
Markov Chains: A Random Walk
Through Particles, Cryptography,

Websites, and Card Shuffling

Mike McCaffrey

Department of Mathematics

University of Notre Dame

Professor Liviu Nicolaescu
Advisor

May 1, 2017



MARKOV CHAINS: A RANDOM WALK THROUGH PARTICLES,

CRYPTOGRAPHY, WEBSITES, AND CARD SHUFFLING

MIKE MCCAFFREY

Contents

Abstract 2
Notation 2
1. Introduction 2
2. A Few Probabilistic Facts. 3
2.1. State spaces and random objects 3
2.2. Conditional Probability and Independence 4
3. Markov Chain Theory 5
3.1. Basic facts and examples 5
3.2. Classifying the states of HMCs 11
3.3. Stationary Distributions 13
3.4. Stopping Times and the Strong Markov Property 15
3.5. Recurrence 18
3.6. Invariant Measures 20
3.7. Ergodic Theorem 24
4. Convergence To Stationary Distributions 26
4.1. Distance in Variation 26
4.2. Convergence 28
4.3. Rate of Convergence 30
4.4. Eigenvalues of the Transition Matrix 31
4.5. Summary of Consequences of Ergodic Markov Chains 37
5. The Shuffling Problem 38
6. Metropolis-Hastings Algorithm 39
6.1. Hard Disks in a Box: Motivating Example 39
6.2. Proposal and Acceptance 40
6.3. Defining the Algorithm 41
6.4. Cryptography 42
6.5. Hyperlinks 44
6.6. Rates of Convergence for Metropolis-Hastings 45
7. Conclusion 47
8. Acknowledgments 47
References 47

Date: May 1, 2017.

1



2 MIKE MCCAFFREY

Abstract

In this paper, I will discuss the origins of Markov chains, the theory behind them, and
their convergent quality seen in the Ergodic theorem. From there, I will outline the Metropolis-
Hastings algorithm, one of the most important applications of Markov chains, and give examples
of its effectiveness and applicability in various areas.

”Life calls the tune, we dance.”
- John Galsworthy

Notation

• N is the set of nonnegative integers.

1. Introduction

We begin our story in 1856, St. Petersburg, Russia. Andrei Andreyevich Markov was born,
fell in love with mathematics, and became prominent in the Academy of Sciences, established
in St. Petersburg by Peter the Great (1682-1725). Markov was born at a time when the study
of probability was thriving in Europe. During this time Jacob Bernoulli had proved one of the
first versions of the Law of Large Numbers. He formally proved that the proportion of heads in
repeated tossings of a fair coin converged to the expected value of the process. Coin flips are
independent events, meaning that the outcome of a current coin flip does not depend on any
previous coin flips. Thus Bernoulli proved that independent events have a convergence prop-
erty. This inspired a both moral and mathematical argument from a man named Pavel Nekrosov.

Nekrosov was a Russian theologian turned mathematician, and argued that Bernoulli’s dis-
covery was proof of free will. He noted that social data, such as crime rates, converge to a
probabilistic average by the law of large numbers. Therefore he argued individual acts, such as
the commission of a crime, must be independent. In other words individual acts are voluntary
and done out of free will. Nekrosov happened to be one of Markov’s social enemies, a man
that Markov referred to as an abuse of mathematics. Markov claimed that independence was
not needed for such a convergence. In order to prove Nekrosov’s claims false, Markov laid the
foundation of what are now known as Markov chains, probability objects that are dependent on
a current state for a future state. These chains, with certain assumptions, are able to converge
in a way similar to coin flips.

Many events in the natural world are not independent. The weather today cannot possibly be
independent of yesterday’s weather; the probability of passing a test is somehow related to how
much one has studied the night before. Markov’s constructions demonstrate that even though
the future of the natural world is dependent on elements of the past, there may still exist some
higher natural order or convergence. But before we can see Nekrosov proven wrong, we must
delve into the construction of Markov chains, and the properties that underlie the necessary
assumptions (History provided by [10]).

This paper assumes an introductory understanding of basic aspects of probability theory. The
next section will review various concepts, and further discussion can be found in [2, 7, 8]. A
majority of the theory discussed in Markov chains is greatly inspired by [3], in addition to all of
the other references listed.
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2. A Few Probabilistic Facts.

2.1. State spaces and random objects. In this paper we define a state space to be a pair
(S,S ) where S is a set and S is a σ-algebra of subsets of S. The subsets in S are called the
measurable or observable subsets of the state space.

A probability measure on (S,S ) is a measure P : S → [0,∞] such that P(S) = 1. A
probability space is a triplet (Ω,O,P), where (Ω,O) is a state space and P : O → [0, 1] is a
probability measure. In this case, the subsets E ∈ O are called (observable) events.

Example 2.1 (Fundamental Examples). (a) A finite or countable set I is naturally a state space
in which any subset is measurable. A distribution on I is a function µ : I→ [0,∞) such that∑

i∈I
µ(i) = 1.

A distribution defines a probability measure Pµ on I by setting

Pµ(J) =
∑
j∈J

µ(j) ∀J ⊂ I.

Conversely, any probability measure P on I defines a distribution µ : I→ [0, 1],

µ(i) = P({i}), ∀i ∈ I.
The Dirac distribution concentrated at i ∈ I is the distribution δi : I→ [0, 1] defined by

δi(j) =

{
1, j = i,

0, j 6= i.
(2.1)

(b) The real axis R has a natural structure of state space in which the measurable subsets are
the Borel subsets of R. ut

Fix a probability space (Ω,O,P). Suppose that (S,S ) is a state space. An S-valued random
object or S-valued random variable is a measurable map X : Ω→ S, i.e., a map such that

X−1(A) ∈ O, ∀A ∈ S .

In the special case when S is the canonical state space R we will refer to an R-valued random
variable X simply as a random variable. Thus, a random variable X is a function X : Ω → R
such that the set {X < r} ⊂ Ω is measurable for any r ∈ R.

The distribution of a random variable is the probability measure PX on the state space R
uniquely determined by the equalities

PX
(

(−∞, r)
)

= P(X < r), ∀r ∈ R.
If X is an integrable random variable, then its expectation is the real number

E[X] :=

∫
Ω
X(ω)P(dω) =

∫
R
xPX(dx).

Definition 2.2. (a) A collection of events (Ai)i∈I ⊂ A is called independent if, for any finite
subset J ⊂ I, we have

P
( ⋂
j∈J

Aj

)
=
∏
j∈J

P
(
Aj
)
.

(b) Let (S,AS) be a state space. A collection of S-valued random variables (Xi)i∈I is called
independent if, for any collection of measurable subsets Si ∈ AS, i ∈ I, the collection of events(
{Xi ∈ Si }

)
i∈I is independent.
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(c) A collection of S-valued random variables (Xi)i∈I is called identically distributed if

P(Xi ∈ A) = P(Xj ∈ A), ∀i, j ∈ I, A ∈ S .

(d) A collection of S-valued random variables (Xi)i∈I is called independent, identically distributed
or i.i.d. if it is both independent and identically distributed. ut

Definition 2.3. An event A ∈ O happens almost surely (a.s. for brevity) if

P(A) = 1.

A sequence {Xn}n≥0 of random variables converges almost surely to a random variable X if

P
(

lim
n→∞

Xn = X
)

= 1.

ut

Theorem 2.4 (Strong Law of Large Numbers). If {Xn}n≥1 is an i.i.d. sequence of random
variables such that

E[X1] <∞
then, almost surely,

lim
n→∞

1

n

n∑
i=1

Xi = E[X1].

ut

Example 2.5. If X1 is a fair coin flip, that is it takes on value 0 with probability 1
2 and value 1

with probability 1
2 , we have that {Xn}n≥1 defines an i.i.d. sequence of random variables, where

E[X1] = 1/2. Thus, almost surely,

lim
n→∞

X1 + · · ·+Xn

n
=

1

2
.

ut

2.2. Conditional Probability and Independence. Given two events A,B ∈ O, we define
the conditional probability of A given B to be the the number

P(A|B) :=

{
P(A∩B)
P(B) , P(B) 6= 0,

0, P(B) = 0.
(2.2)

Suppose that B ∈ O has positive probability. Denote by FB the σ-algebra of subsets of B

FB :=
{
S ∈ F ; S ⊂ B

}
.

Then the map

PB : FB → [0, 1], PB(S) = P(S|B), ∀S ∈ FB (2.3)

is a probability measure.
A measurable partition of (Ω,O) is a countable subfamily F ⊂ O consisting of pairwise

disjoint events whose union is Ω. The σ-algebra generated by F is the subcollection F σ ⊂ O
consisting of unions of subsets of F .

Example 2.6. (a) Suppose that X : (Ω,O,P)→ I is a random object whose range is a countable
set I. The partition determined by X is the measurable partition FX consisting of the events{

X = i
}
, i ∈ I.
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The σ-algebra F σ
X consists of the events{

X ∈ J
}
, J ⊂ I.

(b) More generally, to a finite number of random objects X1, . . . , Xn : Ω → I, I countable, we
can associate the measurable partition FX1,...,Xn consisting of the events{

X1 = i1, . . . , Xn = in
}
, i1, . . . , in ∈ I.

The σ-algebra F σ
X1,...,Xn

consists of the events{
(X1, . . . , Xn) ∈ E

}
, E ⊂ In.

(c) Given two measurable partitions F1,F2 of Ω we denote by F1∩F2 the measurable partition
of Ω consisting of the events E1 ∩ E2, E1 ∈ F1 and E2 ∈ F2. Observe that if X1, X2 : Ω → I
are two random objects that

FX1,X2 = FX1 ∩FX2 . ut

Suppose that F = (Fn)n∈N ⊂ O is a measurable partition of Ω. For any event E ∈ O we
define the conditional probability of E given F to be the function

P(E|F ) : Ω→ R,

whose restriction to Fn ∈ F is equal to the constant P(E|Fn).

Definition 2.7. Suppose that we are given three measurable partitions of O, F ,F0,F1. We
say that F1 is independent of F0 given F , and we write this F1 ⊥⊥ F F0 if

P(A0 ∩A1|F ) = P(A0|F )P(A1|F ), ∀A0 ∈ F0, A1 ∈ F1. (2.4)

It is not hard to verify that the above condition is equivalent to

P(E0 ∩ E1|F ) = P(E0|F )P(E1|F ), ∀E0 ∈ F σ
0 , E1 ∈ F σ

1 . (2.5)

In the special case when F is the partition defined by a random quantity X : Ω→ I, I countable,
then we say that F0 is independent of F1 given X. If additionally, F1 is defined by a random
quantity (X1, . . . , Xn) : Ω → In, then we say that X1, . . . , Xn are independent of F0 given X
and we write this (X1, . . . , X) ⊥⊥ XF0. ut

In the special case when F is the partition defined by a random quantity X : Ω → I, I
countable, then we say that F0 is independent of F1 given X. If additionally, F1 is defined by
a random quantity (X1, . . . , Xn) : Ω→ In, then we say that X1, . . . , Xn are independent of F0

given X.
We have the following elementary but very useful alternate characterization of the conditional

independence of measurable partitions. More precisely given measurable partitions F0,F ,F1,
then F1 ⊥⊥ F F0 if and only if these partitions satisfy the abstract Markov property

P(E1|F ∩F0) = P(E1|F ), ∀E1 ∈ F1. (2.6)

3. Markov Chain Theory

3.1. Basic facts and examples.

Definition 3.1. Fix a finite or countable set I. A discrete stochastic process consists of a
probability space (Ω,O,P) and a sequence of I-valued random variables

Xn : Ω→ I, n = 0, 1, 2, . . . ,

The set I is called the state space of the process.
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We denote by Fn the measurable partition of Ω associated to X0, X1, . . . , Xn (see Example
2.6), i.e.,

Fn := FX0,...,Xn .

We call X0 the initial state of the process. We define the initial distribution to be the probability
distribution of X0, i.e., the function µ : I→ [0, 1] given by

µ(i) := P(X0 = i), ∀i ∈ I.

In the sequel we will think of probability distributions such as µ as a row vectors. ut

A Markov chain is a special type of discrete stochastic process, one that has certain properties
that describe how our process transitions from one state to another.

Definition 3.2. Given a probability space (Ω,O,P), a countable set I and a probability distri-
bution µ on I we say that a discrete stochastic process

{
Xn : (Ω,O,P) → I

}
n≥0

is a Markov

chain with initial distribution µ if the following hold:

(i) The distribution of X0 is µ.
(ii) For all n ≥ 1, the random variable Xn+1 is independent of Fn given Xn,

Xn=1 ⊥⊥ XnFn.

ut

Using the characterization (2.4) of conditional independence we see that the Markov property
is equivalent with the requirement that for any n ∈ N and any i0, i1, . . . , in−1, i, j ∈ I, we have

P(Xn+1 = j,Xn = i,Xn−1 = in−1, . . . , X0 = i0|Xn = i)

= P(Xn+1 = j|Xn = i)P(Xn = i,Xn−1 = in−1, . . . , X0 = i0|Xn = i).

Assuming that P(Xn = i) 6= 0, we deduce

P(Xn+1 = j,Xn = i,Xn−1 = in−1, . . . , X0 = i0)

P(Xn = i)

= P(Xn+1 = j|Xn = i)
P(Xn = i,Xn−1 = in−1, . . . , X0 = i0)

P(Xn = i)
.

