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Notations

1 The identity operator.
B(X,Y ) The space of continuous linear operators X → Y , X,Y are normed vector spaces.

B(X) = B(X,X).
C0(R) The space of continuous functions f : R → R satisfying lim±∞ f(x) = 0.
Cc(R) The space of continuous functions f : R → R with compact support.
Cb(R) The space of bounded continuous functions f : R → R.
cl(S) The closure of the set S.
E[X] Expected value of random variable X.
Φ#µ The pushforward of measure µ by measurable map Φ.

IG(Tt) The infinitesimal generator of the C0-semigroup (Tt)t≥0.
Prob(R) The space of Borel probability measures on R.

µ̂ The Fourier transform of the probability measure µ ∈ Prob(R).
µ ∗ ν The convolution of the probability measures µ, ν ∈ Prob(R).
PX The distribution of a random variable X.
R∗ = R \ {0}.

R≥0 = [0,∞).
D(A) The domain of the linear operator A.
R(A) The range of map A.

Ā The closure of the unbounded operator A.
ρ(A) The resolvent set of the linear operator A.

R(λ,A) The resolvent of A at λ ∈ ρ(A): (λ−A)−1, for λ ∈ ρ(A).
X∗ The topological dual of the normed vector space X.
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Introduction

One of the important motivations for the study of operator semigroups is the following
example from differential equations. For any a, x0 ∈ R, consider the one dimensional Cauchy
problem {

x′ = ax
x(0) = x0

.

It follows from elementary calculus that the solution to such a problem is x(t) = x0e
at. G.

Peano observed that this generalizes as follows. For any fixed n ∈ N, A ∈ Matn×n(R), and
y0 ∈ Rn, the solution of the linear Cauchy problem{

y′ = Ay
y(0) = y0

can be described as x(t) = etAx0, where

etA =
∑
k≥0

tk

k!
Ak.

We note that the family Tt = etA : Rn → Rn satisfy the following conditions:

T0 = 1, Tt+s = TtTs, ∀s, t ≥ 0

and the map t 7→ Tty0 is continuous for any y0 ∈ Rn, and dtTt|0 = A.
Next, consider the heat equation on Rn, ∂tu = ∆u with initial condition u(0, x) = u0(x) ∈

Cb(Rn). This is formally similar to the above two Cauchy problem since it takes the form
f ′ = Lf , where L is a linear operator. This form motivates one to seek solutions in the form
u(t) = Ttu0, where Tt satisfies the same conditions as Tt. However, ∆ is a linear operator on
an infinite dimensional vector spaces and this causes complications. The exponential et∆ is not
defined for t < 0 or for every u ∈ Cb(Rn), or even everywhere on C2

c (Rn). As a result, defining
what Tt should be, or even if such a family of operators exists satisfying Ttu0 solves u′ = ∆u is
subtle, and requires more technical machinery than solving the first two Cauchy problems. The
theory of operator semigroups is what allows for determining when such families of operators
exist, and how to describe their behavior.

The first part of the thesis focuses on the theory of operator semigroups on Banach spaces.
Section 1.1 covers the foundations of the subject matter, including the relevant definitions. In
particular, in infinite dimensions there are two forms of continuity involving the maps Tt. This
is reflected in the nature of the generator A = d

dt

∣∣
t=0

Tt: its is bounded iff t 7→ Tt is continuous
in the norm topology,

Section 1.2 covers the Hille-Yosida theorem on generation of semigroups describing neces-
sary and sufficient conditions for an unbounded operator to be the generator of a continuous
semigroup.

In section Section 1.3 we prove The Lumer-Philips theorem that expresses the Hille-Yosida
conditions in termes of the more convenient concept of dissipative operators. .

Section 1.4 covers the Trotter-Kato approximation theorems. One consequence of these
results is the Chernoff product formula which we present in Section 1.5 covers.

The second part of the Thesis focuses on applications of operator semigroups to probability.
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Section 2.1 introduces basic properties of probability measures on Rn, and introduces the
convolution of probability measures. Convolution produces bounded operators spaces of con-
tinuous functions. This is is what allows for the theory of operator semigroups to be applied.

Section 2.2 introduces convolution semigroups of probability measures, which form an im-
portant class of operator semigroups. This section also contains many enlightening examples.
Sections 2.3 and 2.4 are dedicated to the examples of the translation semigroup and heat
semigroup respectively. In particular, we give an operator theoretic proof of the central limit
theorem.

The appendix contains a brief overview of Bochner integrals. The theory of semigroups is
not restricted to separable Banach Spaces; however, the Bochner integrals which arise in the
subject are always of continuous functions defined on an interval, which greatly simplify the
difficulties of integration functions valued in a possibly nonseparable Banach space.

