. /o
e D =0
Using (2.18b) we deduce that there exists a constant .S > 0 such that

D, <5

vz (A)dA.
|>\\>c\/‘/r% rm
On the other hand, Chebyshev’s inequality shows that

2
vz (A)d\ < —.
/)‘|>C\/\/r% i cZm
Hence
. "
e O =0
This proves (2.20).

™m

The sequence of measures v 2 (A)d\ converges to dy so that

Roo(0)£(0) =

= lim Ro(0) f(N)y_2 (A)dA.
m—o0 R m
Using (2.20) and the above equality we deduce that the conclusion of the lemma is equivalent to
lim (ROO(O) ~ Ry <, /””A)) FO)y.2 (A)dA = 0. (2.21)
m—00 R m Tm
=Fm
To prove this we decompose F;,, as follows.

Fum |
Al<m™ 4

. <ROO(O) — R (ﬁA)) FA)y 2 (A)dAr
o

™m

A A)dA
o)) 02 ()
=:F
Observe that
F, < sup  |Reo(0) — Roo()] L S 2 (N)dA
jal<m=4 Aem™2 gm0
and since R, is continuous at 0 we deduce

lim F), =0.

m—r00
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Since R~ and f are bounded we deduce that there exists a constant .S > 0 such that

Vrm
Hence
. "o
Jim, £, =0
This proves (2.21) and the lemma.
Lemma 2.3 shows that
47
K, ~ K,’n = \/EROO(O),
and
) 1
On the other hand
Hm Yrm—1 (A)dA = y1(A)dA,
m—0o0 Tm
so that

lim 6’m = (50 *Y1 = 71-
m—r0o0

This completes the proof of Theorem 1.4.

2.5. Proof of Corollary 1.5. Using (2.14) we deduce

N = ( fim )m 1im(R) + O(e)

2rd,,
=2 F< 5 )(%dm) /Remﬂ’ﬁn*v@;(y)derO(s)
mid m—+ 3 hom, B _
e p( . )(2“ ) 0,112 (VA +0)
n +3\ [ hm \ 2
— 9" <m2 ><2Trd ) K 40(e).
:C'm(w)

Lemma 2.3 implies that as m — oo we have

47 2
K, ~ \/EROO(O) = N

m—+6

272 m+3 hm,
'm ~ r .
Cn(w) ( 5 ><27rdm> as m — 0o

‘We deduce that
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2.6. Proof of Theorem 1.6. Fix a point p € M and normal coordinates (z°) near p. The equality
(2.2b) shows that as € — 0 we have the following estimate, uniform in p.
E(0ye(p)0,ste(p) ) = dime™ ™ (55 + O(e)?) ).

Hence

h®(0yi,0,5) = 0ij + 0(62) = gp(0yi, 04i) + 0(62). (2.22)
This proves (a) and (b) of Theorem 1.2.

With p and (2") as above we set
. aa+b@@8 ($7 y)
éall Aaif iy ; i ; : |x=y=07
5 3J15--3Jb 6$11 .. axlaayjl e 8y]b

h; =R (0yi, 0a), 1< 1,5 <m.

We denote by K7; the sectional curvature of ~° along the plane spanned by Oy, 0,. Using [1, Lemma
12.2.1] and that the sectional curvatures of a metric are inverse proportional to the metric we deduce
as in [26, §3.3] that

dm Efii — 65

K& — 11557 IYEX]
Y m+2 € (o€ £ :
€ gzzéajj ((9@7,,.])

Using Theorem B.5 we deduce that there exists a universal constant Z,,, that depends only on m and
w such that

(gﬁ,jj é‘;‘; g = (m+2))z’mK2j(p)(1 + 0(82))a

where K;;(p) denotes the sectional curvature of g at p. The estimate (2.2b) implies that
éalezéajej (gfj)Q _ d,QnE_Q(m+2)(1+O(62)).
Thus ”
Kj = ="Ki;(p)(1+0(e?)).
dm

To determine the constant Zm it suffices to compute it on a special manifold. Assume that M is the
unit sphere S™ equipped Wlth the round metric. This is is a homogeneous space equipped with an
invariant metric g with positive sectional curvatures. The metrics i are also invariant so there exists a
constant C. > 0 such that h* = C.g. The estimate (2.22) implies that C. = 1 and thus Kf] = K;;(p)

so that Zm =1. O

3. SOME EXAMPLES

We want to discuss several examples of weights w satisfying the assumptions of the central limit
theorem, Theorem 1.4. Observe first that

rp(w) ~ Ry (w) = L1 (@) I3 () as m — 0o.

L1 (w)

Moreover
Ry, (we) = Ry (w).

Example 3.1. Suppose that w(t) = e~*. In this case &° is the Schwartz kernel of the heat operator
A whose asymptotics as € — 0 have been thoroughly investigated. The momenta (1.4) are

<k 1 [ L E+1
Liw)= [ ¢ tht:/ *ds = oT .
k(W) /0 e 3/, s s=30——
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enee N2 +2)  motd (m + 1)
> ) (5 + m + m(m +
R = 2 2 = >1 =—> <1, Vv

so that r,,, = 1 for all m. Moreover, in this case we have

I

M =m+2,

L1 (w)
so that

2WT+6 m—+ 3

C(w) ~ m+1F< ) as m — 0o,

e 2

and Stirling’s formula implies
log Cpp(w) ~ % logm asm — oc. (3.1)

Example 3.2. Suppose that
w(t) = exp(—(logt)log(logt) ), Vt > 1.
Observe that ) N
I (w) = /0 Tkw(?“)dr + /1 rk exp(—(log r) log(log ) )dr.

This proves that
Iy(w) ~ Jy := /100 rk exp(—(logr)log(logr) )dr as k — oc.
Using the substitution » = ¢! we deduce
Jo = /oo (kD) E—tlog gy
We want to investigate the large A asymptoti?:s of the integral
T\ = /O - e~ Odt, p(t) = Mt — tlogt. (3.2)

We will achieve this by relying on the Laplace method [9, Chap. 4]. Note that

1

P\(t) =X —logt —1, ¢\(t) = -

Thus ¢ (t) has a unique critical point
T=71(\):=e L,
We make the change in variables ¢ = 7s in (3.2). Observe that
et ls — A lslog(erls) = e s — (A= 1)et s —e*Llogs = e Ls(1 — log s)
and we deduce

T\ = 7-/ e ™) ds, h(s) = s(logs — 1).
0

The asymptotics of the last integral can be determined using the Laplace method and we have, [9,
84.1]

2
—rh(1
Ty ~ 7~ ™MD () =V2rre’.
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Hence
Ji = Thi1 ~ /217 (k + 1)e™*+D) = V2reke® ask — oo.
In this case
Ry (w) — 0o asm — o0.

Note that
h‘ﬂ _ 2[m+3(w)
dm (M +2) g1 (w)
We deduce that 5
log <m) ~ et ™2 agm — .
dm
Hence

Example 3.3. Suppose that
w(r) = exp(—C(logr)*), C >0, r>1, a>1.