This implies

P(Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = P(Xn+1 = j|Xn = i), (3.1)

or, equivalently,

P(Xn+1 = j,Xn = i,Xn−1 = in−1, . . . , X0 = i0)

= P(Xn+1 = j|Xn = i)P(Xn = i,Xn−1 = in−1, . . . , X0 = i0).
(3.2)

The above equality implies inductively that for any m,n ∈ N and any i0, i1, . . . , im+n ∈ I we
have

P(Xm+n = im+n, . . . , Xm+1 = im+1, Xm = im, Xm−1 = im−1, . . . , X0 = i0
)

= P(Xm+n = im+n, . . . , Xm+1 = im+1|Xm = im)P(Xm = im, Xm−1 = im−1, . . . , X0 = i0).
(3.3)

In other words, ∀m,n ∈ N we have

FXm+1,...,Xm+n ⊥⊥ Xm FX0,...,Xm . (3.4)
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Remark 3.3. For any n ≥ 0 the σ-algebra F σ
n consists precisely of the events that we can detect

only from the evolution of the process up to time n, the present. The conditional independence
(3.4) above is called the Markov property and it expresses the fact that the future is independent
of the past given the present.

Using the abstract Markov property (2.6) we see that (3.4) is equivalent with the condition

P(E|FX0,X1,...,Xm) = P(E|FXm), ∀m,n ∈ N, E ∈ FXm+1,...,Xm+n . (3.5)

ut

Let us point out a useful consequence of the Markov property. We have

P(Xn = in, . . . , X1 = i1, X0 = i0)

= P(Xn = in|Xn−1 = in−1, . . . , X0 = i0)P(Xn−1 = in−1, . . . , X0 = i0)
(3.1)
= P(Xn = in|Xn−1 = in−1)P(Xn−1 = in−1, . . . , X0 = i0).

Arguing inductively we deduce

P(Xn = in, . . . , X1 = i1, X0 = i0) =

n∏
k=1

P(Xk = ik|Xk−1 = ik−1). (3.6)

Using the last inequality in (3.3) we deduce that for any m,n ∈ N, and any im, im+1, . . . , im+n ∈ I
we have

P(Xm+n = im+n, . . . , Xm+1 = im+1|Xm = im) =
n∏
k=1

P(Xm+k = ik|Xm+k−1 = im+k−1). (3.7)

Definition 3.4. A homogeneous Markov chain (or HMC for brevity) is a Markov chain{
Xn : (Ω,O,P)→ I

}
n≥0

such that
P(Xn = j|Xn−1 = i) = P(Xn+1 = j|Xn = i), ∀n ∈ N. (3.8)

To a homogeneous Markov chain we associate the I× I matrix

P = {pij}i,j∈I,
where

pij := P(X1 = j|X0 = i) = · · · = P(Xn = j|Xn−1 = i) = · · · .
We call P the transition matrix of the HMC. Its entries are called transition probabilities. ut

Remark 3.5. The homogeneity signifies that the probability of moving between states does not
depend on what time we happen to be moving through them, and this allows us to define our
transition matrix P to be the transition matrix of states at any time of the Markov chain. Thus
the value pij only depends on which states the chain is moving between, which shows why we
represent the probability with such a notation. The transition matrix P inherits nice properties.

The entries in P are probabilities, so pij ∈ [0, 1] for all i, j ∈ I. If at a moment n the system
is in a state i, then at the next moment the system will be, with probability one, in some state
k ∈ I. This means that the sum of all entries in each row of the transition matrix is equal to 1,
i.e., ∑

k∈E
pik = 1, ∀i ∈ I.

A matrix of this type is called a stochastic matrix. ut
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Example 3.6. A Health Insurance company can assign probabilities to transitions between
states of health, and treat these as values in a Markov Chain. Let H mean that a person is
healthy, S sick, and D dead, and the unit of time be in months. Thus, in this case

I = {H,S,D},

pHH is the probability that in one month a healthy person stays healthy, pHS that a healthy
person becomes sick, pHD that a healthy person dies, etc. Obviously pDH = pDS = 0 and
pDD = 1. Further, we require that pHH + pHS + pHD = 1 = pSH + pSS + pSD. Therefore we
have defined a Markov chain, and this gives us the transition matrix pHH pHS pHD

pSH pSS pSD
0 0 1

 .

ut

Definition 3.7. A graph is a pair (V,E) consisting of an at most countable set of vertices V ,
and a set of edges E, i.e., unordered pairs [v1, v2] of distinct vertices v1, v2. The vertices v1 and
v2 are called the endpoints of the edge. ut

The following is an example of a graph:

v1 v2

v3

v4

v5v0

[v0, v1]

[v1, v2]

[v2, v3] [v3, v4]

[v4, v5][v2, v5]

Definition 3.8. Let G = (V,E) be a graph.

(i) We say a vertex y ∈ V is a neighbor to x ∈ V if [x, y] ∈ E. We write this x ∼ y. We
define the degree of a vertex v to be the number of neighbors of v.

(ii) The graph is called locally finite if each vertex has finite degree, i.e., each vertex has
only finitely many neighbors.

(iii) A weighted graph is a triplet (V,E,w) where (V,E) is a graph and w is a function
w : E → (0,∞) that associates a positive number (weight) to each edge of the graph.

ut

Example 3.9. Given a locally finite weighted graph (V,E,w) we define

Zw : V → (0,∞), P : V × V → [0, 1],

by setting

Zw(x) =
∑
x∼y

w([x, y]),
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pxy =

{
0, x 6∼ y,
w([x,y])
Zw(x) , x ∼ y.

The random walk on the graph (V,E) weighted by w, is the Markov chain with state space V
and transition matrix P = {pxy}x,y∈V . A very important case of this construction is when the
weight w is constant. This walk is called the canonical random walk on the graph, and the
transition matrix is

pxy =

{
1

deg(x) , if x ∼ y,
0, otherwise.

For the picture of the graph above, if we set each edge with even weights and define a Markov
chain on the graph, we get the transition matrix

0 1 0 0 0 0
1
2 0 1

2 0 0 0
0 1

3 0 1
3 0 1

3
0 0 1

2 0 1
2 0

0 0 0 1
2 0 1

2
0 0 1

2 0 1
2 0

 . ut

We have the following important existence result, [7, Thm. 6.1.1].

Theorem 3.10 (Existence of HMCs). Suppose we are given a countable set I, and a stochastic
I× I-matrix P. We set Ω := IN so the elements of Ω are sequences

ω = (i0, i1, i2, . . . ), ik ∈ I.

We denote by O the σ-algebra of all the subset of Ω. For each k = 0, 1, 2, . . . we define the
measurable map

Xk : Ω→ I, Xk(i0, i1, . . . ) = ik.

Then, for any probability distribution µ on I, there exists a probability measure Pµ on O such
that the discrete stochastic process (Xn)n≥0 is a HMC with initial distribution µ and transition
matrix P. For i ∈ I we denote by Pi the probability measure Pδi, where δi is the Dirac measure
on I concentrated at i defined in (2.1). ut

Definition 3.11. Let (Xn)n≥0 be a HMC with state space I. Its distribution is the sequence
(Pn)n≥0 of probability distributions on In+1 defined by

Pn({i0, . . . , in}) := P(X0 = i0, X1 = i1, . . . , Xn = in), i0, i1, . . . , in ∈ I.

ut

Remark 3.12. From now on we say that {Xn}n≥0 is HMC (P, µ)I if {Xn}n≥0 is a HMC with
transition matrix P and initial distribution µ on a state space I, which are objects that exist in
this probability space we have just constructed. ut

Before we look at more examples of Markov chains, let us look at some immediate consequences
of the definition of a HMC.

Theorem 3.13. The distribution of a HMC is determined by its initial distribution µ and its
transition matrix P.
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Proof. Using the Markov condition we deduce

P(X0 = i0, X1 = i1, . . . , Xn = in) = µ(i0)pi0i1 · · · pin−1in .

ut

Definition 3.14. The product Pm is called the m-step transition matrix. Its entries are char-
acterized by the equalities

pij(m) := P(Xn+m = j|Xn = i), i, j ∈ I, ∀n ≥ 0. (3.9)

For Markov chains, we assume that the future is only dependent upon the present. However,
given this iterative relationship with current steps and next steps, when we know the set of
probabilities of changing between certain states (P), we can predict things far into the future
just by knowing our initial state and powers of this matrix P. Our next theorem gives us a
clever way to construct more Markov chains.

Theorem 3.15. Let (S,AS) be a state space and I a finite or countable set. Let {Zn}n≥1 be an
i.i.d. sequence of S-valued random variables. Let f : I × S → I be a measurable function, i.e.,
for any i, j ∈ I the set {

s ∈ S; f(i, s) = j
}
,

is a measurable subset of the state space (S,AS). Fix an I-valued random variable X0, indepen-
dent of {Zn}n≥1. Then the sequence of I-valued random variables defined recurrently by

Xn+1 = f(Xn, Zn+1), n ≥ 0,

defines a HMC with state space I.

Proof. Applying the equation Xn+1 = f(Xn, Zn+1) multiple times shows that there is a mea-
surable function

gn : I× S× · · · × S︸ ︷︷ ︸
n

→ I,

such that Xn = gn(X0, Z1, . . . , Zn). Thus, the event {X0 = i0, . . . , Xn−1 = in−1, Xn = i} can be
expressed in terms of X0, Z1, . . . , Zn, so it is independent of Zn+1. Therefore

P(Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0)

= P(f(i, Zn+1) = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = P(f(i, Zn+1) = j).

This proves the Markov Property because

P(Xn+1 = j|Xn = i) = P(f(i, Zn+1) = j).

Moreover, the probability P(f(i, Zn+1) = j) is independent of n. Therefore we have a homoge-
neous Markov chain with transition matrix entries pij = P (f(i, Z1) = j). ut

Example 3.16. Let X0 be an integer valued random variable, and {Zn}n≥1 a sequence of i.i.d.
random variables taking values ±1, where

P(Zn = +1) = p ∈ (0, 1). (3.10)

Define a HMC with the relation

Xn+1 = Xn + Zn+1. (3.11)
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This yields a transition matrix
. . .

...
...

...
...

... · · ·
· · · 1− p 0 p 0 0 · · ·
· · · 0 1− p 0 p 0 · · ·
· · · 0 0 1− p 0 p · · ·
...

...
...

...
...

...
. . .

 .

We call this Markov chain a random walk with probability p. ut

3.2. Classifying the states of HMCs. In this section we will start to classify different types
of HMCs. We can then analyze which types of Markov chains behave better than others. Fix a
Markov chain {Xn}n≥0 that is HMC (P, µ)I.

Definition 3.17. (a) We say that the state j is accessible from the state i if there exists an
integer m ≥ 0 such that

P(Xm = j|X0 = i) > 0.

Using the notation (3.9) we can rewrite this condition

pij(m) > 0.

Note that any state i is always accessible to itself since we allow m = 0.

(b) We say that states i and j communicate if i is accessible from j and j is accessible from i.
We denote this by i↔ j.

(c) We say that a state i is closed if pii = 1. A set C of states is closed if for any i ∈ C we have
that

∑
j∈C pij = 1. ut

Remark 3.18. If we define a relation i ∼ j if and only if i↔ j, it becomes clear that commu-
nication is an equivalence relation that partitions our state space I into equivalence classes. We
call these classes communication classes. ut

Example 3.19. In Example 3.6 on health insurance, we see that D is a closed state since
pDD = 1. Therefore H and S are not accessible from D, and D does not communicate with
states H or S. ut

Definition 3.20. A HMC, along with its transition matrix, is said to be irreducible if there
exists only one communication class. ut

Example 3.21. The random walk in Example 3.16 is irreducible. For any integers a0, an ∈ Z,
we can find a path of integers a0, a1, . . . , an such that pa0a1pa1a2 · · · pan−1an > 0, that is, we have
a number n ≥ 0 such that pa0an(n) > 0. Hence a0, an communicate. Since we picked these
integers arbitrarily, all states in Z communicate, hence there is one communication class and
the random walk is irreducible. ut

Example 3.22. Let us consider the Example 3.6 on health insurance. Since D is a closed state,
the chain is not irreducible. ut

Definition 3.23. We define the period di of a state i ∈ I to be given by

di := gcd{n ≥ 1 : pii(n) > 0}.
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We define di = ∞ if there is no n ≥ 1 such that pii(n) > 0. If di = 1, we say that state i is
aperiodic. ut

Theorem 3.24. If the states i and j communicate, they have the same period.

Proof. If i = j, then clearly di = dj . Assume i 6= j. Since i and j communicate, there exist n,m
such that pij(n), pji(m) > 0. We have that for any k, ν ≥ 1,

pii(m+ νk + n) ≥ pij(m)(pjj(k))νpji(n)

Thus for any k ≥ 1 such that pjj(k) > 0 we have that pii(m+ νk + n) > 0 for any n ≥ 1. This
implies that di|(m+ νk + n) for any n ≥ 1. Since di|(m+ n), we have that di|νk for any n ≥ 1,
and that di|k. And since di divides any k such that pjj(k) > 0, we have that di|dj . Reversing
roles of i and j, we also get that dj |di, thus di = dj . ut

Remark 3.25. If a HMC, along with its transition matrix, has one communication class, i.e. is
irreducible, then we define the period of the HMC to be the period of all the states in the state
space (which is the same by the last theorem). Therefore if an irreducible HMC has period one,
the HMC is referred to as aperiodic. ut

Example 3.26. We know that the random walk in Example 3.16 is irreducible, therefore the
period of one state is the period of the entire chain. Consider the state 0 ∈ Z. To start at 0 and
return to 0 takes a minimum of two steps. In fact, we can only return to 0 in an even amount of
steps. Therefore the set {n ≥ 1 : p00(n) > 0} = {2, 4, 6, 8, . . .} Hence d0 = gcd{2, 4, 6, 8, . . .} = 2,
and thus the random walk has period 2. ut

Theorem 3.27. Consider an irreducible HMC with state space I, period d and transition matrix
P. Then for any states i, j ∈ I there exist integers m,n0 ≥ 0 such that

pij(m+ nd) > 0, ∀n ≥ n0.