1. Strongly continuous semigroups on Banach spaces

1.1. Basic concepts. For a Banach space X we denote by B(X) the space of bounded linear
operators X → X. A (algebraic) semigroup of bounded operators operators on X is a one-
parameter family (Tt)t≥0 in B(X) such that

T0 = 1, Ts+t = TsTt, ∀s, t ≥ 0.

Equivalently, (Tt)t≥0 is a semigroup of bounded operators if it is a morphism of semigroups
(R≥0,+) → (B(X), ·).

Definition 1.1 (Uniformly continuous semigroups). Let X be a Banach space and (Tt)t≥0 a
semigroup of bounded operators on X. Tt is called uniformly continuous, or norm continuous,
if

lim
t↘0

∥Tt − 1∥ = 0.

⊓⊔

A direct consequence of the above definition is that ∀x ∈ X,

lim
t↘0

Ttx = x,

uniformly for x ∈ B1(0) in the unit ball of X. Indeed, for any ∥x∥ ≤ 1,

∥Ttx− x∥ ≤ ∥Tt − 1∥ · ∥x∥ ≤ ∥Tt − 1∥.
The above definition is equivalent to the map t 7→ Tt being continuous with respect to the

norm topology on B(X).

Definition 1.2 (C0-semigroups of operators). A semigroup (Tt)t≥0 of bounded operators on a
Banach space is called strongly continuous or C0-semigroup if

∀x ∈ X, lim
t↘0

∥Ttx− x∥ = 0.

⊓⊔

The above definition is equivalent to the map t 7→ Tt being continuous with respect to the
strong operator topology. Clearly, any uniformly continuous semigroup is a C0-semigroup.
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Lemma 1.3. Let (Tt)t≥0 be a C0-semigroup of bounded operators on a Banach space X. Then,
for any τ > 0

M(τ) := sup
t∈[0,τ ]

∥Tt∥ < ∞.

Proof. We follow the proof of Proposition 1.3 on page 4 of [4]. By the sub-multiplicity of the
operator norm, we have

∥Tt∥ = ∥Tn
t/n∥ ≤ ∥Tt/n∥n, ∀t > 0, n ∈ N.

This proves that

M(τ) ≤ M(τ/n)n.

Thus, if M(τ) = ∞, then M(τ/n) = ∞, ∀n ∈ N. In particular, if M(τ/n) = ∞ for all n ∈ N,
then there exists a non-negative sequence tn ↘ 0 such that ∥Ttn∥ → ∞. This contradicts the
uniform boundedness principle since

lim
n→∞

Ttnx = x, ∀x ∈ X, which implies sup
n∈N

∥Ttnx∥ < ∞, ∀x ∈ X.

⊓⊔

Proposition 1.4. Let (Tt)t≥0 be a C0-semigroup of bounded operators on a Banach space X.
Then there exist M > 0 and ω ∈ R such that

∥Tt∥ ≤ Meωt, ∀t ≥ 0.

Proof. We follow the proof of [1, Thm. 12.8]. Set

C := ∥T1∥, K := sup
t∈[0,1]

∥Tt∥.

For any t ≥ 0 we have t = ⌊t⌋+ r, for some r ∈ [0, 1), and it follows that

∥Tt∥ ≤ ∥T1∥⌊t⌋ · ∥Tr∥ ≤ C⌊t⌋K.

Note that

C⌊t⌋ ≤

{
Ct, C ≥ 1,

Ct−1, C < 1.

Thus,

C⌊t⌋ ≤ aCt, a := max(1, C−1).

By choosing ω := logC and M = aK, we deduce

∥Tt∥ ≤ aKeωt = Meωt, ∀t ≥ 0.

⊓⊔

Definition 1.5 (Infinitesimal generator of a C0-semigroup). Let (Tt) be a C0-semigroup. Define
the set

D(A) :=
{
x ∈ X : lim

t↘0

Ttx− x

t
exists

}
.

Define the infinitesimal generator of Tt to be the (unbounded) linear operator

A : D(A) ⊂ X → X
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given by

Ax = lim
t↘0

Ttx− x

t
.

⊓⊔

Lemma 1.6. Let A be the generator of a strongly continuous semigroup of contractions (Tt)t≥0

defined on a Banach space X. Then the following hold.

(i) A : D(A) ⊂ X → X is linear.
(ii) For any x ∈ X, Ttx ∈ D(A), ∀t ≥ 0, the function

[0,∞) ∋ t 7→ Ttx ∈ X

is differentiable and

d

dt
Ttx = ATtx = TtAx, ∀t ≥ 0.

(iii) For any x ∈ X∫ t

0
Tsxds ∈ D(A) and Ttx− x = A

∫ t

0
Tsxds.

(iv) If x ∈ D(A) then, ∀t ≥ 0

Ttx− x =

∫ t

0
TsAxds.

Proof. We follow the proof of [9, Thm. 2.4]. Let K = R or C be the field of scalars for X.