Arguing as in Example 3.2 we deduce that as k — oo

Ii(w) ~ / r*exp( —C(logr)® )dr = / ek E=CL gy
1 0

Again, set
Ty = /Oo e MWdt, p(t) = Ct* — At.
We determine the asymptotics of T le A — oo using the Laplace method. Note that
(1) = aCt*™ 1 — A

The function ¢, has a unique critical point

Observe that
Cl/eq

o0 {e3
T =71(N\) / e~ =bs) g
0
We set g(s) := s* — bs. Using the Laplace method [9, §4.2] we deduce

27 27
~ —ag(1) - a(b—1)
T\ ~1(Ne \/ag”(l) \/aa(a — 1)6 :

1 1
a\ a1 qaT — 1 .
log T ~ <)\C> O = Z(a, O)NT

ox(75) = a(s™ = bs), a::( A )al, b:= aﬁ,

Hence

o—1
Hence
log Ry (w) ~ log T,y + log Thypa — 210g Thpt2

~ Z(a,C)(m% —|—(’m—|—4)ﬁ —2(m+2)ﬁ>
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= Z(a,C)maT <1+(1+;)°‘a1 —2(1+ 2 )‘”al>

m

~ Z(a,C)maT X — X

8 a ( o' 1)_8aZ(a) 2=a

= 1) = 222\ e
m?  a—1\a-—1 (a—1)2
Hence
00, a < 2,
r= lim r, = X 6162(270), a =2,
m—0o0
1, a > 2.

which shows that r can have any value in [1, oco]. Note that in this case

10g Ly 3(w) — 10g Ly 1 (w) ~ Z(a, C)mi’T ( (L) -1+ 2) >

2Z(a,C) 1
~ ———"ma-1 m — 00,
a—1
so that Z(a.C
log Cp, (w) ~ m’l)maa—l, m — 00.
o —

O

Example 3.4. Suppose now that w is a weight with compact support disjoint from the origin. For
example, assume that on the positive semi-axis it is given by

1
T (@02 _
w<x>={€ y le—els1 oy

0, lz—c/>1,’
Then
c+1 1 1 e
Ik(w) = / tke 1—(t—c)? dt = / (t —+ C)ke 1—t2 dt
c—1 —1
0 o 1 o
= / (t+c)fe -7 dt+/ (t+c)fe =2 dt .
I; Lt
Observe that
lim c_kI,; =0.
k—oo
On the other hand

1
I,j:/o (c—i—l—t)ke_t%dt,
and we deduce
1 1 1 1
ck/ e Zdt < IT < (c+ 1)"7/ e 2 dt.
0 0

Hence the asymptotic behavior of Ij(w) is determined by I ,j . We will determine the asymptotic
behavior of 1 ,:r by relying again on the Laplace method. Set a := (¢ + 1) so that

1 ! . 1 ~
I]:r = / (G—t)keﬂdt:ak/ (1_5)kea282d82ak/ (u_ 1)ku_(k+2)efaf2du.
0 0 ’
Consider the phase

1 1
on(s) = ﬁlog(l —5)— ig h ™\ 0,
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and set )
P, = ak /a e®n ()
0
so that
I = Py
We have
1 2 " 1 6

/
on(s) R(1 —s) T on(t) Rl —s)2 a2st
The phase ¢y, as a unique critical point 7 = 7(h) € (0, 1/a) satisfying

o273 o273
h= = 1
2(1_7.) 2 ( +O(7—))7
so that )
2R\ 3 1
r:<a2> (1+0(ni)) asno0. (3.3)
Set
1 a’rt  (2h )% 252\ 5
=v(h) = — ~ ~ = — ) - 3.4
vimolt) = =g~ i~ e =5 () oy
We make the change in variables s = 7 + /vz and we deduce
1 —
Py = Mgk /5 / TR0 g () = [_% / fﬁ ]
We claim that
22
lim e (THVVT)=On(T) gy — / e~ 7T dr = 2. (3.5)
=0 J 1 (h) R
It is convenient to think of 7 as the small parameter and then redefine
2,3
h=h(r)= -1 _
2(1—71)
and think of v as a function of 7. Finally set o := /v and
2(1—1) 1
07 () = () (T + 01) — piry (1) = ?log( 5) — Py
2(1—171) 1 1 1
2(1—1) o 1
=———1 1—
a?73 0g< 1-— > a?7? ( >
1 2(1—1)
~e (e (15~ (e )
The equality (3.5) is equivalent to
a:2
lim e?m(®) = / e~ T da. (3.6)
T J J(h) R

By construction, we have

2r(0) = £4(0) = 0, @(0) = —1, r(2) <O, Vo€ J(h).
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Let us observe that

1
lim ¢, (z) = =" (0)a = ——, Yz €R. 3.7)
7—0 2 2
Indeed, fix € R and assume 7 is small enough so that
1
Tlal < 3. (3.8)

Observe that

1 [(20—7) & o &’ 1
(]) - -
0= ( T dﬂ'x(’l"g(l 1—%”) dﬂ'“((Hva)? 1))

(B ).

Using the estimate 0 = O(72) as 7 — 0 we deduce that there exists C' > 0 such that, for any j > 0
we have

[P 0) < CE+ 112

Hence ,

f"cp(Tj)(O)xj’ < Cjlraf—22®, Vj > 2.

J!
Thus if 7 satisfies (3.8), we have

x? 1
() + 5 = (@) = 9 (0)z = S (0)a® = ) ,w(ﬂ)( ),
§>3 J:
where the series in the right—hand side is absolutely convergent. Hence
| or(x + - | < Cz?|rx| Z]|T:UV 3 < C]Tx\a:QZJQJ 3,
J=3 j>3

This proves (3.7).
Next we want to prove that there exists a constant A > 0 such that

or(z) <Al —|z|), Va € J(h), VT < 1. (3.9)

We will achieve this by relying on the concavity of ¢, over the interval J(%h). The graph of ¢ is
situated below either of the lines tangent to the graph at x = £1. Thus

pr(@) < or(1) + L (1) (z = 1) < =1 (1) + @7 (D),

or(z) < @r(=1) + @ (=) (z + 1) < @l (=1) + i (=1).
Now observe that

d ( ) = 1 20 1 n 20 1 _ 20 1 1
dz 7\ a?7? T1-1Zz 7 (1+2%x) a2\ (14 23 1-1Zx )

Using the fact that ¢ = O(72) we deduce from the above equality that
lol(£1)| = O(1), asT — 0.

This proves (3.9). Using (3.7), (3.9) and the dominated convergence theorem we deduce

”62
lim e (@) dp = / e 2dr =+V2r.
J(h) R

T—00

We conclude that )

Py~ e Mai/2mv ash — 0 (3.10)
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Now observe that
1 2(1 —7)log(1—1) 1

1
gbﬁ(T):ﬁlOg(l_T)_aQQ: 2.2 -2
Using (3.3) we deduce

3 [a?\? 3 NI
o~ (5) =gt = (3)

Also

ePn(T) — (1 —7) a3 e_ﬁ'
In any case, using (3.3), (3.4) and (3.10) we deduce that
log I, (w) ~ kloga = klog(c+ 1) as k — oo.

Thus (w) (w)
I (W) Iy 3(w )
log rp, (w) = lo =0,
o) =g (25 0
so that
lim ¢, = lim 7, =1.
m—0o0 m—0o0

Example 3.5. If we let ¢ = 0 in the above example , then we deduce that

1 1
Te(w) = / e T g1~ e /2o ()
0

where )
k\3 1/2\3
o) ~-3(5) o~ ()
Hence
k\ 3
3 2 2 2
log 7 (w) ~ —2—2<(m —1)3+(m+3)s —(m+1)3

3

so that

lim ¢, = lim r, =1.
m—00 m—00

4. A PROBABILISTIC PROOF OF THE GAUSS-BONNET THEOREM

25

(3.11)

Suppose that M is a smooth, compact, connected oriented manifold of even dimension m. For any
Riemann metric g we can view the Riemann curvature tensor 17, as a symmetric bundle morphism
Ry : A°TM — A*T'M. Equivalently, using the metric identification 7*M = T'M we can view R,

as a section of A2T*M & A2T*M.

We will denote by Q2P4( M) the sections of APT*M ® AYT*M and we will refer to them of double

forms of type (p, q). Thus R, € Q%2(M). We have a natural product
o : OPI(M) x QP9 (M) — QPHPLatd (A

defined in a natural way; see [1, Eq. (7.2.3)] for a precise definition.

Using the metric g we can identify a double-form in Q** (M) with a section of A*T*M @ A*T M,

i.e., with a bundle morphism A*T'M — AFT M and thus we have a linear map

tr: QFE(M) — C=(M).
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Forl <k < % we have a double form

R =Rge-- e Ry € QM?F(N).
k

We denote by dV, € Q2™ (M) the volume form on M defined by the metric g and the orientation on
M. We set

1 oz m
ey (M) = W@)!tr(—}zg )dvg e Q™ (M).