Lemma 3.28. Let d be the gcd of A = {an : n ≥ 1}, a set of positive integers closed under
addition. Then A contains all but a finite number of positive multiples of d.

Proof of Theorem 3.27. Consider the set

A :=
{
k ≥ 1 : pjj(k) > 0

}
.

This set is closed under addition. Indeed, if k1k2 ∈ A, then

pjj(k1 + k2) ≥ pjj(k1)pjj(k2) > 0.

Since j is accessible from i, there exists m such that pij(m) > 0. Since A is closed under addition
and d = gcdA we deduce from Lemma 3.28 that

∃n0 > 0 : ∀n ≥ n0, nd ∈ A i.e., pjj(nd) > 0, ∀n ≥ n0.

Hence, for any n ≥ n0 we have

pij(m+ nd) ≥ pij(m)pjj(n) > 0.

ut

Example 3.29. Reconsider the random walk on the graph (V,E) in Example 3.9, where we
change the graph to be the following:
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v1 v2

v3

v4

v5v0

The canonical random walk on the graph is irreducible and aperiodic. For any vi, we can get
back to vi in one step with the edge connecting it to itself. Therefore vi has period one. Since
we can get to any other vertex vj from vi through a series of walks along edges connecting vi to
vj , the chain is irreducible. Therefore the chain is irreducible and aperiodic. ut

3.3. Stationary Distributions. We have established two special features of Markov chains:
irreducibility and aperiodicity. These will be important later for our convergence properties.
Now we establish the concept of a stationary distribution. Again, fix a Markov chain {Xn}n≥0

that is HMC (P, µ)I.

Definition 3.30. A probability distribution π satisfying

π = πP (3.12)

is called a stationary distribution of a HMC, along with its transition matrix (here π is a row
vector). ut

Remark 3.31. This definition is equivalent to saying that ∀i ∈ I

π(i) =
∑
j∈E

π(j)pji. (3.13)

Note also that when we iterate equation (3.12), we get for any n ≥ 0,

π = πPn. (3.14)

If a chain is started with a stationary distribution, it stays stationary, i.e.

P(Xn = i0, Xn+1 = i1, . . . , Xn+k = ik) = π(i0)pi0i1 · · · pik−1ik

does not depend on n. ut

A stationary distribution is an initial distribution that remains the distribution after any
amount of steps in the Markov chain. While this seems like a very useful distribution to have,
one may ask how we find this distribution, and what guarantees its existence.

Definition 3.32. Let {Xn}n≥0 be a HMC with transition matrix P and stationary distribution
π such that π(i) > 0 for all i ∈ I. We define the time reversal matrix Q, indexed by the same
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state space I as P, by the equation

π(i)qij = π(j)pji

ut

Remark 3.33. Q is stochastic because qij ∈ [0, 1] for all i, j ∈ I, and∑
j∈E

qij =
∑
j∈E

π(j)

π(i)
pji =

1

π(i)

∑
j∈E

π(j)pji =
π(i)

π(i)
= 1.

Suppose the initial distribution of the HMC is the stationary distribution (µ = π). Then
P(Xn = i) = π(i). Thus we have that

P(Xn = j|Xn+1 = i) =
P(Xn+1 = i|Xn = j)P(Xn = j)

P(Xn+1 = i)
=
pjiπ(j)

π(i)
= qij .

Thus the i, j entry of Q is the probability of moving backwards in time from state i to state j.
ut

Theorem 3.34. Let P be a stochastic matrix indexed by a countable set I, and π a probability
distribution on I. Let Q be a stochastic matrix indexed by I such that ∀i, j ∈ I,

π(i)qij = π(j)pji. (3.15)

Then π is a stationary distribution of P.

Proof. Fix i in I and sum over j in equation (3.15).∑
j∈E

π(i)qij =
∑
j∈E

π(j)pji

π(i) =
∑
j∈E

π(j)pji

Thus π is a stationary distribution. ut

Definition 3.35. A HMC is reversible if there is a probability distribution π such that for all
i, j ∈ I we have

π(i)pij = π(j)pji. (3.16)

Equation (3.16) is a condition known as detailed balance. ut

Corollary 3.36. Let P by a transition matrix over I, and π a probability distribution on I. If
for all i, j ∈ I we have detailed balance, then π is a stationary distribution.

Proof. If P and π are such that detailed balance holds, then it follows from Theorem (3.34) that
π is a stationary distribution. ut

Example 3.37. Consider the random walk on the graph that is irreducible and aperiodic
(3.29), and consider the probability distribution π = (1

9 ,
1
6 ,

2
9 ,

1
6 ,

1
6 ,

1
6). The graph in (3.29) has

the transition matrix 

1
2

1
2 0 0 0 0

1
3

1
3

1
3 0 0 0

0 1
4

1
4

1
4 0 1

4
0 0 1

3
1
3

1
3 0

0 0 0 1
3

1
3

1
3

0 0 1
3 0 1

3
1
3

 .
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It is easy to check that π satisfies detailed balance, and to check that πP = π. ut

If we can find a probability distribution for our HMC that satisfies detailed balance, then
it is the stationary distribution of our HMC. It still remains to show how we can find such a
probability distribution. Further, we must determine whether such a distribution is unique, and
whether or not this is the object that the chain will converge towards. First, we establish the
notions of stopping times in order to create another classification of Markov chains.

3.4. Stopping Times and the Strong Markov Property.

Definition 3.38. A stopping time for a discrete stochastic process {Xn : Ω→ I}n≥0 is a random
variable T : Ω→ N∪{∞} such that, for any m ≥ 0, the event {T = m} belongs to the σ-algebra
Fm. ut

Remark 3.39. The condition {T = m} ⊂ F σ
m signifies that at a given time m we can decide

to stop the process, i.e., decide that T = m using information about the evolution of the system
up to and including the present moment m. ut

The most important example of stopping time is a return time, which we now define.

Definition 3.40. The return time to a set A ⊂ I is defined as

TA = inf{n ≥ 1 : Xn ∈ A},

where TA =∞ if Xn 6∈ A for any n ≥ 1. For i ∈ I we set Ti := T{i}. ut

Remark 3.41. Clearly the event {TA = m} can be decided from the knowledge ofX0, X1, . . . , Xm

so TA is a stopping time. We will usually consider stopping times Ti for states i ∈ I. Further we
can define the rth return time to a state i ∈ I as

T
(r)
i = inf{n > T

(r−1)
i : Xn = i},

where T
(0)
i = 0, T

(1)
i = Ti. ut

Theorem 3.42. Denote by T
(r)
i the rth return time to i ∈ I and set

a0 := 0, a1 := T
(1)
i , a2 = T

(2)
i − T (1)

i , · · · .

Define

E :=

( ∞⋃
k=1

({k} × Ik
)
∪
(
{∞} × IN

)
,

Let

ξ1 = (a1, X1, . . . , XT
(1)
i

) ∈ E,

ξ2 =
(
a2, XT

(1)
i +1

, . . . , X
T

(2)
i

)
∈ E,

and, in general,

ξn+1 = (an+1, XT
(n)
i +1

, . . . , X
T

(n+1)
i

),∈ E, n = 1, 2, . . . .

Fix k ∈ N, k ≥ 2. Denote by Sk the event

Sk :=
{
T

(1)
i <∞, . . . , T (k)

i <∞
}
.
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Note that Sk depends on the choice of the starting point i. Then the E-valued random variables

ξ1, ξ2, . . . , ξk are i.i.d. with respect to the probability measure PSki (·) := Pi(·|Sk) (on the event
Sk).

Proof. We will prove for k = 2. We have that

Pi(ξ1 = (k, i1, . . . , ik), ξ2 = (l, j1, . . . , jl), T
(1)
i <∞, T (2)

i <∞)

= Pi(a1 = k,X1 = i1, . . . , Xk = ik, a2 = l,Xk+1 = j1, . . . , Xk+l = jl, a1 <∞, a2 <∞).

Consider the case when

i 6= i1, . . . , ik−1, j1, . . . , jl−1,

ik = i = jl.

because otherwise, the probability is 0. When we have this we get

= Pi(X1 = i1, . . . , Xk−1 = ik−1, Xk = i,Xk+1 = j1, . . . Xk+l−1 = jl−1, Xk+l = i)

= Pi(X1 = i1, . . . , Xk = i)Pi(Xk+1 = j1, . . . , Xk+l = i|X1 = i1, . . . , Xk = i).

And by the Markov Property we get that

= Pi(X1 = i1, . . . , Xk = 1)Pi(X1 = j1, . . . , Xl = i)

= Pi(X1 = i1, . . . , Xk = i, T
(1)
i = k)Pi(X1 = j1, . . . , Xl = i, T

(1)
i = l).

Summing over all i1, . . . , ik, j1, . . . , jl, we get that

Pi(a1 = k, a2 = l) = Pi(a1 = k)Pi(a1 = l).

Thus we get that

Pi(a1 <∞, a2 <∞) = Pi(T
(1)
i <∞, T (2)

i <∞) = Pi(a1 <∞)2.

Dividing this last equality through the first string of equalities, we get that

PS(k)
i (ξ1 = (k, i1, . . . , ik), ξ2 = (l, j1, . . . , jl))

= Pi(ξ1 = (k, i1, . . . , ik)|a1 <∞)Pi(ξ1 = (l, j1, . . . , jl)|a1 <∞)

= PS(k)
i (ξ1 = (k, i1, . . . , ik))P

S(k)
i (ξ1 = (l, j1, . . . , jl)).

Thus ξ1 and ξ2 are i.i.d. ut

Corollary 3.43. For i, j ∈ I, i 6= j, we have that, with respect to PSkj (·) = Pj
(
· |Sk(i)

)
, that

ξ2, . . . , ξk are i.i.d. and also independent of ξ1. ut

These results demonstrate evidence of the Strong Markov Property. A thorough proof of
the Strong Markov Property is very involved, and beyond the scope of this paper. Instead of
providing an unsatisfactory proof of it, we have included the previous results as building blocks
suggesting the property, and state its final form in the following theorem.

Theorem 3.44 (Strong Markov Property). Suppose {Xn}n≥0 is HMC (P, µ)I and T is the
first return time to i ∈ I. Conditional on T < ∞, we have that {XT+n}n≥0 is Markov (P, δi)|I
independent of X0, X1, . . . , XT . ut

Remark 3.45. Note that the Strong Markov Property works for any stopping time, however
we will only apply it for return times. ut
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Definition 3.46. We also denote the time since the rth return time to a state i in I as

S
(r)
i = {T (r)

i − T (r−1)
i : T

(r−1)
i <∞}.

S
(r)
i = 0 when T

(r−1)
i =∞. ut

Lemma 3.47. For r = 2, 3, . . ., and conditional on T
(r−1)
i <∞ we have that S

(r)
i is independent

of {Xm : m ≤ T (r−1)
i } and

Pi(S
(r)
i = n|T (r−1)

i <∞) = Pi(Ti = n).

Proof. Let {Xn}n≥0 be HMC (P, µ)I. Apply the Strong Markov Property to T = T
(r−1)
i .

Conditional on the fact that T < ∞, we have that XT = i and that {XT+n}n≥0 is Markov
(P, δi) and independent of X0, X1, . . . , XT . But

S
(r)
i = inf{n ≥ 1 : XT+n = i}.

So we have that S
(r)
i is the first return time to i of {XT+n}n≥0, which is HMC (P, δi)I. Therefore

S
(r)
i are stopping times, independent of the process before T

(r−1)
i , and have the same distribution

as a stopping time starting from the initial distribution δi. ut

Definition 3.48. Given a Markov chain {Xn}n≥0 on a state space I, we define the number of
visits to a state i ∈ I as

Ni =
∑
n≥1

1{Xn=i}. (3.17)

Further, we define the number of visits until time n to a state i ∈ I as

Ni(n) =
n−1∑
k=0

1{Xn=i}.

ut

Theorem 3.49. Let {Xn}n≥0 be a Markov chain. Given X0 = j for a state j ∈ I, the distribu-
tion of Ni is

Pj(Ni = r) =

{
fjif

r−1
ii (1− fii) r ≥ 1,

1− fji r = 0.

where fji = Pj(Ti <∞).

Proof. For r = 0, we have that the HMC never visits state i, which is equal to the probability
1− fji. We prove r ≥ 1 by induction. Assume the equation is true for k ∈ [1, r]. We have that

Pj(Ni > r) = 1−
r∑

k=0

Pj(Ni = k) = fjif
r
ii. (3.18)

Define Tr = T
(r)
i , the rth return time to state i.

Pj(Ni = r + 1) = Pj(Ni = r + 1, XTr−1 = i)

= Pj(Tr+2 − Tr+1 =∞, XTr−1 = i)

= Pj(Tr+2 − Tr+1 =∞|XTr+1 = i)Pj(XTr+1 = i)
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But, by the Strong Markov Property,

Pj(Tr+2 − Tr+1 =∞|XTr+1 = i) = P(Tr+2 − Tr+1 =∞|XTr+1 = i,X0 = j)

= P(Tr+2 − Tr+1 =∞|XTr+1 = i)

= P(Ti =∞|X0 = i)

And since Pj(XTr+1 = i) = Pj(Ni > r), we get that

Pj(Ni = r + 1) = Pj(Tr+2 − Tr+1 =∞|XTr+1 = i)Pj(XTr+1 = i)

= Pi(Ti =∞)Pj(Ni > r)

= (1− fii)fjif rii.