(i) Let λ ∈ K and x, y ∈ D(A). For any t ≥ 0, compute the following:

Tt(λx+ y)− ax− y

t
= λ

Ttx− x

t
+

Tty − y

t
.

This implies that limt↘0
Tt(λx+y)−λx−y

t exists and is λAx+Ay. Thus D(A) is a linear subspace,
and A is a linear operator.

(ii) For any x ∈ D(A), t ≥ 0 with Ttx ∈ D(A), and h ∈ R×, we note the following equalities:

Tt+hx− Ttx

h
= Tt

(
Thx− x

h

)
=

Th(Ttx)− Ttx

h
. (1.6a)

Because Tt is continuous, by the first equality in (1.6a)

lim
h↘0

Tt+h − Ttx

h
= lim

h↘0
Tt

(
Thx− x

h

)
= Tt

(
lim
h↘0

Thx− x

h

)
= TtAx.

Because Ttx ∈ D(A), by the second equality in 1.6a:

lim
h↘0

Tt+h − Ttx

h
= lim

h↘0

Th(Ttx)− Ttx

h
= ATtx

Thus, it follows that ATtx = TtAx. It remains to be shown that

lim
h↗0

Tt+hx− Ttx

h



8 SEMIGROUPS OF CONTRACTIONS

exists. For s < 0, set h := −s and we have

Tt+sx− Ttx

s
− TtAx =

Ttx− Tt−hx

h
− TtAx

= Tt−h

(
Thx− x

h
−Ax

)
+ Tt−hAx− TtAx.

Since Tt is continuous, we have Tt−hAx− TtAx → 0 as h ↘ 0. Additionally, since ∥Tt−h∥ ≤ 1
for h ∈ [0, t] we deduce

lim
h↘0

∥∥∥∥Tt−h

(
Thx− x

h
−Ax

)∥∥∥∥ ≤ lim
h↘0

∥∥∥∥Thx− x

h
−Ax

∥∥∥∥ = ∥Ax−Ax∥ = 0

Thus the derivative of t 7→ Ttx exists and additionally, we have:

d

dx
Ttx = ATtx = TtAx.

(iii) Let x ∈ X, t ≥ 0, and h ∈ R∗. By the commutativity of the Bochner integral with
continuous linear operators:

Th − 1

h

∫ t

0
Tsxds =

1

h

∫ t

0
Ts+hx− Tsxds =

1

h

∫ t+h

t
Tsxds−

1

h

∫ h

0
Tsxds

Since t 7→ Ttx is continuous, it follows from the fundamental theorem of calculus for Bochner
integrals that

lim
h→0

Th − 1

h

∫ t

0
Tsxds = lim

h→0

1

h

∫ t+h

t
Tsxds−

1

h

∫ h

0
Tsxds = Ttx− x

Since the above limit exists,
∫ t
0 Tsxds ∈ D(A).

(iv) Let x ∈ D(A) and t ≥ 0. We note that the proof of part (ii) implies that for any x ∈ D(A)
we have

d

dt
Ttx = TtAx.

After integrating the above equality, by the fundamental theorem of calculus, we have

Ttx− x =

∫ t

0

d

ds
Tsxds =

∫ t

0
TsAxds.

⊓⊔

Remark 1.7. Lemma 1.6(ii) shows that for any x0 ∈ X, the initial value

x′(t) = Ax(t), t > 0, x(0) = x0, (1.1)

has at least one solution x ∈ C0
(
[0,∞), X

)
∩ C1

(
(0,∞), X

)
when A is the generator of a

C0-semigroup. As explained in [9, Sec.4.1] this solution is unique. ⊓⊔

Theorem 1.8. let (Tt)t≥0 be a strongly continuous semigroup of contractions on the Banach
space X. Then its generator A is closed and densely defined and uniquely determines the
semigroup. More precisely, this means that different semigroups have different generators.
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Proof. We follow the proof of Corollary 2.5 on page 6 of [9]. First we will prove the density of
D(A). Let x ∈ X. By Lemma 1.6 (ii), ∀ε > 0,

xε :=
1

ε

∫ ε

0
Tsxds ∈ D(A)

Furthermore, since t 7→ Ttx is continuous by 1.6 (ii), it follows that xε → x as ε ↘ 0. Thus
D(A) is dense.

Next we will prove that A is a closed operator. Consider any sequence (xn)n∈N ∈ D(A) such
that xn → 0 and Axn → y, for some y ∈ X. Firstly, by Lemma 1.6 (iv), for any h > 0 and
n ∈ N, we have

Thxn − xn =

∫ h

0
TsAxnds

Secondly, using the fact that ∥Axn − y∥ → 0, we note that for any h > 0,∫ h

0
TsAxnds →

∫ h

0
Tsyds as n → ∞ because

∥∥∥∥∫ h

0
TsAxnds−

∫ h

0
Tsyds

∥∥∥∥ ≤
∫ h

0
|Ts(Axn − y)∥ds ≤ h∥Axn − y∥.