The form ey (M) is called the Euler form of the metric g and the classical Gauss-Bonnet theorem
states that
/ ey(M) = x(M) =: the Euler characteristic of M. (4.1)
M
In this section we will show that the Gauss-Bonnet theorem for any metric g is an immediate conse-
quence of the Kac-Rice formula coupled with the approximation theorem Thm. 1.6.

Fix a metric g. For simplicity we assume that voly (M) = 1. This does not affect the generality
since eq4(M) = ey(M) for any constant ¢ > 0. Consider the random function u® on M defined by

(1.1, 1.2). Set
6m-l—? %
g __ 3
o= (2
Observe that for ¢ > 0 sufficiently small, any X, Y € Vect(M) and any p € M we have
h*(X(p). Y (p)) = E(Xv"(p),Yv'(p))

where h® is the metric on M that appears in the approximation theorem, Theorem 1.6.
For any smooth function f : M — R and any p € M we denote by Hess;,(f) the Hessian of f at
p defined in terms of the metric h*. More precisely

Hessy,(f) = XY f(p) — (VXY)f(p), VX,V € Vect(M),

where V¢ denotes the Levi-Civita connection of the metric h°. Using the metric h* we can identify
this Hessian with a symmetric linear operator

Hessy,(f) : (TpM, h®) — (TpM, h*).

For any p € M we have a random vector dv®(p) € T, M. Its covariance form S(dv°(p)) is precisely
the metric h°, and if we use the metric h® to identify this form with an operator we deduce that
S(dv®(p)) is identified with the identity operator.

For every smooth Morse function f on M and any integer 0 < k£ < m we have a measure vy, on

M
Vf’k = Z 517’
df (p)=0, ind(f,p)=k
where ind( f, p) denotes the Morse index of the critical point p of the Morse function f. We set

m

ve =Y (=) v

k=0
The Poincaré-Hopf theorem implies that for any Morse function we have

| vitp) = xan) (42)
M
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Using the random Morse function v we obtain the random measures V< p, V»s. We denote by v},
and respectively 1° their expectations. The Kac-Rice formula implies that

1 £
V = I dVE 5
K (%)Epk(p)l we (P)]
where
1
7 (p) = ——F|( | det Hess,(v°®)| | dv®(p) = 0, ind Hess: (v°) =k
AP) = s B o(w)] | v (p) H(v) =)
= (- )kE<det Hessj, ( v°) | dv*(p) =0, ind Hessp,(v°) = k:)

As shown in [1, Eq. (12. 2.11)], the Gaussian random variables Hess;,(v°) and dv®(p) are indepen-
dent so that

pi(p) = (—1)’“E(det Hessj,(v°) | ind Hessg,(v°) = k)
Thus

> (=1Fpi(p)|dVie (p)].

k=0

M\S

7T

m
E( det Hess; (v®) | ind Hess;, (v°) = E
% Z ( et Hessp, (v°) { ind Hessp, (v°) k)|th (p)|

2m) 2 o

1
= 7mE(det Hesst (v° > dVye .
T 5 (v%) ) Vi ()
From the Poincaré-Hopf equality (4.2) we deduce

(M) = /M V¥ (dp) = (2;)? /ME(det Hess(v%) )[4V (p)]. “3)

Observe that Hessian Hess®( f) of a function f can also be viewed as a double form
Hess®(f) € Qb'(M).

In particular, Hess®(v®) is a random (1,1) double form and we have the following equality, [I,
Lemma 12.2.1]

— 2Rpe = E(Hess®(v°)*?), (4.4)

where Rj- denotes the Riemann curvature tensor of the metric h°. On the other hand we have the
equality [1, Eq. (12.3.1)]

1
det Hess®(v°) = — tr Hess" (v°)*™ 4.5)
m!
Using (4.4), (4.5) and the algebraic identities in [1, Lemma 12.3.1] we conclude that

ml)gE(det Hess;('ve)> = M ( R,:).

This proves (1.19). Using this equality in (4.3) we deduce
X1 = [ e,
M

i.e., we have proved the Gauss-Bonnet theorem for the metric h°. Now let ¢ — 0. As we have
mentioned, Theorem 1.6 implies that ~* — g so in the limit, the above equality reduced to the Gauss-
Bonnet theorem for the original metric g.
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APPENDIX A. JETS OF THE DISTANCE FUNCTION

Suppose that (M, g) is a smooth, m-dimensional manifold, p, € M, U is an open, geodesically
convex neighborhood of p, and (z!,..., ™) are normal coordinates on U centered at p,. We have
a smooth function

n:UxU —[0,00), 1(p,q) = disty(p,q)°.
We want to investigate the partial derivatives of r at (p,, py). Using the above normal coordinates we
regard 7 as a function 7 = 7n(z, y) defined in an open neighborhood of (0,0) € R™ x R™.

If f = f(t',...,t"V) is a smooth function defined in a neighborhood of 0 € R” and k is a
nonnegative integer, then we denote by [f]; the degree k-homogeneous part in the Taylor expansion
of f at0,i.e.,

1
e = 7 Z O fli=ot™ GR[tl,...,tN].
" al=k

In the coordinates (z*) the metric g has the form (using Einstein’s summation convention throughout)
g= gijdxid:cj,
where g;; satisfy the estimates [18, Cor. 9.8]

1 o
Gt = O — gRW(O)aﬂx] + O(|z?). (A.1)

We deduce that )
g™ = 0k + 3 Rigje(0)a'a? + O(Jaf?). (A2)

The function 7 satisfies a Hamilton-Jacobi equation, [29, p. 171],
ke (2, y) On(z, y)
Ok ozt

Moreover, 7 satisfies the obvious symmetry conditions

=dn(z,y), Vz,y. (A.3)

n(@,y) =n(y,2), n(0,2) =nx,0)=lz|* = (a')° (A4)
=1
As shown in [7, Lemma 2.2] we have
o= |z —yl> =) (=" —y')*. (A'5)
=1

The symmetries (A.4) suggest the introduction of new coordinates (u,v) on U x U,

w=x" -y, vj=x +y.

Then 1 1
Tt = 5(% + Ui), yj = 5(1}]' — uj), Oyi = Oy, + O,
The equality (A.2) can be rewritten as
1
gké(l‘) — 5kt + - Z Rikjg(ui + Ui)(uj' + Uj) + 0(3) (A.6)
i,J

The symmetry relations (A.4) become
n(u,v) = n(—u,v), nu,u) = |ul? (A.7)

while (A.5) changes to
s =0, [z = [ul®. (A.8)
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The equality (A.3) can be rewritten

> g @) (mhy, + b, ) (i, + 70, ) = 4. (A9)

k.l -~ Y
Note that

[Aklo = [Ado = [¢"]1 =0, (A.10)
while (A.8) implies that
[Ag]r = 2u".
We deduce
Alnls =) ("o ([Akli[Adz + [Ael2(Be1) =) 2[Apla[Axls = 4> ug[Ag]a.
Kl k k

We can rewrite this last equality as a differential equation for [1]3 namely

[77]3 = Zuk(auk + 8@1@)[7’/}3-
k

We set P = [n]3 so that P is a homogeneous polynomial of degree 3 in the variables u, v. Moreover,
according to (A.7) the polynomial P is even in u and P(u,u) = 0. Thus P has the form

P= Z Ci(u)v; + Po(v),

———
=P

where C;(u) is a homogeneous polynomial of degree 2 in the variables u, and Py(v) is homogeneous
of degree 3 in the variables v.
We have

D ukdy P = Cr(uwur, Q1= udy Po, Y  updu,Po=0,
K B k K

—_— —
=:Q3

and the classical Euler equations imply
ZukaukPg = 2P2.
k
We deduce
P=2P+ Q3+ Q1,

where the polynomials ()3 and ()1 are odd in the variable u. Since P is even in the variable u we
deduce

Q3 +Q1=0,
so that P, + Py = P = 2P». Hence P, = Py = 0 and thus
[1]s = 0. (A.11)

In particular
[Ag]2 =0, VEk. (A.12)
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Going back to (A.9) and using (A.10) and (A.12) we deduce