Thus we have proved the equation by induction. ut

Theorem 3.50. For any i ∈ I, we have that

(i) Pi(Ti <∞) = 1⇔ Pi(Ni =∞) = 1,
(ii) Pi(Ti <∞) < 1⇔ Ei[Ni] <∞⇔ Pi(Ni =∞) = 0.

Therefore we deduce that the probability Pi(Ni =∞) has only two possible outcomes, 0 and 1.

Proof. Pi(Ti <∞) = 1 if and only if fii = 1. Therefore by equation (3.18) we have that

lim
r→∞

Pi(Ni > r) = lim
r→∞

f r+1
ii = 1.

Thus Pi(Ni =∞) = 1. Note that

Ei[Ni] =

∞∑
r=1

rPi(Ni = r) =

∞∑
r=1

rf rii(1− fii) =
fii

1− fii
.

Thus we have that

Pi(Ti <∞) < 1⇔ fii
1− fii

<∞⇔ Ei[Ni] <∞.

And if the expected value of Ni starting from i is less than ∞, we have that Pi(Ni = ∞) = 0.
Thus we have proven both items in the theorem, and see that the only possible values for
Pi(Ni =∞) are 0 and 1. ut

3.5. Recurrence. The notion of stopping times allow us to define another class of Markov
chains, those that are recurrent.

Definition 3.51. If Pi(Ti < ∞) = 1, then we call the state i ∈ I recurrent. Otherwise we
call it transient. If a state i ∈ I is recurrent and Ei[Ti] < ∞ then we call it positive recurrent.
Otherwise we call it null recurrent. ut

A state i is recurrent if the return time to i when starting at i is almost surely finite. Further, i
is positive recurrent if the expected return time is also finite. Recurrence and positive recurrence
give guidelines as to how reasonable it is to get to a state in the chain.

Theorem 3.52. The state i ∈ I is recurrent if and only if

∞∑
n=0

pii(n) =∞.
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Proof. We have the following succesion of equivalent statements:

The state i ∈ I is recurrent ⇐⇒ Pi(Ti <∞) = 1

⇐⇒ Ei[Ni] =∞⇐⇒ Ei

∑
n≥1

1{Xn=i}

 =∞⇐⇒ Ei

∑
n≥0

1{Xn=i}

 =∞

⇐⇒
∞∑
n=0

pii(n) =∞.

ut

Remark 3.53. Suppose i ∈ I is recurrent and accessible from a state j ∈ I. This happens if
and only if there exists an m ≥ 0 such that pji(m) > 0 and

∑∞
n=0 pii(n) =∞, which happens if

and only if
∑∞

n=0 pji(n) =∞. ut

Corollary 3.54. Suppose P is a transition matrix for an irreducible recurrent HMC {Xn}n≥0.
Then for any j ∈ I we have that

P(Tj <∞) = 1.

Proof. If we consider all possible starting points i ∈ I, we have that

P(Tj <∞) =
∑
i∈I

P(X0 = i)Pi(Tj <∞)

Therefore we must show that Pi(Tj <∞) = 1 for all i ∈ I. Choose an m such that pji(m) > 0.
Theorem (3.52) implies that

1 = Pj(Xn = j for infinitely many n)

= Pj(Xn = j for some n ≥ m+ 1)

=
∑
k∈I

Pj(Xn = j for some n ≥ m+ 1|Xm = k)Pj(Xm = k)

=
∑
k∈I

Pk(Tj <∞)pjk(m).

Since
∑

i∈I pji(m) = 1 we deduce that Pi(Tj <∞) = 1 for all i ∈ I. ut

Theorem 3.55. If i, j communicate, then they are both recurrent or both transient.

Proof. i and j communicating implies that there exist M,N ≥ 0 such that

pij(M) > 0,

pji(N) > 0.

We can go from i to j in M steps, return to j in n steps, and go from j to i in N steps. Thus
we have that

pii(M + n+N) ≥ pij(M)pjj(n)pji(N).

Similarly we derive
pjj(N + n+M) ≥ pji(N)pii(n)pij(M).

Let α = pij(M)pji(N) > 0. We get that

pii(M + n+N) ≥ αpjj(n),

pjj(N + n+M) ≥ αpii(n).
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Thus
∑∞

n=0 pii(n) is divergent ⇔
∑∞

n=0 pjj(n) is divergent, and i is recurrent ⇔ j is recurrent.
Similarly, i is transient ⇔ j is transient. ut

Remark 3.56. If a HMC is irreducible all states communicate, and therefore all states are
either recurrent or transient. Therefore we can define an irreducible HMC as recurrent if the
states are recurrent. ut

3.6. Invariant Measures. We now establish the idea of invariant measures, and demonstrate
their relationship to stationary distributions.

Definition 3.57. An invariant measure of a HMC with state space I and transition matrix P
is a function x : I→ [0,∞) such that, when viewed as a row vector it satisfies the equality

xP = x, i.e., xi =
∑
j∈I

xjpji, ∀i ∈ I.

ut

Theorem 3.58. Let P be the transition matrix of an irreducible HMC {Xn}n≥0. Let 0 be an
arbitrary state in I, and T0 the return time to 0. Define for all i ∈ I

xi = E0

∑
n≥1

1{Xn=i}1{n≤T0}

 .
In other words, xi is the expected number of visits to state i before returning to 0. Then, for any
i ∈ I, we have that x is an invariant measure of P and xi ∈ (0,∞) for all i ∈ I.

Proof. We define

p0
0i(n) := E0[1{Xn=i}1{n≤T0}] = P0(X1 6= 0, . . . , Xn−1 6= 0, Xn = i).

Therefore xi =
∑

n≥1 p
0
0i(n). For any number of steps n ∈ [1, T0] , Xn = 0⇐⇒ n = T0. Thus

x0 =
∑
n≥1

p0
00(n) = 1.

We have that p0
0i(1) = p0i. For any n ≥ 2 we can go from i to j in (n− 1) steps and then from

j to i in one step, i.e.,

p0
0i(n) =

∑
j 6=0

p0
0j(n− 1)pji.

Thus
xi =

∑
n≥1

p0
0i(n) = p0

0i(1) +
∑
n≥2

p0
0i(n)

= p0i +
∑
n≥2

∑
j 6=0

p0
0i(n− 1)pij = p0i

∑
j 6=0

∑
n≥2

p0
0j(n− 1)

 pji
= p0i +

∑
j 6=0

xjpji = x0p0i +
∑
j 6=0

xjpji =
∑
j∈I

xjpji,

where the second-last equality comes from the fact that x0 = 1. This is true for any i ∈ I, thus
we have that x = xP. Iterating this we get x = xPn. Therefore

xi =
∑
j∈I

xjpji(n) = p0i(n) +
∑
j 6=0

xjpji(n).
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We have that x0 = 1 > 0. Suppose that xi = 0 for some i ∈ I such that i 6= 0. Then the above
equality would imply that p0i(n) = 0 for any n ≥ 0. This would imply that 0 and i do not
communicate, which is a contradiction since our HMC is irreducible. Hence xi > 0 for all i ∈ I.
We also have that 1 = x0 =

∑
j∈I xjpj0(n) for any n ≥ 1. Therefore, if there is some i such

that xi = ∞, then pi0(n) = 0 for any n ≥ 1. This contradicts the irreducibility. Hence x is an
invariant measure and xi ∈ (0,∞) for all i ∈ I. ut

Remark 3.59. Note that∑
i∈I

∑
n≥1

1{Xn=i}1{n≤T0} =
∑
n≥1

[∑
i∈I
1{Xn=i}

]
1{n≤T0}

=
∑
n≥1

1{n≤T0} = T0

Therefore ∑
i∈I

xi = E0[T0]. (3.19)

ut

Theorem 3.60. Invariant measures of irreducible recurrent stochastic matrices are unique up
to multiplication.

Proof. We define a matrix Q by

qji =
yi
yj
pij (3.20)

where y is an invariant measure of an irreducible recurrent stochastic matrix P. Q makes sense
since we know that yj > 0 for any j ∈ I from the previous theorem. Also,∑

i∈I
qji =

1

yj

∑
i∈I

yipij =
yj
yj

= 1.

Suppose that qji(n) = yi
yj
pij(n). Then

qji(n+ 1) =
∑
k∈I

qjkqki(n)

=
∑
k∈I

yk
yj
pkj

yi
yk
pik(n)

=
yi
yj

∑
k∈I

pik(n)pkj

=
yi
yj
pij(n+ 1).

Thus by induction the matrix Qn has the general term

qji(n) =
yi
yj
pij(n), (3.21)

for all n ≥ 1. Since P is irreducible, for any i, j ∈ I there exist n ≥ 0 such that pij(n) > 0. But
equation (3.21) implies that

pij(n) > 0↔ qji(n) > 0.
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Thus Q is irreducible. Since P is recurrent, we have that
∑

n≥0 pii(n) =∞. But qii(n) = pii(n)

implies that
∑

n≥0 qii(n) =
∑

n≥0 pii(n) =∞. Thus Q is recurrent as well. Define

gji(n) = P(Y0 = j, Y1 6= i, . . . , Yn−1 6= i, Yn = i),

where {Yn}n≥0 is a HMC with respect to Q. We get that

gi0(n+ 1) =
∑
j 6=0

qijgj0(n),

which implies that

yigi0(n+ 1) =
∑
j 6=0

yjgj0(n)pji.

We recall that

p0
0i(n+ 1) =

∑
j 6=0

p0
0i(n)pji,

which implies that

y0p
0
0i(n+ +1) =

∑
j 6=0

y0p
0
0jpji.

We have that

y0p
0
0i(1) = y0p0i = yiqi0 = yigi0(1).

Thus it follows that

p0
0i(n) =

yi
y0
gi0(n),

for any n ≥ 1. Summing across n on both sides we deduce that∑
n≥1

p0
0i(n) =

∑
n≥1

yi
y0
gi0(n)

xi =
yi
y0
.

Thus x is a multiple of y. ut

Theorem 3.61. Positive recurrence and null recurrence are also class properties.

Proof. We will see in the first part of Theorem (3.67) that for a recurrent irreducible Markov

chain we have that limn→∞
Ni
n = 1

Ei[Ti] . Suppose that i is null recurrent, i.e. Ei[Ti] =∞. Since

the chain is irreducible, we have that there exists r,m ≥ 0 such that pij(r) > 0, pji(m) > 0.
This implies that

0 = lim
k→∞

∑k
n=0 pii(n)

k
≥ lim

k→∞

∑k−m−n
n=0 pjj(n)

k
pij(r)pji(m) (3.22)

= lim
k→∞

k −m− n
k

∑k−m−n
n=0 pjj(n)

k −m− n
pij(r)pji(m) (3.23)

= lim
l→∞

∑l
n=0 pjj(n)

l
pij(r)pji(m) (3.24)

=
pij(r)pji(m)

Ej [Tj ]
. (3.25)

Which implies that Ej [Tj ] =∞, i.e. that j is null recurrent. ut
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Theorem 3.62. An irreducible recurrent HMC is positive recurrent if and only if its invariant
measure x satisfies ∑

i∈I
xi <∞.

Proof. From equation (3.19) we have that
∑

i∈I xi = E0[T0]. State 0 is positive recurrent if and
only if E0[T0] < ∞, that is,

∑
i∈I xi < ∞. Thus state 0 is positive recurrent if the inequality

holds. Since the HMC is irreducible, the HMC is positive recurrent. ut

If we have an irreducible HMC, then we have an invariant measure, which is unique up to
multiplication by a constant. From this, we are able to determine whether or not the HMC is
positive recurrent.

Lemma 3.63. (Dominated Convergence Theorem) Let {ank}n≥1,k≥1 be an array of real numbers
such that for some sequence of non-negative real numbers {bk}k≥1 satisfying

∑∞
k=1 bk < ∞, we

have that
|ank| ≤ bk.

Moreover, if we have
lim
n→∞

ank = ak,

then

lim
n→∞

∞∑
k=1

ank =
∞∑
k=1

lim
n→∞

ank =
∞∑
k=1

ak.

ut

Theorem 3.64. An irreducible HMC is positive recurrent if and only if there exists a stationary
distribution π. When the stationary distribution π exists, it is unique and π > 0.

Proof. If a HMC is irreducible and positive recurrent, we have the existence of a stationary
distribution by taking a multiple of the invariant measure. Conversely, assume there exists a
stationary distribution π. Iterating the equation π = πP, we get π = πPn. That is, for all i ∈ I,

π(i) =
∑
j∈I

π(j)pji(n).

If the HMC were transient, we have that for any i, j ∈ I,
lim
n→∞

pji(n) = 0.

Since pji(n) is bounded by 1, the dominated convergence theorem (3.63) implies that

π(i) = lim
n→∞

∑
j∈I

π(j)pji(n) =
∑
j∈I

π(j)( lim
n→∞

pji(n)) = 0.