Thirdly, by the above and Lemma 1.6 (iv)(
Thxn − xn

)
=

∫ h

0
TsAxnds.

On the other hand,∥∥∥∥( ∫ h

0
TsAxnds−

∫ h

0
Tsyds

)∥∥∥∥ ≤
∫ h

0
∥Axn − y∥ds ≤ h∥Axn − y∥

Hence

Thx− x = lim
n→∞

(Txn − xn) =

∫ h

0
Tsyds

This shows that

lim
h↘0

1

h

(
Thx− x

)
= lim

h↘0

1

h

∫ h

0
Tsyds = y.

This proves that x ∈ D(A) and Ax = y. This implies that A is a closed operator. ⊓⊔

✍Notation: We will use the notation A = IG(Tt) to indicate that A is the generator of the
strongly continuous semigroup (Tt)t≥0.

Theorem 1.9. Let A : D(A) ⊂ X → X be an unbounded linear operator. Then the following
are equivalent.

(i) The operator A is bounded.
(ii) The operator A is the infinitesimal generator of a uniformly continuous semigroup of

linear operators.
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Proof. (i)⇒(ii) Assume that A ∈ B(X). Define

Tt :=
∞∑
n=0

(tA)n

n!
.

Since B(X) is a Banach space it suffices to show that the above series is absolutely convergent.
This indeed the case because∑

n≥0

∥∥∥∥(tA)n

n!

∥∥∥∥ ≤
∑
n≥0

|t|n∥A∥n

n!
= e|t|·∥A∥ < ∞.

For any u ∈ R and any N ≥ 0 we set

SN (u) :=
N∑

n=0

1

n!
(uA)n.

Then SN (u) → Tu in B(X) as N → ∞. We will show that

lim
N→∞

∥S2N (s+ t)− SN (s)SN (t) ∥ = 0, ∀s, t ∈ R.

We deduce from the binomial theorem that

S2N (s+ t) =

2N∑
n=0

n∑
k=0

(sA)k(tA)n−k

k!(n− k)!
=

∑
0≤l+k≤2N

(sA)l

l!

(tA)k

k!
.

On the other hand,

SN (s)SN (t) =

(
N∑
l=0

(sA)l

l!

)
·

(
N∑
k=0

(tA)k

k!

)
=

∑
0≤l,k≤n

(sA)l

l!

(tA)k

k!
.

From the two statements above, it follows that

S2N (s+ t)− SN (s)SN (t) =
∑

0≤l+k≤2N
l>N

(sA)l

l!

(tA)k

k!︸ ︷︷ ︸
PN (s,t)

+
∑

0≤l+k≤2N
k>N

(sA)l

l!

(tA)k

k!︸ ︷︷ ︸
QN (s,t)

.

Note that PN (s, t) = QN (t, s). It suffices to find an upper bound of ∥PN (s, t)∥ that is symmetric
in s and t. Set

M = M(s, t) := max(1, ∥sA∥, ∥tA∥).
Note that M(s, t) = M(t, s) and

∥PN (s, t)∥ =

∥∥∥∥∥∥∥∥
∑

0≤l+k≤2N
l>N

(sA)l

l!

(tA)k

k!

∥∥∥∥∥∥∥∥ ≤ M2N
∑

0≤l+k≤2N
l>N

1

(l + k)!

(
l + k

l

)

≤ M2N

(N + 1)!

∑
0≤l+k≤2N

l>N

(
l + k

l

)
≤ M2N

(N + 1)!

2N∑
m=N+1

2m︸ ︷︷ ︸
≤22N+1

≤ 2(2M)2N

(N + 1)!
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Hence

∥S2N (s+ t)− SN (s)SN (t)∥ ≤ 4(2M)2N

(N + 1)!
→ 0 as N → ∞.

Let us prove that A generates Tt. Indeed, for any x ∈ X we have

Ttx− x

t
−Ax =

1

t

(
tAx+ x+

∞∑
n=2

(tA)n

n!
x− x

)
−Ax

=

∞∑
n=2

tn−1An

n!
x−Ax = A

∞∑
n=2

tn−1An−1

n!
x

so, by setting n = m+ 1, ∥∥∥∥∥Ttx− x

t
−Ax

∥∥∥∥∥ ≤ ∥A∥
∞∑

m=1

(|t|∥A∥)m

(m+ 1)!

≤ ∥A∥
∞∑

m=1

(|t|∥A∥)m

m!
= ∥A∥

(
e|t|∥A∥ − 1

)
→ 0 as t ↘ 0.