4n)s = Z[QM]Q[Ak]l[AZ]I + Z[gke]o([Ak]l[Ads + [Ak]3[Adn)
kL k.l

. (A.13)
— 4Z[gk ]QukUg + QZuk[Ak]g
k.l k

We set P = [n]4. The polynomial P is homogeneous of degree 4 in the variables u, v, and it is even
in the variable u. We can write P = Py + P, + P4, where

Py = g CijkiUiujuRue, Py = E Qij(u)vvyj,
k i,J

and Py is homogeneous of degree 4 in the variables v, );;(u) is a homogeneous quadratic polynomial
in the variables u. We have

> uplArls =D ur(Ou, + 0y, P.
k k

‘We have
> kO, Poy = 20P,, v=0,1,2.
k

Z Uk:avkpll = 07
k

D wkdu, P =) upQij(0rivj + 6kjvi) = Y (Qujunvy + Qjrvjux )
k kyi,j k.j
Using these equalities in (A.13) we deduce

APy + 4P, + 4Py = 4 [gMqupug + 4Py + 2Py + Y w0y, Py

k¢ k
+ Z (Q]k + ij )ukvj.
k7j
This implies Py = 0 so that P = P, 4+ P», and we can then rewrite the above equality as
Py =2 [g"usue + (ij + Qkj )U/wj. (A.14)
k.l k,j

Note that the equality 7(u, u) = |u|? implies P(u,u) = 0 so that
Py(u) = Py(u,u) = —Py(u,u).

There fore it suffices to determine P». This can be achieved using the equality (A.6) in (A.14). We
have

1
9 Z[QM]Qukué = 6 Z Rikjé(ui + vi)(uj + vj)ukuz
k0 ,5,k,L

= é Z (; Rikjguk’U,g> V05 + Z Sj (U)Uj,
s J

i?j

Qij(u)
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where S (u) denotes a homogeneous polynomial of degree 3 in u. The equality (A.14) can now be
rewritten as

Z Qij(w)viv; = é Z @ij (w)vivj + Z Sj(u)vj + % Z(ij + Qr;j )ukvj.
.7 1,7 J

k7j

From this we read easily
1~ 1
Qij(u) = £Qij(u) = ¢ ;Rikﬂukué-

This determines Ps.

1 N
Py(u,v) = ¢ Z Qij(u)viv;. (A.15)
i,j
As we have indicated above P, determines F;.
1
Py(u) = —Pay(u,u) = ~5 Z Rijouiujupug. (A.16)
i7j7k7£

The skew symmetries of the Riemann tensor imply that P; = 0 so that
1 ~ ~
[1la(u, v) = & > Qij(wvivy, Qij(u) = Rinjeupuy. (A.17)
ij k¢

Example A.1. Suppose that M is a surface, i.e., m = 2. Set
K = Ri212 = Ro121 = —Ry201.
Note that K is the Gaussian curvature of the surface. Then

5 2 5 2
Qu =Y Rigewgug = Kuj, Qo =Y  Ropgeugus = Kuj.
kot kot

Q12 = E Rippeurupy = —Kujug = Qa1.
ket
Hence

K
Pg(u,v) = E(u%v% + u%v% - 2U1U2’01'U2) = g(ulvg — U2U1)2.

APPENDIX B. SPECTRAL ESTIMATES

As we have already mentioned, the correlation function

EX(p,q) = Y we(v/ M) Ui(p) Vi(q)

k>0

is the Schwartz kernel of the smoothing operator wg(\/g). In this appendix we present in some detail
information about the behavior along the diagonal of this kernel as ¢ — 0. We will achieve this by
relying on the wave kernel technique pioneered by L. Hérmander, [20].

The fact that such asymptotics exist and can be obtained in this fashion is well known to experts;
seee.g [11] or [31, Chap.XII]. However, we could not find any reference describing these asymptotics
with the level of specificity needed for the considerations in this paper.



32 LIVIU I. NICOLAESCU

Theorem B.1. Suppose that w € S(R) is an even, nonnegative Schwartz function, and (M, g) is a
smooth, compact, connected m-dimensional Riemann manifold. We define

E5 M x MR, &(p.q) =Y wev ) Ui(p)Ti(q),
k>0

where (Vy,)y>1 is an orthonormal basis of L?(M, g) consisting of eigenfunctions of A,.

Fix a point py € M and normal coordinates at p, defined in an open neighborhood Qg of p.
The restriction of &° to &° to Oy x Qg can be viewed as a function &°(x,y) defined in an open
neighborhood of (0,0) in R™ x R™. Fix multi-indices o, B € (Z>0)™. Then

;|| =B8]
0305 & (2,)la=y—=0 = €_m_2d(a’ﬂ)l(2w (/ w(|az))z* P dz + 0(52)> , €0, (B
where 3
+
d(a, B) == VO‘Q’J .

Moreover, the constant implied by the symbol O(g) in (B.1) uniformly bounded with respect to py,.

Proof. For the reader’s convenience and for later use, we go in some detail through the process of
obtaining these asymptotics. We skip many analytical steps that are well covered in [22, Chap. 17]
or [28].

Observe that for any smooth f : M — R we have

w.(VA)f = % /R TtV pat = — [ & <t> VA ft. (B.2)

2me Jr €
The Fourier transform w(t) is a Schwartz function so w(t/¢) is really small for ¢ outside a small
interval around O and ¢ sufficiently small. Thus a good understanding of the kernel of etVA for ¢
sufficiently small could potentially lead to a good understanding of the Schwartz kernel of wa(\/Z).

Fortunately, good short time asymptotics for the wave kernel are available. We will describe one
such method going back to Hadamard, [19, 29]. Our presentation follows closely [22, §14.4] but we
also refer to [28] where we have substantially expanded the often dense presentation in [22].

To describe these asymptotics we need to introduce some important families homogeneous general-
ized functions (or distributions) on R. We will denote by C~°°(€2) the space of generalized functions
on the smooth manifold 2, defined as the dual of the space compactly supported 1-densities, [17,
Chap. VI].

Forany a € C, Rea > 1 we define x4 : R — R by

X4 (x) = mxi, x4 = max(z,0).
Observe that we have the following equality in the sense of distributions

d a+1 a
%X:— =x%(z), Rea>1.

We can use this to define for any a € C

a dk a —0oQ
X+::@X++k60 (R), k>1-Rea.

For Re a > 0 we denote by |x|* the generalized function defined by the locally integrable function

@) =

.
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The correspondence a — |x|* is a holomorphic map {Re z > 0} — C~°°(R) which admits a holo-
morphic extension to the whole complex plane, [15, Chap. 1], [28]. This is a temperate generalized
function, and its Fourier transform is given by, [15, 28],

IX[? (&) = Vr2* x| 7 (g), VaeC. (B3)
Denote by Ky(z,y) the Schwartz kernel of ¢VA We then have the following result [22, §17.4]
or [28].
Theorem B.2. Setn := m + 1, and let
n(z,y) = distg(w,y)Q, x,y € M.

There exists a positive constant ¢ > 0, smaller than the injectivity radius of (M, g), such that for
disty(z,y) < c we have the following asymptotic expansion as t — 0

Ki(p.q) ~ Y _ Uk(p, @)dm (2k)Hi(t, p, ), |t <c, (B.4)
k=1

where for Rea > 0 we have
%

Ha(t,p.q) = O (xi_% (2 —n(p,q)) —x% * (> —n(p.q)) ) :

r(ssl)
dn(20) = 22|
(20) = o 2a)

Let us explain in more detail the meaning of the above result. The functions U}, are smooth func-
tions defined in the neighborhood dist,(p,q) < c of the diagonal in M x M. For fixed g, the
functions p — Vi (p) := Uk(p, q) are determined as follows.