Thus π is not a stationary distribution, since we must have
∑

i∈I π(i) = 1. Therefore the chain
is recurrent. And since the sum equals 1, i.e. is finite, we have positive recurrence. π is unique
when we take the invariant measure constant to be 1. Further, viewing π as an invariant measure,
we see that π(i) > 0 for all i ∈ I. ut

If we have an irreducible HMC, we can form the invariant measure and test whether or not
the chain is positive recurrent. If it is, we have a stationary distribution, which is unique and
strictly positive. Also, if we have an irreducible HMC and a stationary distribution (perhaps
by detailed balance), we have that the chain is positive recurrent, and again that the stationary
distribution is unique and strictly positive. The important thing is that for irreducible chains,
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positive recurrence and unique stationary distributions go hand in hand, giving us a criterion
for the uniqueness of stationary distributions. We will now see that with such assumptions we
get a nice relation between stationary distributions and the expected value of a return time.

Theorem 3.65. Let π be the unique stationary distribution of an irreducible positive recurrent
HMC. Let Ti be the return time to a state i ∈ I. Then

π(i)Ei[Ti] = 1.

Proof. We obtain π by normalization of the invariant measure x.

π(i) =
xi∑
j∈I xj

.

For i = 0

π(0) =
x0∑
j∈I xj

=
1

E0[T0]
.

Recall that we picked 0 ∈ I arbitrarily, therefore we get that

π(i)Ei[Ti] = 1,

for any i ∈ I. ut

Theorem 3.66. An irreducible HMC with finite state space is positive recurrent.

Proof. The chain is recurrent because if it were transient then for any i, j ∈ I we would have
that ∑

n≥0

pij(n) <∞.

Since the state space is finite, we also have that∑
j∈I

∑
n≥0

pij(n) <∞.

However ∑
n≥0

∑
j∈I

pij(n) =
∑
n≥0

1 =∞,

which is a contradiction. Therefore the chain is recurrent. Since we have an irreducible chain,
we have an invariant measure. And since the state space I is finite, we have that

∑
i∈I xi <∞,

which implies positive recurrence. ut

A lot of applications of Markov chains deal with finite state spaces. Given this theorem, we
need only check that the chain is irreducible to establish the existence of a unique stationary
distribution. We now establish one of our most important theorems thus far, the Ergodic
Theorem.

3.7. Ergodic Theorem.

Theorem 3.67 (Ergodic Theorem). Let {Xn}n≥0 be an irreducible HMC (P, µ)I. Define mi =
Ei[Ti]. Then, a.s.

lim
n→∞

Ni

n
=

1

mi
.
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Further, when {Xn}n≥0 is positive recurrent, with stationary distribution π, then for any bounded
function f : I→ R, a.s.,

lim
n→∞

1

n

n−1∑
k=0

f(Xk) = f̄ ,

where f̄ =
∑

i∈I π(i)f(i).

Proof. If {Xn}n≥0 is transient, then a.s. Ni <∞, so

Ni(n)

n
≤ Ni

n
→ 0← 1

mi
,

since Ei[Ti] =∞.
Suppose {Xn}n≥0 is recurrent. Fix a state i ∈ I. Recurrence implies that P(Ti < ∞) = 1.

Theorem(3.42) shows that the long run proportion Ni
n is the same for {Xn}n≥0 and {XT+n}n≥0,

so we can consider µ = δi. By Lemma (3.47), we have that

S
(1)
i , S

(2)
i , . . .

are i.i.d. with Ei[Ti] = mi. We have the relationship that

S
(1)
i + · · ·+ S

(Ni−1)
i ≤ n− 1,

since the length of time spent away from i up until the (Ni(n)− 1)th visit cannot exceed n− 1.
By similar reasoning we have that

S
(1)
i + · · ·+ S

(Ni(n))
i ≥ n.

Therefore, dividing by Ni(n), we get

S
(1)
i + · · ·+ S

(Ni−1)
i

Ni(n)
≤ n

Ni(n)
≤
S

(1)
i + · · ·+ S

(Ni)
i

Ni(n)
. (3.26)

By Theorem (2.4) we have that

S
(1)
i + · · ·+ S

(n)
i

n
→ mi.

Since {Xn}n≥0 is recurrent, Ni(n)→∞ as n→∞. Therefore by the squeezing principle

n

Ni(n)
→ mi.

Suppose {Xn}n≥0 is positive recurrent as well. This implies that mi = Ei[Ti] = 1
π(i) . Therefore

we have that

Ni(n)

n
→ π(i).

Let f : I→ R be bounded. Without a loss of generality assume that |f | ≤ 1. If f were bounded
by some M , then we will have a factor of M in our inequality and would pick an ε accordingly.



26 MIKE MCCAFFREY

For any J ⊂ I, we have that∣∣∣∣∣ 1n
n−1∑
k=0

f(Xk)− f̄

∣∣∣∣∣ =

∣∣∣∣∣∑
i∈I

(
Ni(n)

n
− π(i)

)
f(i)

∣∣∣∣∣
≤

∑
i∈I

∣∣∣∣Ni(n)

n
− π(i)

∣∣∣∣
≤

∑
i∈J

∣∣∣∣Ni(n)

n
− π(i)

∣∣∣∣+
∑
i∈JC

∣∣∣∣Ni(n)

n
− π(i)

∣∣∣∣
≤

∑
i∈J

∣∣∣∣Ni(n)

n
− π(i)

∣∣∣∣+
∑
i∈JC

(
Ni(n)

n
+ π(i)

)

≤
∑
i∈J

∣∣∣∣Ni(n)

n
− π(i)

∣∣∣∣+
∑
i∈JC

Ni(n)

n
+
∑
i∈JC

π(i).

Denote Nn(J) =
∑

i∈J
Ni(n)
n , π(J) =

∑
i∈J π(i).

• We can pick J ⊂ I such that π(JC) < ε
4 .

• We can choose N such that for any n ≥ N we have that
∑

i∈J |
Ni(n)
n − π(i)| = Nn(J)−

π(J) < ε
4 .

• |Nn(JC) − π(JC)| = |Nn(J) − π(J)|, which implies that Nn(JC) ≤ π(JC) + |Nn(J) −
π(J)| ≤ ε

4 + ε
4 = ε

2 .

Thus, ∣∣∣∣∣ 1n
n−1∑
k=0

f(Xk)− f̄

∣∣∣∣∣ ≤ ε

4
+
ε

4
+
ε

2
= ε.

ut

For an irreducible positive recurrent HMC (or an irreducible HMC over a finite state space),
and a well behaved function f , we have a convergence relation. We have proven Nekrosov wrong!
However we cannot stop here, as we will deduce yet another convergence property of Markov
chains.

4. Convergence To Stationary Distributions

4.1. Distance in Variation. First, we establish a way to measure the distance between prob-
ability distributions, and derive some important consequences.

Definition 4.1. Let I be a countable set, α, β probability distributions on I. The distance in
variation between α and β is

d(α, β) =
1

2
|α− β| = 1

2

∑
i∈I
|α(i)− β(i)|,

The distance in variation between two random variables X,Y with values in I and distributions
L (X),L (Y ) is

d(L (X),L (Y )) =: d(X,Y ).

ut
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Lemma 4.2. Let X,Y be two random variables with values in a countable space I. Then

sup
A⊂I

∣∣P(X ∈ A)− P(Y ∈ A)
∣∣ = sup

A⊂I

{
P(X ∈ A)− P(Y ∈ A)

}
= d(X,Y ).

Proof. If P(X ∈ A)− P(Y ∈ A) < 0, then let B = AC , and we get that

−
(
P(X ∈ A)− P(Y ∈ A)

)
= P(X ∈ B)− P(Y ∈ B) > 0.

Thus we have the first equality. We have that

P(X ∈ A)− P(Y ∈ A) =
∑
i∈I
1A(i)

(
P(X = i)− P(Y = i)

)
.

The right hand side is maximal for the set

Ã =
{
i ∈ I; P(X = i) > P(Y + i)

}
.

Since ∑
i∈I

(P(X = i)− P(Y = i)) = 0, (4.1)

we deduce that, for any A ⊂ I, we have∑
i∈I
1A(i) (P(X = i)− P(Y = i)) +

∑
i∈I
1AC (i) (P(X = i)− P(Y = i)) = 0.

On Ã we have that

P(X = i)− P(Y = i) =
∣∣P(X = i)− P(Y = i)

∣∣,
and on ÃC we have that

P(X = i)− P(Y = i) = −
∣∣P(X = i)− P(Y = i)

∣∣.
Therefore for Ã, we have that∑

i∈I
1
Ã

(i) (P(X = i)− P(Y = i)) =
∑
i∈I
1
Ã

(i) |P(X = i)− P(Y = i)|

=
∑
i∈I
1
ÃC

(i) |P(X = i)− P(Y = i)|

=
1

2

∑
i∈I
|P(X = i)− P(Y = i)| ,

where both equalities come from equation (4.1). ut

Definition 4.3. For probability distributions α, β on a countable set I, let D(α, β) be the
collection of couplings of α with β, i.e., random vectors (X,Y ) taking values in I× I, such that
the marginal distribution of X is α and the marginal distribution of Y is β. ut

Theorem 4.4. For any (X,Y ) ∈ D(α, β), we have that

P(X 6= Y ) ≥ d(α, β).

Proof. For any A ⊂ I, we have that

P(X 6= Y ) ≥ P(X ∈ A, Y ∈ AC) = P(X ∈ A)− P(X ∈ AC , Y ∈ A)

≥ P(X ∈ A)− P(Y ∈ A).
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This implies that

P(X 6= Y ) ≥ sup
A⊂I
{P(X ∈ A)− P(Y ∈ A) } = d(α, β).

ut

4.2. Convergence.

Definition 4.5. Let {αn}n≥0, β be probability distributions on a countable set I. If

lim
n→∞

d(αn, β) = 0,

we say that {αn}n≥0 converges in variation to β. Let {Xn}n≥0 be an I-valued stochastic process.
If π is some probability distribution on I, and if the distribution L (Xn) of the random variable
Xn converges in variation to π, that is, if

lim
n→∞

∑
i∈I
|P(Xn = i)− π(i)| = 0,

then {Xn}n≥0 converges in variation to π. ut

Remark 4.6. Recall that

f̄ =
∑
i∈I

π(i)f(i),

for some bounded f : I→ R and M is an upper bound of |f |. Then∣∣E[f(Xn)]− f̄
∣∣ =

∣∣∣∣∣∑
i∈I

f(i)
(
P(Xn = i)− π(i)

)∣∣∣∣∣ ≤M∑
i∈I
|P(Xn = i)− π(i)| .

Thus {Xn}n≥0 converges in variation to π ⇔ limn→∞ E[f(Xn)] = f̄ . ut

Definition 4.7. Two stochastic processes {X ′n}n≥0, {X ′′n}n≥0 taking values in I are said to
couple if there exists almost surely a finite random time T such that

n ≥ T ⇒ X ′n = X ′′n.

T is called a coupling time of {X ′n}n≥0 and {X ′′n}n≥0. ut

Theorem 4.8. For any coupling time T of {X ′n}n≥0 and {X ′′n}n≥0 , we have that

d
(
X ′n, X

′′
n

)
≤ P(T > n), ∀n ≥ 0.

Proof. For all A ⊂ I
P(X ′n ∈ A)− P(X ′′n ∈ A)

= P(X ′n ∈ A, T > n)− P(X ′′n ∈ A, T > n) + P(X ′n ∈ A, T ≤ n)− P(X ′′n ∈ A, T ≤ n)

= P(X ′n ∈ A, T > n)− P(X ′′n ∈ A, T > n) ≤ P(X ′n ∈ A, T > n) ≤ P(T > n),

where the first equality comes from T being a coupling time. ut

We so far have three ideal characteristics of Markov chains. Aperiodicity, irreducibility, and
positive recurrence. We summarize chains that meet all three conditions in the following defini-
tion.

Definition 4.9. A HMC, along with its transition matrix, that is irreducible, positive recurrent,
and aperiodic is called ergodic. ut
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Remark 4.10. Note that a HMC need not be ergodic for the Ergodic Theorem (does not need
aperiodicity). This definition may be confusing, but is nevertheless standard in various books.

ut

Theorem 4.11 (Convergence to Stationary Distribution). Let P be the transition matrix for
an ergodic Markov chain. For all probability distributions µ, v on I, we have that

lim
n→∞

d(µPn, vPn) = 0.

Further since P is ergodic, there exists a stationary distribution π with the consequence that for
any initial distribution µ we have that

lim
n→∞

|µPn − π| = 0.

Proof. Let {X(1)
n }n≥0, {X(2)

n }n≥0 be HMC (P, µ)I, (P, v)I, respectively, and independent of each
other. For some b ∈ I, consider the stopping time

T = inf{n ≥ 0 : X(1)
n = X(2)

n = b}.

We refer to T as coupling time.

Step 1. Show P(T <∞) = 1.

Consider the chain {Zn}n≥0 given by Zn = (X
(1)
n , X

(2)
n ), which we will show is a HMC on I× I.

Zn has a transition matrix P′ with entries

p(i,k)(j,l) = pijpkl,

and initial distribution λ(i,k) = µ(i)v(k). Therefore Zn is HMC (P′, λ) where λ is a probability

distribution on I× I. Since X
(1)
n , X

(2)
n are both irreducible and aperiodic, we have by Theorem

(3.27) that there exists an n0 ≥ 0 such that for any n ≥ n0

pik(n) > 0,

pjl(n) > 0,

which implies that p(i,k)(jl)(n) = pik(n)pjl(n) > 0, and therefore Zn is irreducible. Since

X
(1)
n , X

(2)
n are aperiodic, Zn is also aperiodic. Zn inherits a stationary distribution {π(i)π(j)}(i,j)∈I×I.