(i) ⇐ (ii) We follow the proof of [1, Thm. 1.4.21]. Assume that Tt is a uniformly continuous
semigroup onX. We are required to show that the generator of Tt is bounded. By the continuity
of t 7→ Ts, guaranteed by uniform continuity, we have

1

t

∫ t

0
Tsds → 1.

Thus, ∃ε > 0 such that ∥∥∥∥1− 1

ε

∫ ε

0
Tsds

∥∥∥∥ < 1.

This implies that ε−1
∫ ε
0 Tsds is invertible, thus W :=

∫ ε
0 Tsds is also invertible. We note that

for any t > 0

W (Tt − 1) =

∫ ε

0
Tsds(Tt − 1) =

∫ t+ε

t
Tsds−

∫ ε

0
Tsds

=

∫ t+ε

ε
Tsds−

∫ t

0
Tsds = (Tε − 1)

∫ t

0
Tsds.

Set V := W−1(Tε − 1). This allows for the following computation, for any t > 0:∫ t

0
V Tsds = V

∫ t

0
Tsds = W−1(Th − 1)

∫ t

0
Tsds = Tt − 1

Thus, for all t > 0, we have

Tt − 1

t
=

1

t

∫ t

0
V Tsds

By the continuity of t 7→ V Ts, it follows that V T0 = V , is the generator of Tt, and V is
continuous by construction.

⊓⊔
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1.2. Hille-Yosida Theorem.

Definition 1.10. Let Tt be a C0-semigroup on a Banach space X. The semigroup is called a
contraction semigroup if ∥Tt∥ ≤ 1, ∀t ≥ 0. ⊓⊔

Definition 1.11. Let X be a Banach space and A : D(A) ⊂ X → X be an unbounded linear
operator on X.

(i) The resolvent set of A is

ρ(A) := {λ ∈ C : (λ−A) is invertible with bounded inverse}.
(ii) The family of bounded operators R(λ,A) : X → X, λ ∈ ρ(A),

R(λ,A) = (λ−A)−1,

is called the resolvent of A.
(iii) The Hille-Yosida approximations of A are the bounded operators.

A(λ) := AR(λ,A) = R(λ,A)A = λ2R(λ,A)− λ.

⊓⊔

Remark 1.12. Let A : D(A) → X be a closed linear operator on Banach space X. The closed
graph theorem shows that λ ∈ ρ(A) if and only if (λ−A) is invertible. ⊓⊔

Lemma 1.13. Let A be a closed operator and ρ(A) its resolvent set. Then for all λ, µ ∈ ρ(A),
we have the following identities.

AR(λ,A) = λR(λ,A)− 1, (1.12a)

R(λ,A)−R(µ,A) = (µ− λ)R(λ,A)R(µ,A). (1.12b)

Proof. The first identity is immediate, as for any λ ∈ ρ(A) we have

AR(λ,A) = (−λ+A)(λ−A)−1 + λR(λ,A) = λR(λ,A)− 1.

We also have the following identity, for all λ ∈ ρ(A),

R(λ,A)A = (λ−A)−1(−λ+A) +R(λ,A)λ = λR(λ,A)− 1.

Additionally, the above implies that 1 = (λ− A)R(λ,A) = R(λ,A)(λ− A), for any λ ∈ ρ(A).
It follows that we have the following equality, for any λ, µ ∈ ρ(A):

R(λ,A)−R(µ,A) = R(λ,A)(µ−A)R(µ,A) +R(λ,A)(A− λ)R(µ,A)

= µR(λ,A)R(µ,A)− λR(λ,A)R(µ,A)−R(λ,A)AR(µ,A) +R(λ,A)AR(µ,A)

= (µ− λ)R(λ,A)R(µ,A).

⊓⊔

Lemma 1.14. Let A be an unbounded linear operator on the Banach space X and assume that
A satisfies the HY conditions. Then the resolvent of A satisfies the following.

(i) ∀x ∈ X

lim
λ→∞

λR(λ,A)x = x, ∀x ∈ X. (1.2)
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(ii) ∀x ∈ D(A),
lim
λ→∞

A(λ)x = Ax. (1.3)

Proof. We follow the proofs of [9, Lemmas 3.2, 3.3].
(i) Suppose first that x ∈ D(A). Then, as λ → ∞,∥∥λR(λ,A)x− x

∥∥ =
∥∥λ(λ−A)−1 − 1)x

∥∥ =
∥∥ (λ−A)(λ−A)−1 +A(λ−A)−1 − 1)x

∥∥
= ∥(1+AR(λ,A)− 1)x∥ = ∥AR(λ,A)x∥ = ∥R(λ,A)Ax∥ ≤ 1

|λ|
∥Ax∥ → 0.

This proves (1.2) for x ∈ D(A). Suppose now that x ∈ X. Since D(A) is dense, ∀ε > 0 there
exists xε ∈ D(A) such that

∥x− xε∥ <
ε

3
.

The HY conditions imply that ∥λR(λ,A)∥ ≤ 1 so that

∥λR(λ,A)x− λR(λ,A)xε∥ <
ε

3
.