Fix normal coordinates z at g, set |g| := det(g;;), and

h(z) = —59(Vioglgl, ©) = =5 > ¢" 270, log g|.
i

Then Vi (x) are the unique solutions of the differential recurrences

V1(0) =1, 2z-VVy =hVy, |z| <e, (B.5)
1 1
E$ - VVii1 + <1 — 2]{7h> Vi1 = —Ang, Vir1(0) =0, |z|<¢c, k>1. (B.6)
We have the following important equality
lim  H,(t,p,q) = |x[**2"™(t), VacC. (B.7)

dist4 (p,q)—0

The asymptotic estimate (B.4) signifies that for any positive integer y there exists a positive integer
N () so that for any N > N () the tail

N
Tn(tp,q) = Ki(p,q) = Y _ Ur(p, ) (2k)Hi(t, P, q)
k=1

belongs to C*( (—c,¢) x M x M ) and satisfies the estimates
0 Tw (k. - SCORPNTI ] <e, j<p, N2N(u). (B3

Fix a point p; € M and normal coordinates at p, defined in a neighborhood Oq of p,. Then we
can identify a point (p, q) € Oy x Op with a point (x, y) in a neighborhood of (0,0) in R™ x R™.

=) HC#—J'(MXM
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Using (B.2) we deduce

[e% IS 1 o t
02O E (4, y)|amy = g<axaﬁ (2, 9) | amy, © <8> > (B.9)

Choose an even, nonnegative cutoff function p € C3°(R) such that

K¢

)

Lt <

p(t) = -
{ t| >

where ¢ > 0 is the constant in Theorem B.2. Then

02055e.)lemy = (K77 0000 (1) )+ LK, (1 o) (1) ).

3

wm »Nn

Let us observe that that for any N > 0

e (1= p0)a (£) ) = 0e) ase o

(3 (3
Thus
anf e 1 a,B (1t N
UN >0 0200E (2, ) amy ~ E<Kt 2 ety ( = > +O@EN), e=0.  (B.10)
On the other hand
OFOK (2, y) ~ Y dim(2k)050] { Up(, y)Hy(t, 2, y) } - (B.11)
k=1
Recall that

1
dfa,8) = | gla+41).
One can show (see [7, 28])

o0
DX K (2, ) lamy—0 ~ Y Ama,slx| 2L (3 (B.12)
k=0

where A, 3,0 is a universal constant depending only on m, o, 3, which is equal to 0 if |o + ] is
odd.

Lemma B.3. (a) For any r € Z and any N > 0 we have

1 Pyt r T
g<\x\r,pw€> =¢ (<’X| 7w>+0(€N)> ase — 0.

(b) For every positive integer v we have

B /\ 21r 1
(@) = Y /I!’"
2

Proof. (a) For transparency we will use the integral notation for the pairing between a generalized
function and a test function. We have

(" mz ) = / IXI" (o (t)@(t /) dt = / I (et)plet) ()t

= &‘T/ IXI"(D)p(et)w(t)dt = ™(|x[", pew), pe(t) = p(et).
R



RANDOM MORSE FUNCTIONS 35

Now observe that p.w — @ = w(p: — 1) — 0 in §(IR). More precisely for £ > 0 we have
o NN
%(pe—l) =0("t") ase — 0.
This implies that
(IXI", @(p: = 1)) = O(e™) ase =0,
so that
(X", pe@) = (x|, )+(Ix|" @(pe = 1) ) = (Ix[", @) + O(e™) ase = 0.

(b) We have
(X7 @) = (7w ) \/7721‘T<|x|’”‘1(7),w(7)>

\f21 " / ’ ‘r 1
B
(%)
d
Using (B.10) and the above lemma we deduce
02088 (2,y)|a—y = Dipape” ™24 + O (e—m—%(aﬁ)“) ase — 0, (B.13)
where D, , 3 is a universal constant that depends only on m, v, 8 which is = 0 if |a + 3| is odd,
21—r
Dm@yﬁ = Am,a,ﬁ,o @(r) / ‘T’T_lw('r)d'ra r=m-+ 2d<aa B) (B.14)
3 R

To determine the constant D,, ,, g it suffices to compute it for one particular m-dimensional Rie-
mann manifold. Assume that (M, g) is the torus 7™ equipped with the flat metric

m

g=>» (d")?, 0<6' <om

i=1
The eigenvalues of the corresponding Laplacian A,,, are
k2, k= (ki,... kn)€Z™
Denote by < the lexicographic order on Z™. For 0= (6%,...,0™) € Rand k € 7™ we set

(k,0) = Zkaﬂ

A real orthornormal basis of L?(T™) is given by the functions

, 1, k=0
];(_'): o Q%Sin@ ), k>0,
@m2 |1 a2
22 cos(k,0), k =<0.
Then .
E0.9) = Gy D w2,
kezm
so that
aaaﬁ(gos =151 k‘ ka—i—ﬁ <E§>
326°0.0) = G > welF)
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Define
Wi, te : R™ = R, Win(z) = w(|z]), ue(z) = Wi (ez)z*P.

Using the Poisson summation formula [21, §7.2] we deduce

slal=18l

(2m)™

a 9B pe _ ~ =
950:67(0,0) = U (270).

vezm

Observe that

us (&) :/ e~ 48y (e|z)z* P da = (i@g)a+’8 </ ei<5’x>Wm(€x)d:c>

m

—mz «a —i(L —-mz a+BTi7 1
= "M(30; ) (/me <55»y>Wm(y)dy> = e ™ (10e)*TPW,, (5§>.

Hence

jlal=15] /1
956%(0,0) = ~ i0¢) O P W, (= .
GOS0 = Gy 3 {600 (¢) }§=2m7
As ¢ — 0 we have

lal—|8]
agb e — m—latBlt (g yatBTy N
3985‘53 (0,0) =¢ R ((185) W (0) + O(e )), VN.
Now observe that

(i) T, (0) = / w(|z])2* P dz.

m

so that
92986%(0,0) — e-m-lapl T iy 4 OEN) ), YN B.15
7056°(0,0) =€ R </me(|x])x x+O0(e )), . (B.15)
This shows that
ilel=18]

Dipag = By, B.16
0= g [ wllaha e (B.16)

This completes the proof of Theorem B.1. O

Remark B.4. Note that

/ . w(|z))z*Pdr = ( /|m|:1 xa+ﬁdA(x)> ( /0 Oow(r)rm+la+ﬁl—1dr) :

=T o,8(w)

On the other hand, according to [25, Lemma 9.3.10] we have

B +1
21—[?:1 p(%)

, € (2Z>0)™,
/ PBIA(E) = T = | 1CmEEER) 0 @ TP € (2020) (B.17)
|z|=1 0, otherwise.
We can now rewrite (B.16) as
lal=18l 7
Diop = g_m_‘a+6|2—m’a’ﬁlm’a7ﬁ(w). (B.18)

o (2m)m
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Theorem B.5. Fix a point p € M and normal coordinates (x%) near p. Fori # j we denote by
K;;(p) the sectional curvature of g at p along the plane spanned by 0., 0,;. For any multi-induces
a, B € (Zso)™ we set

82 1= 0200 E (2, ) amymo.
Then there exists a universal constant Z,, that depends only on the dimension of M and the weight
w such that

Proof. Using (B.12) we deduce
1 o o [t
Cga;’]j — é(;é;z] ~ E<KZ1’.7] — KZJ’ZJ,U(t)w (€> > + O(gN), e—0 (BZO)

On the other hand from (B.9) we conclue

o0
K} — K~ S d(20) (0202 = 02,02, ) {U(@,)H(t,2,9) Hamymo (B2D)
k=1
To investigate the above asymptotics we use the technology in [28].

Let us introduce some notations. For a positive integer k we denote by 0" a generic mixed-partial
derivative of order & in the variables 2%, y7. We denote by 61 the collection of k-th order derivatives
of n(x,y). P;(X) will denote a homogeneous polynomial of degree i in the variables X, while
Pr(X)Pe(Y) will denote a polynomial which is homogeneous of degree & in the variables X and of
degree ¢ in the variables Y. We then have the equalities

Ho = P1(0N)Ha-1, (B.22)
*Ho = Po(0n)Haz + P1(0*n)Ha-1, (B.23)
83}fa = ﬂ)3 (a"?)j—caf?) + (Pl (877)?1 (8277)}(an + CPl (8377)}%71» (B-24)

'Hy = Pa(0n)Haa + (P2(00)P1(0n) ) Ha—s

+(P2(0%n) + P1(ON)P1(8°n) ) Haz + P1(0* ) Hao1.