Therefore Zn is positive recurrent. Since T is a return time to (b, b) for Zn, which is positive
recurrent, we have that P(T <∞) = 1.

Step 2. Create a coupling HMC.
Consider the process {Yn}n≥0 given by

Yn =

{
X

(1)
n n ≤ T,

X
(2)
n n > T.

Apply the Strong Markov Property to Zn and we see that {X(1)
n+T , X

(2)
n+T }n≥0 is HMC (P′, δ(b,b))

and independent of (X
(1)
0 , X

(2)
0 ), . . . , (X

(1)
T , X

(2)
T ). Similarly, by symmetry, {X(2)

n+T , X
(1)
n+T }n≥0 is

HMC (P′, δ(b,b)) independent of (X
(2)
0 , X

(1)
0 ), . . . , (X

(2)
T , X

(1)
T ). Hence if

Y ′n =

{
X

(2)
n n ≤ T,

X
(1)
n n > T,

then (Yn, Y
′
n) is HMC (P′, λ), which implies that Yn is HMC (P, µ).
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Step 3. Yn and X
(2)
n couple, and by Theorem (4.8 ), we get that

d(µPn, vPn) = d(Yn, X
(2)
n ) ≤ P(T > n)→ 0,

as n→∞. Further, since P is ergodic, we have a stationary distribution π, and if we let v = π,
then πPn = π, and we get the convergence to the stationary distribution. ut

4.3. Rate of Convergence. Now that we have established a notion of convergence for ergodic
Markov chains, one wonders how quickly this convergence may occur. We establish a rate with
the following theorem.

Definition 4.12 (E. Landau). The notation f(n) = o(g(n)) means that

lim
n→∞

f(n)

g(n)
= 0.

The notation f(n) = O
(
g(n)

)
means that there exists c > 0 such that

|f(n)| ≤ c|g(n)|, ∀n. ut

Theorem 4.13. Suppose that the coupling time T defined in (4.2) satisfies

E[φ(T )] <∞,

for some non-decreasing function φ : N→ R+ such that

lim
n→∞

φ(n) =∞.

Then, for any initial distributions µ, ν, we have that

|µPn − νPn| = o

(
1

φ(n)

)
.

Proof. Since φ is non-decreasing, we have that φ(T )1{T>n} ≥ φ(n)1{T>n}. Thus

P(T > n)φ(n) ≤ E[φ(T )1{T>n}].

Since T is finite we have that limn→∞ φ(T )1{T>n} = 0 And since φ(T )1{T>n} is bounded by
φ(T ), which is integrable, Lemma (3.63) implies that

lim
n→∞

E[φ(T )1{T>n}] = 0.

Hence

φ(n)|µPn − νPn| ≤ φP(T > n)→ 0.

Hence for any c > 0 we have n0 > 0 such that for any n ≥ n0,

φ(n)|µPn − νPn| ≤ c⇒ |µPn − νPn| ≤ c 1

φ(n)
.

That is, |µPn − νPn| = o
(

1
φ(n)

)
. ut
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4.4. Eigenvalues of the Transition Matrix. Up until now, we have been thinking of all
vectors as row vectors. For the entirety of this section, since we will be dealing with both
column vectors and row vectors, denote a vector written v as a column vector and a vector
written vT as a row vector.

Definition 4.14. A square matrix A is called positive/non-negative, and we indicate this using
the notation A > 0 (respectivelyA ≥ 0) if all its entries are positive/non-negative. A non-
negative square matrix A is called primitive if there exists a natural number k > 0 such that
Ak > 0. ut

Theorem 4.15 (Peron-Frobenius). Let A be a non-negative primitive r× r matrix. We denote
by spec(A) its spectrum (the set of all its eigenvalues). The multiplicity of an eigenvalue is its
multiplicity as a root of the characteristic polynomial. Then the following hold:

(i) The spectral radius of A defined by

max
λ∈spec(A)

|λ| ∈ (0,∞),

is a simple eigenvalue of A. We denote it by λ1.
(ii) If λ ∈ spec(A) \ {λ1}, then |λ| < λ1.
(iii) The left eigenvector u1 and the right eigenvector v1 of A corresponding to the eigenvalue

λ1 can be chosen such that they are positive and

uT1 v1 = 1.

(iv) Order spec(A) \ {λ1} as λ2, . . . λr so that

λ1 > |λ2| ≥ . . . ≥ |λr|.
and if |λ2| = |λj | for j ≥ 3, then the multiplicity of λ2 is greater or equal that the
multiplicity of λj. Then

An = λn1v1u
T
1 +O(nm2−1|λ2|n),

where m2 is the multiplicity of λ2.

ut

Remark 4.16. If we consider a transition matrix P on I = {1, . . . , r}, and P is irreducible and
aperiodic, then there is some n such that Pn > 0. For we know that if it is irreducible and
aperiodic, then there is an n such that we can travel between states with positive probability.
P has a unique stationary distribution π, and u1 = π , v1 = 1, the vector consisting of all 1’s.
Therefore

Pn = 1 · πT +O
(
nm2−1|λ2|n

)
.

This gives us an estimate of how long convergence to a stationary distribution may take, however
this estimate requires a lot of knowledge about the structure of P. For reversible transition
matrices, we will be able to develop better bounds, and in order to do that we must delve into
some vector space theory. ut

Definition 4.17. Let P be an irreducible transition matrix on the finite1 state space I =
{1, . . . , r}. Let π be a strictly positive probability distribution on I. We denote by L 2(π) to be
the Hilbert space of functions x : I→ R equipped with the scalar product

〈x, y〉π :=
∑
i∈I

x(i)y(i)π(i),

1The finiteness of I implies positive recurrence.
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and norm

||x||π :=

(∑
i∈I

x(i)2π(i)

) 1
2

.

The π-mean of a function x : I→ R is the real number

〈x〉π :=
∑
i∈I

x(i)π(i) = 〈x, 1〉π,

while its π-variance is

V arπ(x) := ||x||2π − 〈x〉2π.
We denote by L 2( 1

π ) to be the dual of Rr ∼= RI equipped with scalar product

〈xT , yT 〉 1
π

:=
∑
i∈I

x(i)y(i)
1

π(i)
.

Note that 〈·, ·〉π takes column vectors and 〈·, ·〉 1
π

takes row vectors. ut

Theorem 4.18. The transition matrix P is reversible (see Definition 3.35) with stationary
probability distribution π if and only if P is self adjoint in L 2(π), i.e.,

〈Px, y〉π = 〈x,Py〉π, ∀x, y ∈ L 2(π).

Proof. Suppose P is reversible with invariant probability distribution π. Then

〈Px, y〉π =
∑
i∈I

∑
j∈I

pijx(j)

 y(i)π(i)

=
∑
i,j∈I

π(i)pijx(j)y(i)

=
∑
i,j∈I

π(j)pjiy(i)x(j)

=
∑
j∈I

x(j)

(∑
i∈I

pjiy(i)

)
π(j)

= 〈x,Py〉π.

Hence P is self adjoint. Now suppose that P is self adjoint in L 2(π). Pick x = δi , y = δj .
Then we get that

π(i)pij = 〈Pδi, δj〉π = 〈δi,Pδj〉π = π(j)pji.

Hence P is reversible with distribution π. ut

Remark 4.19. We can also deduce that P is reversible with probability distribution π if and
only if the matrix

P∗ := D
1
2 PD−

1
2

is symmetric, where D = diag{π(1), . . . , π(r)}. Indeed P∗ is symmetric if and only if√
π(i)pij√
π(j)

=

√
π(j)pji√
π(i)

⇐⇒ π(i)pij = π(j)pji.

We also have that 〈x, y〉π = xTDy.
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Since P∗ is symmetric, it has real eigenvalues, it is diagonalizable, and its right eigenvectors
and the same as its left eigenvectors. Let {w1, . . . , wr} be the set of orthonormal eigenvectors
with corresponding eigenvalues λ1, . . . , λr. Define ui and vi by

wi = D−
1
2ui,

wi = D
1
2 vi.

We get that 1√
π(i)

ui =
√
π(i)vi, and therefore have that u = Dv. The matrices P and P∗ have

the same eigenvalues, and for a eigenvalue λi, vi is a right (column) eigenvector and uTi is a left
(row) eigenvector.

The column vectors vi are orthonormal in L 2(π), because

〈vi, vj〉π =
∑
k∈I

vi(k)vj(k)π(k) =
∑
k∈I

wi(k)wj(k) = δij ,

||vi||2 =
∑
k∈I

vi(k)2π(k) =
∑
k∈I

wi(k)2 = 1.

Where δij = 1 if i = j and 0 if i 6= j.
Similarly, the row eigenvectors uTi ’s are orthonormal in L 2( 1

π ). Recall that for P, u1 = π,
v1 = 1. Since {v1, . . . , vr} are r orthonormal vectors in Rr, they are a basis of Rr. This implies
that for any x ∈ Rr we can write

x =
∑
i∈I

αivi,

for some αi’s in R. Since 〈x, vj〉π =
∑

k∈I αk〈vk, vj〉π = αj , we can write

x =

r∑
j=1

〈x, vj〉πvj .

Similarly, we deduce that

xT =

r∑
j=1

〈xT , uTj 〉 1
π
uTj .

For any j ∈ I, n ∈ N, we have that Pnvj = λnj vj . Therefore we deduce that

Pnx =
r∑
j=1

λnj 〈x, vj〉πvj ,

xTPn =

r∑
j=1

λnj 〈xT , uTj 〉 1
π
uTj .

ut

Definition 4.20. We define the χ2 contrast of a probability distribution α with respect to a
probability distribution β as

χ2(α;β) =
∑
i∈I

(α(i)− β(i))2

β(i)
.

Note that χ2(α;π) = ||α− π||21
π

. ut
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Theorem 4.21. For probability distributions α and β, we have that

4d(α, β)2 ≤ χ2(α;β).

Proof. (∑
i∈I

∣∣α(i)− β(i)
∣∣)2

=

(∑
i∈I

∣∣∣∣α(i)

β(i)
− 1

∣∣∣∣β(i)
1
2β(i)

1
2

)2

≤
∑
i∈I

(
α(i)

β(i)
− 1

)2

β(i)

=
∑
i∈I

1

β(i)

(
α(i)− β(i)

)2
,

where the second line is from Cauchy-Schwarz. ut

Theorem 4.22. Let P be an irreducible transition matrix on a finite state set I = {1, . . . , r}
and reversible on its stationary distribution π. Then for any initial probability distribution µ on
I, and for all n ≥ 1,

||µTPn − πT || 1
π
≤ ρn||µT − πT || 1

π
,

where ρ = sup(λ2, |λr|). Further, for any i ∈ I, for any n ≥ 1, and for any A ⊂ I, we have that

|δTi Pn(A)− πT (A)| ≤
(

1− π(i)

π(i)

) 1
2

min

(
π(A)

1
2 ,

1

2

)
ρn.

From this, we can deduce that

4dv(δ
T
i P

n, π)2 ≤ 1− π(i)

π(i)
ρ2n ≤ ρ2n

π(i)
.

Proof. Recall that u1 = π , v1 = 1. This implies that

〈µT − πT , uT1 〉 1
π

=
∑
i∈I

(µ(i)− π(i))π(i)
1

π(i)
=
∑
i∈I

(µ(i)− π(i)) = 0.

Let αj = 〈µT − πT , uj〉 1
π

, and recall that xTPn =
∑r

j=1 λ
n
j 〈xT , uTj 〉 1

π
uTj . This yields

||(µ− π)TPn||21
π

=

r∑
j=2

α2
jλ

2n
j ||uTj ||21

π

=

r∑
j=2

α2
jλ

2n
j

≤ ρ2n
r∑
j=2

α2
j = ρ2n||µT − πT ||21

π

,

where the second line is from the fact that uj ’s are othornormal, and the third line is from the
definition of ρ.
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For the second part, define δTi Pn = µTn .

|µTn (A)− πT (A)|2 =

∣∣∣∣∣∑
i∈A

(
µn(i)

π(i)
− 1

)
π(i)

∣∣∣∣∣
2

≤

(∑
i∈A

(
µn(i)

π(i)
− 1

)2

π(i)

)
π(A)

≤

(∑
i∈I

(
µn(i)

π(i)
− 1

)2

π(i)

)
π(A)

= ||δTi Pn − πT ||21
π

π(A) ≤ ρ2n||δTi − πT ||21
π

π(A),

where the second line is by Cauchy-Schwarz, and the last line is from the first part. It is easy

to check that ||δTi − πT ||21
π

= 1−π(i)
π(i) , which implies that

|δTi Pn(A)− πT (A)| ≤
(

1− π(i)

π(i)

) 1
2

π(A)
1
2 ρn.

We also recall that ∣∣µn(A)− π(A)
∣∣2 ≤ dv(µn, π)2 ≤ 1

4
χ2(µn;π),

χ2(µn;π) = ||µTn − πT ||21
π

≤ ρ2n||δTi − πT ||21
π

= ρ2n 1− π(i)

π(i)
.

Thus we get that

|δTi Pn(A)− πT (A)| ≤
(

1− π(i)

π(i)

) 1
2 1

2
ρn.

Thus we deduce that

|δTi Pn(A)− πT (A)| ≤
(

1− π(i)

π(i)

) 1
2

min

(
π(A)

1
2 ,

1

2

)
ρn.

By Lemma (4.2), we get the third part of the theorem. ut

Fact 4.23. Let A : V → V be a linear map on an arbitrary vector space V of finite dimension
r with an arbitrary inner product 〈·, ·〉. Suppose that this map is self adjoint, i.e. for any x ∈ V

〈Ax, y〉 = 〈x,Ay〉.