Since λR(λ,A)xε → xε as λ → ∞, there exists Nε > 0 such that

∀λ > Nε : ∥λR(λ,A)xε − xε∥ <
ε

3
.

Then, ∀λ > Nε we have

∥λR(λ,A)x− x∥ ≤ ∥λR(λ,A)x− λR(λ,A)xε∥+ ∥λR(λ,A)xε − xε∥+ ∥xε − x∥ < ε.

(ii) We deduce from (i) that

lim
λ→∞

A(λ)x = lim
λ→∞

λR(λ,A)Ax = Ax.

⊓⊔

Lemma 1.15. If A satisfies the HY estimates, and let A(λ) be the Yosida approximations,
then the following hold.

(i) For any λ > 0 the operator A(λ) generates a uniformly continuous semigroups of

contractions which is given by etA(λ).
(ii) ∀x ∈ X, λ > 0, µ > 0

∥etA(λ)x− etA(µ)x|| ≤ t∥A(λ)x−A(µ)x∥.

Proof. We follow the proof of Lemma 3.4 on page 10 of [9].

(i) The Yosida approximation, A(λ) = λ2R(λ,A)−λ, is a bounded linear operator. Theorem

1.9 implies that etA(λ) is a uniformly continuous semigroup of operators. Additionally:

∥etA(λ)∥ = e−tλ∥etλ2R(λ,A)∥ ≤ e−tλetλ
2∥R(λ,A)∥ ≤ 1.

Thus, etA(λ) is a contraction semigroup ∀λ > 0.

(ii) For any λ, µ > 0, consider the operators A(λ) and A(µ), and we deduce from the product
rule that and any x ∈ X:

∥etA(λ)x− etA(µ)x∥ =

∥∥∥∥∫ 1

0

d

ds
etsA(λ)et(1−s)A(µ)x)ds

∥∥∥∥
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≤
∫ 1

0
t
∥∥etsA(λ)et(1−s)Aµ(A(λ)x−A(µ)x)

∥∥ds ≤ ∥A(λ)x−A(µ)∥.

⊓⊔

Theorem 1.16 (Hille-Yosida). Let X be a Banach Space. A linear operator A on X is the
generator of a contraction semigroup if and only if it satisfies the Hille-Yosida conditions.

(i) A is closed and densely defined.
(ii) The resolvent set ρ(A) contains (0,∞) and

∀λ > 0 : ∥R(λ,A)∥ <
1

λ
.

For the sake of brevity the Hille-Yosida conditions will be referred to as the HY conditions

Proof. Proof that the HY conditions are necessary to generate a contraction semigroup. Assume
that A is the infinitesimal generator of a contraction semigroup (Tt)t≥0. We are required to
show that it satisfies the Hille -Yosida conditions.

Theorem 1.8 implies that A is densely defined. It suffices to prove the second of the HY-
conditions.

Proposition A.6 implies immediately the following result.

Lemma 1.17. Let X,Y be Banach spaces, I an interval of the real axis and f : I → X a
continuous function such that ∫

I
∥f(t)∥dt < ∞

and thus f is Bochner integrable. Suppose that A : D(A) ⊂ X → Y closed linear operator, and
assume that f(t) ∈ D(A), ∀t ∈ I. Then the function Af is also Bochner integrable. Then∫

I
Af(t)dt = A

∫
I
fdt.

⊓⊔

The following lemma will be needed.

Lemma 1.18. For any λ > 0 and x ∈ X define

R(λ)x :=

∫ ∞

0
e−λtTtxdt. (1.4)

Then the map x → R(λ)x defines a bounded linear operator which satisfies,

∥R(λ)∥ ≤ 1

λ

and additionally, R(λ) = R(λ,A).

Proof of Lemma 1.18. We follow the proof of [1, Thm. 1.5.25]. The integral in the right-
had-side of (1.4) is well defined since e−λtTtx is continuous and Bochner integrable since:∫ ∞

0
∥e−λtTtx∥dt ≤

(∫ ∞

0
e−λtdt

)
∥x∥ =

1

λ
∥x∥ < ∞.
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This implies that ∥R(λ)∥ ≤ 1
λ . Fior any h > 0 we have

Th − I

h
R(λ)x =

1

h

∫ ∞

0
e−λt(Tt+hx− Ttx)dt =

1

h

∫ ∞

h
e−λ(t−h)Ttxdt−

1

h

∫ ∞

0
e−λtTtxdt

=
eλh − 1

h

∫ ∞

0
e−λtTtxt−

eλh

h

∫ h

0
e−λtTtxdt.

Thus, by continuity:

lim
h↘0

eλh − 1

h

∫ ∞

0
e−λtTtxt−

eλh

h

∫ h

0
e−λtTtxdt = (λR(λ)− 1)x.