To simplify the presentation we will assume that in (B.19) we have 1 = 1, 7 = 2. Also, we will
denote by O(1) a function f(x,y) such that f(z,y)|z=y—0 = 0. The computations in Section A show

that for z = 0 terms of the form P;(9n) and Py (9%n) are O(1). In particular, the above equalities
show that the 1st and 3rd order derivatives of H® are O(1). We have

(B.25)

020%(UkI0) = 0% (((92UR) 3 + 20,2Uk0,230 + U023, )
= (0202 Ux) M + (02:Uy) (952 H) + (02U ) (922Hy,) (B.26)
+4(021,2Up) (021, Hi) + Ur01 0223 + O(1),

8%1,32351742 (UrHi) = 0212 ( (ajlgﬂ Uk)Hp + 0y UpO,2Hk + 02 Uy 3y, + Ukajlyzj{k)
= (8§1x28§1y2 Uk)j{k + (ajlyQ Uk) (832513623{1‘7)

+5£2y1 Uk3§1yzf}fk + 3£1y1 Ukaizyzf}fk + 3£2y2 UrOpr 0 Hy + 321212 Uka§2y1 Hy,

+a§1$2Uka§1yzj{k + Uk8g1x2851y2j{k + O(l)
(B.27)
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He deduce that
4

(851 852 — 8:%13,326513,2) (ng'fk)x:yzo = Z T]gg{k_”x:y:oa
7=0

where the coefficients 7} are polynomials in the derivatives of U, and 7 at (z,y) = (0,0). Using
(B.22)-(B.25) we deduce

TE=T2=0.
Moreover, the terms that appear in 7, ,3 appear only when we take forth order derivatives of Jj.
Upon inspecting (B.26) and (B.27) we see that the 4th order derivatives of J{; are multiplied by Uy.
According to (B.6) the function Uy, is O(1) if £ > 1. Hence T, ,? = 0 for k > 1. We deduce

(e,
K7 — KPP > din (2k) (TPH + T Heoy + TRHp—2) la=y—=0
k=1
= B_1H_1|p=y=0 + BoHo|p=y=0 + B1H1|p=y=0 + - ,
where
B_1 = dn(2)TE, Bo=dn(2)T}, By =dn2)TY + dn(H)Ty,... .
The term B_; can be alternatively described as
B_1 = Amii;jj0 — Am.ijij0
where the coefficients A,, , 3 are defined as in (B.12). Using (B.14) and (B.16) we deduce
B_1=0.
To compute 7 we observe first that
n(x —y) = Z(:z:’ — y%)? + higer order terms. (B.28)
i
Using (B.23) we can simplify (B.26) and (B.27) in the case k£ = 1 as follows.
02102 (U1 301) = (9200 U1) Hy + U102 0250 + O(1), (B.29)
851952 8311/2 (Ulj{l) = (851902 8511/2 Ul)j{l + 89%1;/1 Ulagzyzj{l
+072,2U10p1,0 M + Ur02 200 2H1 + O(1).
Using (B.23), (B.25) and (B.28) we deduce that
Tll = (851 8;2 - 8511,2851y2) 7’]|(0’0)
+2 (851 U + 852 Ul) |(070) +2 <a§1y1 Ui + aizyz Ul)

Using the transport equation (B.5) we obtain as in [10, VL.3] that U; coincides with the function
o(x,y) in [10, VL3 Eq.(33)] or the function ug(z,y) in [6, p. 380]. For our purposes an explicit
description of U; is not needed. All we care is that
U1($,y) = Ul(yam)v Ul(l’,l') =1
These conditions imply that the Hessian of Uj(z,y) at (0,0) is a quadratic form in the variables
u; = (" — y*) so that
92:U1(0,0) + 02:,,U1(0,0) = 92 U1(0,0) 4 82 ,U1(0,0) = 0.

(B.30)

(0,0)-

Hence
T! = <8§18§2 - 8§1$28§1y2) 1 (0,0)-
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Using (A.17) we conclude that
T} = ZRi12 = ZK12(p),

where Z is a universal constant, independent of (M, g). Hence
Ktii’jj - szij ~ dm(Q)ZKIQ(p)%O‘x:y:O + Z Bk%k‘x:yzo-
k>1

The equality (B.19) now follows from the above equality by using (B.20), (B.7) and Lemma B.3. O

APPENDIX C. GAUSSIAN MEASURES AND GAUSSIAN VECTORS
For the reader’s convenience we survey here a few basic facts about Gaussian measures. For more
details we refer to [8]. A Gaussian measure on R is a Borel measure 7, ,, v > 0, m € R, of the form
1 _(@-w)?
Y, ($) = e 20 dx.
a V2T

The scalar y is called the mean, while v is called the variance. We allow v to be zero in which case

Yu,0 = 0, = the Dirac measure on R concentrated at .
For a real valued random variable X we write
X € N(u,v) (C.1)

if the probability measure of X is 7, ,.
Suppose that V is a finite dimensional vector space. A Gaussian measure on V' is a Borel measure
v on V such that, for any £ € V'V, the pushforward &,(7) is a Gaussian measure on R,

&) = Yue) ()

One can show that the map V'V > ¢ +— u(€) € R is linear, and thus can be identified with a vector
w., € V called the barycenter or expectation of 7 that can be alternatively defined by the equality

uy—‘/;vdvﬁﬁ-

Moreover, there exists a nonnegative definite, symmetric bilinear map
¥ : VY x VY 5 R suchthat v(§) = (£,€), VeEe VY.

The form X is called the covariance form and can be identified with a linear operator S : V¥V — V
such that

2(&,m) = (& Sn), Y neVY,

where (—, —) : V¥V x V — R denotes the natural bilinear pairing between a vector space and its
dual. The operator .S is called the covariance operator and it is explicitly described by the integral
formula

@Sm—Eﬁm%iL@w—uwmw—uQW@)

The Gaussian measure is said to be nondegenerate if X is nondegenerate, and it is called centered if
1 = 0. A Gaussian measure on V' is uniquely determined by its covariance form and its expectation.

Example C.1. Suppose that U is an n-dimensional Euclidean space with inner product (—, —). We
use the inner product to identify U with its dual U". If A : U — U is a symmetric, positive definite

operator, then
1 1

du) = — _E(Ailu’u) du C.2
714( ) (27_‘_)5\/@6 | | ( )



40 LIVIU I. NICOLAESCU
is a centered Gaussian measure on U with covariance form described by the operator A. g

If V is a finite dimensional vector space equipped with a Gaussian measure yand L : V' — U is a
linear map, then the pushforward L, is a Gaussian measure on U with expectation py, ., = L(p.)
and covariance form

Yr.,: U xUY =R, B (n,n) =%,(Ln,L"y), Ve U,

where LY : UY — V' is the dual (transpose) of the linear map L. Observe that if ~y is nondegenerate
and L is surjective, then L, is also nondegenerate.

Suppose (8, 1) is a probability space. A Gaussian random vector on (8, ) is a (Borel) measurable
map

X :8§ — V, V finite dimensional vector space

such that X, p is a Gaussian measure on V. We will refer to this measure as the associated Gauss-
ian measure, we denote it by yx and we denote by Xy (respectively S(X)) its covariance form
(respectively operator),

2X(€1;£2) - E( <€17X - E(X) > <‘£27X - E(X) > )
Note that the expectation of yx is precisely the expectation of X. The random vector is called
nondegenerate, respectively centered, if the Gaussian measure yx is such.
Let us point out that if X : § — U is a Gaussian random vector and L : U — V is a linear map,
then the random vector LX : 8 — V is also Gaussian. Moreover
E(LX) = LE(X), Zpx(€) =3x(L¢ L), VeV,

where LY : V'V — U is the linear map dual to L. Equivalently, S(LX) = LS(X)L".