Then there is an orthonormal basis v1, . . . , vr of eigenvectors of A, corresponding to eigenvalues
λ1, . . . , λr, all of which are real. Suppose also that these eigenvalues are ordered in such a way
that

λ1 ≤ · · · ≤ λr
Then we have that

inf
||x||=1

〈Ax, x〉 = λ1, inf
x⊥v1,
‖x‖=1

〈Ax, x〉 = λ2,

etc. ut
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Definition 4.24. If P is a reversible transition matrix with invariant probability distribution
π, we define the Dirichlet form

E : L 2(π)×L 2(π)→ R,

Eπ(x, x) =
〈
(I −P)x, x

〉
π
.

ut

Theorem 4.25.

Eπ =
1

2

∑
i,j∈I

π(i)pij(x(j)− x(i))2

Proof.

〈(I −P)x, x〉π =
∑
i,j∈I

π(i)pijx(i)(x(i)− x(j))

=
∑
i,j∈I

π(j)pjix(j)(x(j)− x(i))

=
∑
i,j∈I

π(i)pijx(j)(x(j)− x(i))

=
1

2

∑
i,j∈I

π(i)pij(x(j)− x(i))2,

where the second line is a change of index, the third line is from reversiblity, and the fourth line
is the sum of the first and third lines, halved to keep equality. ut

Remark 4.26. Note that for any c ∈ R, we have that

Eπ(x− c · 1, x− c · 1) =
1

2

∑
i,j∈I

π(i)pij((x(i)− c)− (x(j)− c))2

= Eπ(x, x).

ut

Remark 4.27. If P is irreducible, we have that λ1 = 1 and that v1 = 1 is a right eigenvector
of P. Further we can order the eigenvalues

1 = λ1 > λ2 ≥ · · · ≥ λr ≥ −1.

Here, λ2 is the second largest eigenvalue of P (SLE). Recall ρ = sup(λ2, |λr|) was the second
largest eigenvalue modulus (SLEM).
Consider the matrix I −P. This has eigenvalues

βi = 1− λi,
for each i ∈ I. This gives the ordering

0 = β1 < β2 ≤ · · · ≤ βr ≤ 2.

And the right eigenvectors for I −P are the same as P, the vi’s. Note that

Eπ(x, x)

Varπ(x)
=
〈(I −P)x, x〉π
〈x, x〉π

.
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Then by Fact (4.23), we get the following theorem. ut

Theorem 4.28. Let P be an irreducible transition matrix on a finite state space I = {1, . . . r}
with stationary distribution π. If P is reversible with π, then for all j ≥ 2 we have that

βj = inf

{
Eπ(x, x)

V arπ(x)
: 〈x, vi〉π = 0, i ∈ [i, . . . j − 1]

}
.

Any vector x in this infimum is an eigenvector of P corresponding to the eigenvalue λj = 1−βj.
ut

Remark 4.29. Since v1 = 1, we have that

β2 = inf

{
Eπ(x, x)

V arπ(x)
: 〈x〉π = 0, x 6= 0

}
= inf

{
Eπ(x, x)

V arπ(x)
, x 6= constant

}
.

ut

Corollary 4.30. If there exists an A > 0 such that for any x ∈ Rr

V arπ(x) ≤ AEπ(x, x),

then

λ2 ≤ 1− 1

A
,

where λ2 is the SLE of P.

Proof. If 1
A ≤

Eπ(x,x)
V arπ(x) for all x ∈ Rr, then

1

A
≤ β2,

which implies that

λ2 ≤ 1− 1

A
.

ut

4.5. Summary of Consequences of Ergodic Markov Chains. We summarize our results
in the following theorem.

Theorem 4.31. For an ergodic HMC {Xn}n≥0 with transition matrix P, we have that there
exists a stationary distribution π > 0. For any bounded function f : I→ R we have the following:

• The temporal averages of f ,

1

n

n−1∑
k=1

f(Xk),

converge almost surely to the spatial average of f

f̄ =
∑
i∈I

f(i)π(i).

• For any initial state x0 ∈ I, limn→∞ P(Xn = j|X0 = x0) = π(j) for any j ∈ I.

Note that in the Ergodic Theorem (3.67) aperiodicity is not needed, but here we include is as a
result of ergodic chains as well. ut
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Remark 4.32. If our HMC is ergodic, it behaves well. It is aperiodic, meaning that it does not
travel between sets of states. It is irreducible, meaning that it can never get stuck. And it is
positive recurrent, meaning that it will return to states in a finite amount of time. Given these
properties, our HMC has a property similar to the SLLN for i.i.d. random variables, that is,
it converges to a probabilistic average. Also, no matter where our HMC starts, if we let it run
long enough it will end with a probability distribution according to π. ut

5. The Shuffling Problem

We have established the concept of convergence to a stationary distribution. One may wonder
how long this convergence takes. One interesting example is the application of Markov chains
with card shuffling.

How many shuffles does it take to randomize a deck? In this example, our state space is the
symmetric group of 52 elements X = S52 , |S52| = 52!. We will define riffle shuffling as a
probability density Q on S52 A riffle shuffle will be defined as cutting the deck into 2 packets of
non-negative size, and dropping cards from each of the packets into a new pile with probability
proportional to packet size. For g ∈ S52 we have that Q(g) ≥ 0 and

∑
g Q(g) = 1. We define a

Markov chain by setting X0 as the identity permutation. From there,

P(X1 = g) = Q(g),

P(X2 = g) = Q ∗Q(g) =
∑
h∈X

Q(h)Q(gh−1),

...

P(Xk = g) = Qk∗(g) = Q ∗Q(k−1)∗(g) =
∑
h

Q(h)Q(k−1)∗(gh−1),

where Q(k−1)∗(g) is the (k − 1) repeated convolution.
The Markov chain {Xn}n≥0 is irreducible, since one can get to any permutation by a series of

riffle-shuffles, and aperiodic, because it can get back to a state in one step by the identity, which
is a riffle shuffle with one packet of size 0 and the other of size 52. Therefore (since the state
space is finite) the chain is ergodic. It turns out that its stationary distribution is the uniform
distribution, since repeated convolutions go towards the uniform distribution as the number of
convolutions goes to infinity, and that

Qk∗(g)→ U(g) =
1

52!
,

as k → ∞. However, the question remains as to how many shuffles it takes to get reasonably
close to the uniform distribution. We let dQ(k) = |Qk∗ − U |.

Computing dQ(k) is possible, but is beyond the scope of this paper. Its formula involves
rising sequences. A rising sequence of a permutation is a maximal consecutively increasing sub-
sequence.

〈
n
r

〉
is defined as the number of permutations of n elements with r rising sequences,

and there are recursive formulas to easily calculate these. With all of this in mind, it can be
deduced that

dQ(k) = |Qk∗ − U | = 1

2

52∑
r=1

〈
52

r

〉 ∣∣∣∣∣
(

2k+52−r
52

)
252k

− 1

52!

∣∣∣∣∣ .
For 9 shuffles, we have a graph of the distances in Figure 1. It shows that after 7 shuffles, we
have reasonable enough distance to assume that all possible orderings of the deck are close to
being equally likely. Further information can be found in [1] and [9].
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Figure 1. Shuffle Distances

6. Metropolis-Hastings Algorithm

Suppose we want to know information about a probability distribution π on a finite state
space X . We will use a process called Markov Chain Monte Carlo, or MCMC. Our goal will
be to find a Markov chain with a stationary distribution equal to the probability distribution π.
Then, if we run this chain for a long time (and if it is ergodic), we will arrive at π. If we run
the Markov chain for N steps, and do this M times, we can find the proportion of samples that
end in a state i ∈ X , which we can call µN (i), and do this for each possible i ∈ X . We can
then measure how far our approximation is by calculating the distance in variation, that is

|µN − π| =
1

2

∑
i∈X

|µN (i)− π(i)|.

We will not get 0 unless we could make N,M =∞, however we can get pretty close. It remains
to discuss how to construct a HMC with stationary distribution π.

6.1. Hard Disks in a Box: Motivating Example. Our motivating example will be the
problem for which the Metropolis algorithm was originally created.

Suppose we have N disks of radius δ > 0 contained in the unit square where δ � 1 for large
N . Disks are contained in the unit square with a periodic boundary, meaning that if a disk goes
outside the square to the right it comes in on the left. In other words, we think of hard disks
on a torus. The disks in the configuration are not allowed to overlap.

Further, the centers of the disk can only be at the centers of a grid generated by horizontal
and vertical lines. These lines are determined by their intersections with the axes. If we pick m
points on the horizontal axis and n points on the vertical axis, we have mn possible centers for
our disks.

Let Hx be the set of m points in the interval [0, 1], and Hy be the set of n points in the interval
[0, 1]. Therefore the set of all possible centers is H = Hx × Hy. We denote by X (N, δ,H) the
set of all possible arrangements of the N disks of radius δ with centers at points in the array H.
Thus X (N, δ,H) is a subset of the family

(H
N

)
of subsets of cardinality N of H.
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Suppose we had a function f : X (N, δ,H)→ R and want to approximate the average

1

|X (N, δ,H)|
∑

x∈X (N,δ,H)

f(x). (6.1)

It is easy to see why this is difficult: we do not have a good idea what the set X (N, δ,H) is. In
particular, finding its cardinality could be a daunting task.

Observe that the map

π : X (N, δ,H)→ [0, 1], π(x) =
1

|X (N, δ,H)|
.

is the uniform probability distribution on X (N, δ,H).
We will evaluate the average (6.1) by constructing an irreducible ergodic Markov chain

(Xk)k≥0 with state space X (N, δ,H) and stationary measure π. The Ergodic Theorem im-
plies that the temporal average

1

k

k∑
i=1

f(Xi),

converges almost surele to the spatial average (6.1) as k →∞. The construction of the Markov
chain (Xk)k≥0 proceeds as follows.

Start with a possible configuration X0 = x0 ∈X (N, δ,H). Than for k ≥ 0, we proceed by:

• We are at a configuration Xk = x ∈X (N, δ,H).
• Pick uniformly at random a disk from the configuration of N disks x.
• With the selected disk, create a ball of radius h > 0 from the center of selected disk,

picking h uniformly from the interval (0, 1), and pick a random point uniformly from
the intersection of the ball and the grid H.
• Move the center of the disk to this new point, and denote this new configuration by y.

If y ∈X (N, δ,H), set Xk+1 = y. Otherwise, set Xk+1 = Xk = x.

This forms a chain X0, X1, . . . Xk, . . . of configurations of disks in the unit square. This can
be thought of as a Markov chain if we were to define a transition matrix based upon the
possibilities of moving between arrangements. This chain is irreducible because any configuration
in X (N, δ,H) can be achieved by a finite set of moves described above. The chain is aperiodic
because you can return to a state in one step (when the proposed configuration is rejected).
This chain is positive recurrent since it is irreducible over a finite number of configurations (due
to H being finite).

Therefore the chain is ergodic (for certain values of δ and N) and we can compute averages
that approximate our desired information. I will not delve into why this specific algorithm works
or what kind of functions we may wish to approximate. I use this example to show that this
algorithm can be used to study very complicated objects, such as X (N, δ,H). I also use this
example to illustrate the concepts of acceptance and rejection that are used in the Metropolis-
Hastings Algorithm. Further reading on Hard Disks in a Box can be found in [5].

6.2. Proposal and Acceptance. In general, we have a probability distribution π(x) > 0, for
all x ∈ X , and a Markov chain {Kn}n≥0 with transition matrix Q on a finite state space X .
We wish to change {Kn}n≥0 so that it has a stationary distribution π, and we proceed in a way
similar to how the hard disks in a box worked.

Given that we are at a state i ∈ X , we propose a state j ∈ X according to {Kn}n≥0

(specifically, with probability qij). Then we accept this proposed state j with a probability αij .
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Clearly, 0 ≤ αij ≤ 1. This creates a transition probability for our new process given by

qijαij ,

for i 6= j (for i = j, we have 1−
∑

i 6=j qijαij). In order to ensure that π will become the stationary
distribution of our new process, we require reversibility with π, that is,

π(i)qijαij = π(j)qjiαji.

Setting r(i, j) =
π(j)qji
π(i)qij

, we get that

αji =
1

r(i, j)
αij .

Since 0 ≤ αij , αji ≤ 1, we require that 0 ≤ αij ≤ 1 and 0 ≤ αij ≤ r(i, j). Thus we have that

0 ≤ αij ≤ min{1, r(i, j)}.
In order to maximize our acceptance rates, we will take the maximum value for αij . Therefore

αij = min{1, r(i, j)}.

6.3. Defining the Algorithm. Given an arbitrary transition matrix Q and a probability dis-
tribution π > 0 over a state space X , given an initial state x0 ∈X , and given that our process
is at Xn = i ∈X , we pick Xn+1 by:

• Choose Yn+1 = j according to the transition matrix Q, probability qij (proposal).

• Set αij = min{1, π(j)qji
π(i)qij

} (acceptance probability).

• Set Xn+1 = Yn+1 = j with probability αij (acceptance). Otherwise, set Xn+1 = Xn = i
(rejection).

We have defined a Markov chain {Xn}n≥0 with probabilities

• pij = qijαij for i 6= j,

• pii = 1−
∑

j∈X qijαij .

Proposition 6.1. This HMC has a stationary distribution equal to π.

Proof. It suffices to show that we have reversibility with π, that is

π(i)pij = π(j)pji.