This implies that R(λ)x ∈ D(A), ∀x ∈ X and AR(λ)x = λRy − 1, so AR(λ) = λR(λ)− 1 and
1 = (λ − A)R(λ). Additionally, ∀x ∈ D(A), since A is closed, we deduce from Lemma 1.17
that

R(λ)Ax =

∫ ∞

0
e−λTtAxdt =

∫ ∞

0
e−λATtxdt = A

∫ ∞

0
e−λTtxdt = AR(λ)x.

This implies that R(λ)(λ − A)x = x, ∀x ∈ D(A), λ > 0 and furthermore R(λ) = (λ − A)−1,
∀λ > 0. This implies that A satisfies the second HY condition, as desired. ⊓⊔

For the proof that the HY conditions are sufficient for the generation of a contraction semi-
group, we follow the proofs of [4, Thm. 3.5] and Theorem 2.6 in [7, Thm. 2.6].

Let us assume that A satisfies the Hille-Yosida conditions. We want to show that A is the
generator of a strongly continuous semigroup of contractions. Recall for any λ > 0, the Yosida
approximations,

A(λ) := λAR(λ,A) = λ2R(λ,A)− λ,

are bounded operators. Theorem 1.9 implies that for any λ > 0, Tλ(t) := exp(tA(λ)) are
uniformly continuous semigroups. It suffices to show the following three statements are true:

(a) For all x ∈ X, Ttx := limn→∞ Tn(t)x exists.
(b) Tt is a contraction C0-semigroup.
(c) The generator of Tt is A.

(a) First, we note that exp(tA(λ) is a contraction semigroup, ∀λ > 0, because

∥ exp(tA(λ)∥ = ∥ exp(t(λ2R(λ,A)− λ))∥ ≤ e−λt exp(∥λ2R(λ,A)∥t) ≤ e−λteλt = 1.

Next, using the result from functional analysis that on bounded subsets of B(X), convergence
with respect to the strong operator topology is equivalent to pointwise convergence on a dense
subset, it suffices to show that etA(n)x converges ∀x ∈ D(A). We will show that it is Cauchy.

Indeed, for any x ∈ D(A), we deduce from Proposition A.6(ii) and the fundamental theorem
of calculus that, given any λ, µ > 0

exp(tA(λ)x− exp(tA(µ)x =

∫ t

0

d

ds

(
exp((t− s)A(µ)) exp(sA(λ))x

)
ds

=

∫ t

0
exp((t− s)A(µ) exp(sA(λ))

(
A(λ)x−A(µ)x

)
ds.

Since T (η, ·) is a contraction semigroup for any η > 0, we deduce from the above that

∥ exp(tA(λ)x− exp(sA(λ)x∥ ≤ t∥A(λ)x−A(µ)x∥
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Thus (exp(tA(n)x)n∈N is a Cauchy sequence for any t ≥ 0, because (tA(n)x)n∈N is a Cauchy
sequence.

(b) It is clear that ∥Tt∥ ≤ 1, ∀t ≥ 0, because Tn(t) are contraction semigroups ∀n ∈ N.
Additionally for any x ∈ X,

Ts+tx := lim
n→∞

Tn(s+ t)x = lim
n→∞

Tn(s)Tn(t)x

The above limit is equal to TsTtx. Indeed, given any ε > 0, ∃N1, N2 ∈ N such that

∀n ≥ N1, ∥Tn(t)x− Ttx∥ <
ε

2M
, where M := sup

n∈N
∥T (n, s)∥,

and
∀n ≥ N2, ∥Tns)Ttx− TsTsx∥ <

ε

2
.

Thus, given any n ≥ max(N1, N2), we have:

∥Tn(s)Tnt)x− TsTtx∥ ≤ ∥Tn(s)∥ · ∥Tn(t)x− Ttx∥+ ∥Tn(s)Ttx− TsTsx∥ < ε.

Additionally, for any x ∈ X, the map t 7→ Ttx is the uniform limit of continuous maps and is
therefore continuous. Thus, Tt is a C0-semigroup of contractions.

(c) Let B : D(B) → X denote the generator of Tt. Fix an arbitrary τ > 0 and x ∈ D(A)
and consider the maps ξn, ξ : [0, τ ] → X given by ξn(t) = Tn(t)x, for any n ∈ N and ξ(t) = Ttx.
By part (a), ξn converge uniformly to ξ. Additionally, ∀n ∈ N, ξn is differentiable, with
ξ′n(t) = Tn(t)A(n)x. We note that the ξ′n converge uniformly to η : [0, τ ] → X, given by
η(t) = TtAx. This implies that ξ is differentiable and that ξ = η. Thus B is an extension of A.

By assumption, λ ∈ ρ(A), so λ − A is a bijection from D(A) to X. Additionally, by the
forwards implication λ ∈ ρ(B), so λ−B is a bijection from D(B) to X. However, since A ⊆ B,
it follows that A = B.