Suppose that X; : § — V1, j = 1,2, are two centered Gaussian random vectors such that the
direct sum X7 ® X9 : 8§ — V1 & V4 is also a centered Gaussian random vector with associated
Gaussian measure

VX1 BXs = PX10X, (X1, T2)|dx1d2s)|.
‘We obtain a bilinear form
cov(X1, Xa) : Vi x V3 =5 R, cov(X1, Xz)(é1,&) = B(é1, &),

called the covariance form. The random vectors X; and X5 are independent if and only if they are
uncorrelated, i.e.,
cov(Xy, Xq) =0.
We can then identify cov(X7, X3) with a linear operator Cov (X1, X2) : Vo — V1, via the equality
E((&,X1)(&, X2) ) = cov(X1, X2)(&, &)
= (&,Cov(X1, X2)&)), V& e VY, & e VY,
where {; € V5 denotes the vector metric dual to &. The operator Cov(X7, X3) is called the
covariance operator of X1, Xo.
The conditional random variable (X1|X2 = z2) has probability density
— le@Xg(wl7$2)
fV1 Px1@X; (@1, ®2)|d1 |

For a measurable function f : V; — R the conditional expectation E(f(X1)|X2 = x2) is the
(deterministic) scalar

E(f(X1)| X2 =x2) = y F(®1)p(x,| Xo=m0) (T1)|d1].

P(xX1| Xo=a2) (1)
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If X5 is nondegenerate, the regression formula, [5], implies that the random vector (X;| X2 = x3) is
a Gausian vector with covariance operator

S(Y) = 8(X;) — Cov(X1,X2)S(X2) ! Cov (X, X1), (C.3)
and mean
E(Xl’XQ = .732) = Cl’g, (C.4)
where C is given by
C = Cov(X1,X2)S8(X,) 1. (C.5)

APPENDIX D. A CLASS OF RANDOM SYMMETRIC MATRICES

We denote by Sym,,, the space of real symmetric m x m matrices. This is an Euclidean space with
respect to the inner product
(A, B) :=tr(AB).

This inner product is invariant with respect to the action of SO(m) on Sym,,,. We set

= Ei'v Z:]
E; = / ..
*J {\}iEij’ 1< 7.

The collection (EU)ZS j is a basis of Sym,,, orthonormal with respect to the above inner product. We
set

PR 2 =7
E ﬂaij, 1< J.

The collection (@;;)i<; the orthonormal basis of Sym,’, dual to (E”) The volume density induced

by this metric is
‘dA| = Hdaw = 2%(7;) Hdaij.
1<j 1<j
Throughout the paper we encountered a 2-parameter family of Gaussian probability measures on
Sym,,. More precisely for any real numbers u, v such that

v > 0,mu+ 2v >0,

we denote by Sym;" the space Sym,, equipped with the centered Gaussian measure dI';, ,(A)
uniquely determined by the covariance equalities

E(ajjare) = udijore + v(0ikdje + 6iedjr), V1 <, j, .k, 0 <m.
In particular we have
E(a?) =u+2v, E(ajaj;) =u, E(a})=v, V1<i#j<m,

i i
while all other covariances are trivial. The ensemble SymY;” is a rescaled version of of the Gaussian
Orthogonal Ensemble (GOE) and we will refer to it as GOE],.
For v > 0 the ensemble Sym;»" can be given an alternate description. More precisely a random
A € Sym;¥ can be described as a sum

A=B+ X1,, BecGOE!

vy X € N(0,u), B and X independent.
We write this
Sym%¥ = GOEY, + N (0, u)1,y,, (D.1)
where + indicates a sum of independent variables.
The Gaussian measure dI',, ,, coincides with the Gaussian measure dI';, 12, 4, defined in [26, App.

B]. We recall a few facts from [26, App. B].
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The probability density dI', ,, has the explicit description

1 u
dru,v(A) = D e‘ﬁ tr A2_—(trA ’dA‘
(2m) 4 D(u,v)
where
D(u,v) = (20)™ 1)+(2)(mu+20),
and
, 1 1 1 U
u = — _— =
m \mu+2v 2v 2v(mu + 2v)
In the special case GOE;, we have v = v/ = 0 and
1
dTy(A) = ——— e~ 1 T4 dA]. (D.2)
(2mv) 4

We have a Weyl integration formula [3] which states that if f : Sym,, — R is a measurable function
which is invariant under conjugation, then the the value f(A) at A € Sym,, depends only on the

eigenvalues A\j(A) < --- < A\, (A) of A and we have

1 M A2
Ecory, (f(X)) = FO, - Am) H A — | He*ﬂ Ay -+ - dAm,

Zm(v) Jrm 1<i<j<m i=1

::Qm,v()\)

(D.3)
where the normalization constant Z,,(v) is defined by

/ I n =l ﬁe_§|d)\1 S d |
i=1

1<i<j<m
m(m+1) m X?
= / IT =i e 7 ldr - danl.
1<i<j<m =1

=:Zm
The precise value of Z,, can be computed via Selberg integrals, [3, Eq. (2.5.11)], and we have

'HF< ) (D.4)

For any positive integer n we define the normalzzed 1-point corelation function py, ,(z) of GOE;, to
be

m

Z )Zm

1
pnov(x) = Zo(0) Jons Qno(z, A2, .. Ap)dAL - - d Ay,
For any Borel measurable function f : R — R we have [11, §4.4]
*EGOE“ tl“f /f pnv (D.5)

The equality (D.5) characterizes p,, ,,. Let us observe that for any constant ¢ > 0, if

A € GOEY <=cA € GOES" .

Hence for any Borel set B C R we have

/ pn,CQU(x)dx:/ pn,v(y)dy°
cB B
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We conclude that

cpn,czv(cy) = Pnyo (y)v Vn, ¢, y. (D.6)
The behavior of the 1-point correlation function p, ,,(x) for n large is described by Wigner semicircle
theorem [3, Thm.2.1.1] which states that for any v > 0 the sequence of probability measures on R

Pnon—1 ($)dx = n%pm} (n%l’)dl‘
converges weakly as n — oo to the semicircle distribution
poo,v(x)|d$| I{|x|<2\[}2 m,dﬂ

The expected value of the absolute value of the determinant of of a random A € GOE], can be
expressed neatly in terms of the correlation function p;,41,,. More precisely, we have the following
result first observed by Y.V. Fyodorov [14] in a context related to ours.

Lemma D.1. Suppose v > 0. Then for any ¢ € R we have

m—+1 m+3 ﬁ
EGOE}’n ( ‘ det(A — C]lmﬂ) = 22 (2’1}) + T <2> e4v pm+1’v(c).

Proof. Using the Weyl integration formula we deduce

Ecory (|det(A —cln, e 4v|c—)\|H’)\ AjldA; - dAp,
i<j
eC
:Zm / 64UH€ 4”’0_)“H‘>\_)\’d)\1

1<j
132
et Zm+1(v) 1
_ 1o (6 AL+ A )AL - - - dA
Zn(0)  Zoar(0) Jpn Omte (@20 Am)dhs

2
eEZm—H(rU)

2
m+1 edv Zm+1
2

= T(z))pm+1’v(c) = Tmpmﬂ,v(c)
mt1 2 (m+1 3 m+3\ &2
= (m+ )VE) " T (M) piaale) =220 T (52 ) % piante).
O
The above result admits the following generalization, [4, Lemma 3.2.3].
Lemma D.2. Let u,v > 0. Set
22
00() = prsro(@)e e,
Then
3 m+ 3 (c=2)? 42
Egypue (| det(A — clp)|) = 22(20) 2 > T ( 5 ) Worm / pPm+ip(c—x)e v " 2udr
(D.7a)
3 m41 m+ 3
=230 (") 8000 (D.7b)
In particular, if u = 2kv, k < 1 we have
s m+ 3 - (e WD
Esym%fv,q,ﬂdet(A—cIlm)\) =22(20)2T —5— \/7 / Pmt1p(c—x)e 'k

dx,
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(A:=c—x)
3 m m—+ 3 1 Ly (A=(t2+1)c) (tk41)c
:22(2@)2F< ) /Pm+1v(>\)6 dut d\
2 Vork Jr
where
tk = 1 =
1 1—-k

Proof. Recall the equality (D.1)
Symi¥ = GOEY, + N (0,u)1,,
We deduce that
Egy e (|det(A —cly,)|) = E(det(B+ (X —¢)1)])

1 2
= E v (|det(B — (c— X)1,,)| | X = x)e” 2udx
= | Beo;, (1det(B ~ (= X)1,)| | X =)

2

o (1det(B = (¢ = 2)1yn)| e~ 2 dar

3 mi1 m+3 (c—2)? 22
:22 2 F — 4v Qud .
(2e) 2 (2 )m/pm““c z)e v
Now observe that if © = 2kv then
(c—x2)% 22 z? 1 5 9
7 —9
4o 2u 4kv + (a: cr + )
1 1 A(1+12) 1 A(1412)
_ Lt (L2, 242 k) o_ £26)2 k)
4v < t2$ e k) L— 4ot? (@ +the)” + 4v

APPENDIX E. NOTATIONS

(i) For any set .S we denote by |S| € Z>o U {00} its cardinality. For any subset A of a set S we
denote by I 4 its characteristic function

1, s€A

I,:5—{0,1}, IA(S):{O SGS\A.'