For i = j, this is trivial. For i 6= j, we have

π(i)pij = π(i)qijαij

= π(i)qij min{1, π(j)qji
π(i)qij

}

= π(i) min{qij ,
π(j)qji
π(i)

}

= min{π(i)qij , π(j)qji}.

Similarly, π(j)pji = min{π(j)qji, π(i)qij}. Hence we have reversibility. ut
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Thus we have formed a new Markov chain with stationary distribution π. If we can show that
the chain formed from the algorithm is ergodic, then we obtain the desired convergence to the
stationary distribution π. Since X is finite, we just need to check that the chain is irreducible
and aperiodic.

6.4. Cryptography. The following example is influenced by Diaconis. The R-code can be
found here.2 Suppose we have a piece of text that has been encrypted with a substitution
cipher. For example, our original text is

THE PROBABILITY THAT WE MAY FAIL IN THE STRUGGLE OUGHT
NOT TO DETER US FROM THE SUPPORT OF A CAUSE WE BELIEVE
TO BE JUST

It has been given a substitution cipher, giving a coded text

OVB CTEAJADKDOM OVJO SB RJM HJDK DN OVB WOTYXXKB EYXVO
NEO OE ZBOBT YW HTER OVB WYCCETO EH J QJYWB SB ABKDBLB
OE AB UYWO

Our problem is to find the bijective function f : {A,B, . . . , Z} → {A,B, . . . , Z} that decodes
the quote.

Let X be the set of all bijective functions described above. This is a set consisting of 26!
permutations. Finding the correct permutation several orders of magnitude harder than finding
the needle in a hay stack.

To understand how large 26! is note that log10(26!) ≈ 26.6, so 26! ≈ 4 · 1026. One cubic meter
contains roughly 4 · 109 grains of sand so there are roughly 4 · 1018 grains sand per km3. The
surface area of the United States is roughly 107 km2. Imagine that we cover the entire surface
of the United States with a 10 km (6 miles) tall layer of sand. The volume of such a layer would
be roughly 108 km3 and it would contain roughly 26! grains of sand, give or take a few. Our
task is to find the magic grain in this immensity!

We assign a weight L(f) to each permutation f as follows. Take a long English text. E.g., in
my example I used Moby Dick. Use this text and create a matrix M of relative frequencies of
letter transitions in the text in an effort to approximate the true frequencies of letter transitions
for the English language. We can visualize this matrix with Figure 2. This shows us patterns
of what letters tend to follow each other in the English language. From this, we can create a
function that measures the likelihood of a cipher function f ∈X , given by

L(f) =
∏
i

M(f(si), f(si+1)).

Here, si, si+1 are consecutive letters in our ciphered text. The idea behind this weight is simple.
If a permutation f is not the one we seek, then the string of successive letters(

f(s1), f(s2)
)
,
(
f(s2), f(s3)

)
,
(
f(s3), f(s4)

)
, . . .

is unlikely to occur in an English text so we expect the product of the frequenciesM
(
f(si), f(si+1)

)
to be small so the weight L(f) is small. Thus, we expect the weight of the true code ftrue to be
a lot higher. In our specific example, the original text is 2.6× 10115 times more likely than the
coded text!!!

Using the above weight, we create a probability distribution given by

π(f) =
1

Z

∏
i

M(f(si), f(si+1)), (6.2)

2http://www.r-bloggers.com/text-decryption-using-mcmc/

http://www.r-bloggers.com/text-decryption-using-mcmc/
http://www.r-bloggers.com/text-decryption-using-mcmc/
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Figure 2. Moby Dick Transition Matrix

where

Z =
∑
f∈X

∏
i

M(f(si), f(si+1)).

We wish to find out more information about π(f), and which f is likely to be our cipher function.
As we have pointed out, the set X is huge and, for all intents and purposes the normalizing
constant Z is unknownable.

To overcome these obstacles we employ the Metropolis-Hastings algorithm. We define a
proposal distribution Q = {qff ′}f,f ′∈X where

qff ′ =

{
1

(262 )
if f, f ′ differ in at most two places,

0 otherwise.

The above formula is justified by the fact that there are
(

26
2

)
transpositions of the English

alphabet, and the fact that f ′ differs from f at at most two places signifies that either f ′ = f ,
or f ′ is the the product between f and a transposition.

Note that qff ′ = qf ′f . We start with a guess f0 ∈ X . Then given Xn = f , we pick Xn+1

using the Metropolis-Hastings proposal-acceptance/rejection protocol.

• Choose Yn+1 = f ′ by Q. (This is the proposal step.)
• Set

αff ′ := min

{
1,
π(f ′)qf ′f
π(f)qff ′

}
= min

{
1,
π(f ′)

π(f)

}
= min

{
1,
L(f ′)

L(f)

}
.

• Set Xn+1 = Yn+1 = f ′ with probability αff ′ . (This is the acceptance part.)
• Otherwise, set Xn+1 = Xn = f . (This is the rejection part.)

The chain is irreducible because any permutation f ∈ X is a product of transpositions. The
chain is aperiodic because you can return to a state in one step, when the proposal is rejected.
Therefore the chain is ergodic. Its stationary distribution is our mysterious distribution (6.2).

The state Xn of this Markov chain is a random point of X . For n sufficiently large, the
distribution of Xn is very close to the mysterious π. By construction, π(f) will be very high
for any f that is close to the actual code to something that resembles real English, and low for
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something that does not. We can see that in this example. After 3, 000 accepted functions in
our Metropolis algorithm, we get close to our original text:

THE PROLALINITY THAT WE MAY FAIN ID THE STRUGGNE OUGHT
DOT TO KETER US FROM THE SUPPORT OF A JAUSE WE LENIEVE
TO LE BUST

Accuracy can be due to the number of iterations ran, the length of text we are decoding, as
well as the text we use for our matrix. The dependence on these factors is explored in [17]. In
fact, this text is actually more likely than our real original text. Even if the process does not
converge to the original text, it will converge to something that the human brain can still make
sense of, because it will be something that closely resembles English. Longer texts converge
more accurately and quickly. For instance, when I decode the Gettysburg Address, it is decoded
with complete accuracy with only 91 accepted functions.

6.5. Hyperlinks. One of the Metropolis-Hastings Algorithm’s largest strengths is its ability
to determine global information locally. For instance, say we wanted to estimate the average
amount of hyperlinks among web pages on the internet. Let this true average be denoted by µ,
and suppose there are M web pages on the internet. Let X be the set of all web pages on the
internet (|X | = M), and let h : X → R be a function that calculates the number of hyperlinks
on a website i ∈ X . h is easy to calculate on a given web page, and if we were able to visit all
of them we would obtain

µ =
1

M

∑
i∈X

h(i).

However, this would be nearly impossible due to the size of M . In fact, it is nearly impossible
to even know M . If we could construct an ergodic Markov chain that allowed us to approximate
µ, we would be able to accomplish this nearly impossible task. We know by the ergodic theorem
that such a Markov chain would obey the property

1

n

n−1∑
k=1

h(Xk)→
∑
i∈X

π(i)h(i).

If we can construct a Markov chain with stationary distribution π(i) = 1
M for all i ∈ X , then

we get that

1

n

n−1∑
k=1

h(Xk)→
∑
i∈X

π(i)h(i) =
1

M

∑
i∈X

h(i) = µ.

So we need to construct an ergodic Markov chain with stationary distribution π(i) = 1
M for

all i ∈ X . A strength of the Metropolis algorithm is that we can form such a chain without
needing to know M . Consider the following algorithm:

Start with an arbitrary web page X0 = x0 ∈ X . Then given Xn = i, pick Xn+1 by the
following algorithm:

• Pick Yn+1 = j uniformly from all the hyperlinks on website i ( with probability 1
deg(i)) .

• Set αij = min
{

1, h(i)
h(j)

}
.

• Set Xn+1 = Yn+1 = j with probability αij . Otherwise set Xn+1 = Xn = i.
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We assume that the chain is irreducible by assuming that we can get to any website by a series of
hyperlink clicks. It is aperiodic because we can return to a state in one step, when the proposal
is rejected. Therefore the chain is ergodic.

Hence we have formed our desired Markov chain, and can approximate µ by calculating

1

n

n−1∑
k=1

h(Xk)

for large n. We may not know M , but we can approximate µ just by knowing h(i) for a given
website in which we visit.

6.6. Rates of Convergence for Metropolis-Hastings. We have see that the Metropolis-
Hastings Algorithm can be applied in a variety of areas, and it seems for certain examples such
as the coding problem to converge rather quickly. However, the true rate of convergence is not
known for many of these problems. In this section, we will show that we can approximate rate
of convergence for a certain type of stationary distribution and candidate generating matrix.

Let I = {1, . . . , r} be a finite state space, and π(i) = z(a)ah(i) be a probability distribution
where a ∈ (0, 1), z(a) a constant, and h a function such that for i ∈ [1, r− 1] , h(i+ 1)− h(1) ≥
c ≥ 1. Let Q = {qij}i,j∈I be the symmetric random walk on I with holding probability at states

1 and r equal to 1
2 . That is, for 1 < i, j < r,

q1,1 =
1

2
= qr,r,

qij = qji =
1

2
,

qii = 0.

With αij = min
{

1,
π(j)qji
π(i)qij

}
, we get a Markov chain with transition probabilities

p1,2 =
1

2

π(2)

π(1)
=

1

2
ah(2)−h(1),

p1,1 = 1− 1

2
ah(2)−h(1),

pr,r−1 = pr,r =
1

2
,

and for i ∈ [2, r − 1],

pi,i−1 =
1

2
,

pi,i+1 =
1

2
ah(i+1)−h(i),

pii = 1− pi,i−1 − pi,i+1.

We will show that λ2 ≤ 1− (1−a
c
2 )2

2 . By Corollary (4.30), we must show that Varπ(x) ≤ AEπ(x, x)

for A ≤ 2

(1−a
c
2 )2

. Denote an oriented edge from i → j in P as e where e− = i , e+ = j. Define

Q(e) = π(i)pij . For any two i, j ∈ I, we can select a path i, i1, i2, . . . , im, j ∈ I of distinct edges
such that pi,i1 · · · pim,j > 0. Let Γ be the collection of all such paths and for a path γij ∈ Γ we
define

|γij |θ =
∑
e∈γij

1

Q(e)2θ
.



46 MIKE MCCAFFREY

With this notation, we deduce that

2 Varπ(x) =
∑
i,j∈I

∑
e∈γij

1

Q(e)θ
Q(e)θ(x(e−)− x(e+))

2

π(i)π(j)

≤
∑
i,j∈I

∑
e∈γij

Q(e)2θ(x(e−)− x(e+))2

∑
e∈γij

1

Q(e)2θ

π(i)π(j)

=
∑
i,j∈I
|γij |θ

∑
e∈γij

Q(e)2θ(x(e−)− x(e+))2π(i)π(j)

=
∑
e

(x(e−)− x(e+))2Q(e)Q(e)2θ−1
∑
e∈γij

π(i)π(j)|γij |θ

≤ AEπ(x, x),

where A = maxe

{
Q(e)2θ−1

∑
e∈γij π(i)π(j)|γij |θ

}
, and the second line is from Cauchy-Shwarz.

So it remains to bound A. Take a path γij = (i, i + 1, . . . , j − 1, j) for any i, j ∈ I such that
i ≤ j. Note that

Q(i, i+ 1) = π(i)pi,i+1 = z(a)ah(i)a
h(i+1)−h(i)

2

= z(a)
ah(i+1)

2
=
π(i+ 1)

2
.

And by reversibility, Q(i, i+ 1) = Q(i+ 1, i) = π(i+1)
2 . Now we have that

|γij |θ =
∑
e∈γij

1

Q(e)2θ

=

(
π(i+ 1)

2

)−2θ

+ · · ·+
(
π(j)

2

)−2θ

=

((
π(i+ 1)

π(j)

)−2θ

+ · · ·+
(
π(j)

π(j)

)−2θ
)(

π(j)

2

)−2θ

≤ π(j)−2θ

1− a2cθ
.

Fix an edge e = (k, k + 1). We must bound over i, j the quantity

Q(e)2θ−1

1− a2cθ

∑
0≤i≤k,k+1≤j≤r

π(i)π(j)1−2θ.

The sum in i is bounded by 1, and the sum in j is bounded by π(k+1)1−2θ

1−ac(1−2θ . Thus A ≤
2

(1−ac(1−2θ))(1−a2cθ)
. For θ = 1

4 , this gives us

A ≤ 2

(1− a
c
2 )2

.
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Lemma 6.2 (Gershgorin Bound). If B is a finite r× r matrix with complex elements, then for
any eigenvalue λ of B, and any k ∈ [1, r], we have that

|λ− akk| ≤ min(rk, sk),

where rk =
∑r

j=1,j 6=k |akj | , sk =
∑r

j=1,j 6=k |ajk|. ut

By Lemma (6.2), we get that the smallest eigenvalue λs is

λs ≥ −1 + 2 min{pii} ≥ −1 + 2

(
1

2
− ac

2

)
= ac.

This implies that

ρ = min {λ2, |λs|} ≤ min

{
1− (1− a

c
2 )2

2
, ac

}
.

7. Conclusion

Metropolis-Hastings allows us to estimate a value that requires a global knowledge of a struc-
ture (such as the size of the state space) by only using local knowledge. It tends to converge
quickly and accurately .It is an extremely important algorithm involving Markov chains, which
are very powerful ways to model stochastic processes. They emerged due to a religious debate
between Markov and Nekrosov, but evolved to have extremely vast applications.
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