(ii) For any point z in a smooth manifold X we denote by ¢, the Dirac measure on X concen-
trated at x.

(iii) For any smooth manifold M we denote by Vect(M) the vector space of smooth vector fields
on M.
(iv) For any random variable { we denote by E(£) and respectively var(§) its expectation and
respectively its variance.
(v) For any finite dimensional real vector space V' we denote by V'V its dual, V" := Hom(V',R).
(vi) For any Euclidean space V' we denote by Sym(V') the space of symmetric linear operators
V — V. When V is the Euclidean space R™ we set Sym,,, := Sym(R""). We denote by
1,,, the identity map R™ — R™.
(vii) We denote by S(R™) the space of Schwartz functions on R™.
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(viii) For v > 0 we denote by -, the centered Gaussian measure on R with variance v,

1 o2
Yo(z)de = e 2 |dx|.
2mv

Since lim,~\ 07y = do, wWe set g := dg. For a real valued random variable X we write
X € N(0,v) if the probability distribution of X is .
(ix) If p and v are two finite measures on a common space X, then the notation ;1 o< v means

that
1 1
w= V.
wX)" v(X)
REFERENCES

[1] R. Adler, R.J.E. Taylor: Random Fields and Geometry, Springer Monographs in Mathematics, Springer Verlag,
2007.
[2] M.T. Anderson, J. Cheeger: C“-compactness for manifolds with Ricci curvature and injectivity radius bounded
below, J. Diff. Geom., 35(1992), 265-281.
[3] G. W. Anderson, A. Guionnet, O. Zeitouni: An Introduction to Random Matrices, Cambridge University Press,
2010.
[4] A. Auffinger: Random matrices, complexity of spin glasses and heavy tailed processes, 2011 NYU PhD Dis-
sertation.
[5] J.-M. Azais, M. Wschebor: Level Sets and Extrema of Random Processes, John Wiley & Sons, 2009.
[6] P. Bérard, G. Besson, S. Gallot: Embedding Riemannian manifolds by their heat kernel, Geom. Gunct. Anal.,
4(1994), 373-398.
[7] X. Bin: Derivatives of the spectral function and Sobolev norms of eigenfunctions on a closed Riemannian
manifold, Ann. Global. Analysis an Geometry, 26(2004), 231-252.
[8] V. I. Bogachev: Gaussian Measures, Mathematical Surveys and Monographs, vol. 62, American Mathematical
Society, 1998.
[9] N.G. De Brujin: Asymptotic Methods in Analysis, Dover Publications, 1981.
[10] I Chavel: Eigenvalues in Riemannian Geometry, Academic Press, 1984.
[11] P. Deift, D. Gioev: Random Matrix Theory: Invariant Ensembles and Universality, Courant Lecture Notes, vol.
18, Amer. Math. Soc., 2009.
[12] B. DeWitt: The Global Approach to Quantum Field Theory, Oxford University Press, 2003.
[13] J.J. Duistermaat, V.W. Guillemin: The spectrum of positive elliptic operators and periodic bicharacteristics,
Invent. Math., 29(1975), 39-79.
[14] Y. V. Fyodorov: Complexity of random energy landscapes, glass transition, and absolute value of the spectral
determinant of random matrices, Phys. Rev. Lett, 92(2004), 240601; Erratum: 93(2004), 149901.
[15] LM. Gelfand, G.E. Shilov: Generalized Functions, vol. 1, Academic Press, New York, 1964.
[16] LM. Gelfand, N.Ya. Vilenkin: Generalized Functions, vol. 4, Academic Press, New York, 1964.
[17] V. Guillemin, S, Sternberg: Geometric Asymptotics, Amer. Math, Soc. 1990.
[18] A. Gray: Tubes, 2nd Edition, Birhduser, 2004.
[19] J. Hadamard: Lectureson Cauchy’s Problem in Linear Partial Differential Equations, Yale University Press,
1923.
[20] L. Hormander: On the spectral function of an elliptic operator, Acta Math. 121(1968), 193-218.
[21] L. Hormander: The Analysis of Linear Partial Differential Operators I, Springer Verlag, 1990.
[22] L. Hormander: The Analysis of Linear Partial Differential Operators II1, Springer Verlag, 1994.
[23] A. Klenke: Probability Theory. A Comprehensive Course. Springer Verlag, 2006.
[24] M. L. Mehta: Random Matrices, 3rd Edition, Elsevier, 2004.
[25] L.I. Nicolaescu: Lectures on the Geometry of Manifolds 2nd Edition, World Scientific, 2007.
[26] L.I. Nicolaescu: Critical sets of random smooth functions on compact manifolds., arXiv: 1101.5990
[27] L.I. Nicolaescu: Complexity of random smooth functions con compact manifolds, arXiv: 1201.4972, to appear
in Indiana Univ. Math. J.
[28] L.I. Nicolaescu: The wave group and the spectral geometry of compact manifolds,
http://www.nd.edu/~1lnicolae/Wave.pdf
[29] M. Riesz: L’intégrale de Riemann-Liouville et le probléme de Cauchy, Acta Math. 81(1949), 1-223.
[30] S. Peters: Convergence of Riemannian manifolds, Compositio Math., 62(1987), 3-16.


http://math.uchicago.edu/~auffing/thesis.pdf
http://math.uchicago.edu/~auffing/thesis.pdf
http://arxiv.org/abs/1101.5990
http://front.math.ucdavis.edu/1201.4972
http://www.nd.edu/~lnicolae/Wave.pdf
http://www.nd.edu/~lnicolae/Wave.pdf

46 LIVIU I. NICOLAESCU

[31] M. Taylor: Pseudodifferential Operators, Princeton University Press, 1981.

[32] S.R.S. Varadhan: Probability Theory, Courant Lect. Notes in Math., vol. 7, Amer. Math. Soc., 2001.

[33] S. Zelditch: Real and complex zeros of Riemannian random waves, Spectral analysis in geometry and number
theory, 321342, Contemp. Math., 484, Amer. Math. Soc., Providence, RI, 2009. arXiv:0803.433v1

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NOTRE DAME, NOTRE DAME, IN 46556-4618.
E-mail address: nicolaescu.1l@nd.edu

URL: http://www.nd.edu/~1nicolae/


http://www.nd.edu/~lnicolae/

	1. Overview
	1.1. The setup
	1.2. Statements of the main results
	1.3. Organization of the paper

	2. Proofs
	2.1. A Kac-Rice type formula
	2.2. Proof of Theorem 1.2
	2.3. Proof of Corollary 1.3
	2.4. Proof of Theorem 1.4
	2.5. Proof of Corollary 1.5.
	2.6. Proof of Theorem 1.6.

	3. Some examples
	4. A probabilistic proof of the Gauss-Bonnet theorem
	Appendix A. Jets of the distance function
	Appendix B. Spectral estimates
	Appendix C. Gaussian measures and Gaussian vectors
	Appendix D. A class of random symmetric matrices
	Appendix E. Notations
	References