⊓⊔

1.3. Dissipative operators and cores. We want to describe an equivalent formulation of
Hille-Yosida’s theorem more convenient to use in applications.

Suppose that A : D(A) ⊂ X → X is an unbounded operator. We say that A is closable if
the closure in X ×X of its graph G(A) is the graph of another unbounded operator Ā, i.e.,

cl
(
G(A)

)
= G(Ā).

It is easily seen that A is closable if and only if(
{0} ×X

)
∩ cl

(
G(A)

)
= {(0, 0)}.

In other words, if (xn)n≥1 is a sequence in D(A) such that xn → 0 and Axn → y, then y = 0.

Definition 1.19. Let A : D(A) ⊂ X → X be an unbounded operator on the Banach space X.
We say that A is dissipative if

∥λx−Ax∥ ≥ λ∥x∥, ∀x ∈ D(A), λ > 0.

⊓⊔

Proposition 1.20. Let A : D(A) ⊂ X → X be a dissipative operator on a Banach space X.
Then the following are equivalent.
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(i) The operator A is closed.
(ii) There exists λ > 0 such that the image of λ−A is closed.
(iii) For any λ > 0 the image of λ−A is closed.

Proof. We follow the proof of Lemma 2.2. on page 12 of [5]. Obviously (iii) ⇒ (ii).

(i) ⇒ (iii) Assume that A is closed. Fix λ > 0. Let y ∈ cl(R(λ−A)). There exist xn ∈ D(A)
such that yn := (λ−A)xn → y. The dissipativity of A implies that

∥yn − ym∥ ≥ 1

λ
∥xn − xm∥,

so xn is Cauchy and thus converges to some some x. On the other hand Axn = λxn − yn is
also convergent.

Since A is closed we deduce x ∈ D(A) and

Ax = limAxn = λx− y ⇒ y = (λ−A)x ∈ R(λ−A).

(ii) ⇒ (i) Assume that R(λ − A) is closed for some λ > 0. Consider any (xn)n∈N ∈ D(A)
such that xn → 0 and Axn → y. Consider the sequence (λ−A)xn. Since R(λ−A) is closed, it
follows that (λ−A)xn → 0− y ∈ R(λ−A). Thus ∃x ∈ D(A) such that (λ−A)xn → (λ−A)x.
Since A is dissipative, ∀n ∈ N:

∥(λ−A)(xn − x)∥ ≥ λ∥xn − x∥.

Thus xn → x, so x = 0, implying 0− y = (λ−A)x = 0, so A is closed.
⊓⊔

Proposition 1.21. Let A : D(A) ⊂ X → X be a densely defined dissipative operator on a
Banach space X. Then A is closable, its closure is dissipative and

R(λ− Ā) = cl
(
R(λ−A)

)
, ∀λ > 0.

Proof. We follow the proof of Lemma 2.11 on page 16 of [5]. Let (yn)n∈N ∈ D(A) converge to
y. Thus by continuity of the norm, ∀λ > 0:

∥(λ−A)yn − λy∥ = ∥(λ−A)yn − λ lim
k→∞

Axk∥ = lim
k→∞

∥(λ−A)yn − λAxk∥.

Because xk → 0 and A is dissipative, we have

lim
k→∞

∥(λ−A)yn − λAxk∥ = lim
k→∞

∥(λ−A)(yn − λxk)∥ ≥ lim
k→∞

λ∥yn + λxk∥ = λ∥yn∥.

Thus, ∀λ > 0:
1

λ
∥(λ−A)yn − λy∥ = ∥(1− λ−1A)yn − y∥ ≥ y ≥ ∥yn∥.

Since ∥yn − y∥ → 0, ∥yn∥ = 0, so y = 0. Thus A is closable.

By definition of closure of a subset, R(λ − Ā) ⊃ cl(λ − A), since (λ − Ā) is closed becuase Ā
is closed and dissipative. Additionally, R(λ − Ā) ⊂ cl(λ − A) follows from the definition of
closure of an operator.

⊓⊔
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Proposition 1.22. Let A : D(A) ⊂ X → X be a densely defined dissipative operator on a
Banach space X. Denote by Ā its closure. Then the following are equivalent.

(i) ρ(Ā) ∩ (0,∞) ̸= ∅.
(ii) (0,∞) ⊂ ρ(Ā).
(iii) There exists λ > 0 such that the range of λ−A is dense in X.
(iv) For any λ > 0 the range of λ−A is dense in X.

Proof. We follow the proof of Lemma 2.3 on page 12 of [5] and Theorem 4.3 on page 14 of [9].
Clearly (ii) ⇒ (i) and (iv) ⇒ (iii).

To show (iii) ⇒ (i), let λ > 0. In view of Proposition 1.21, the range of λ−A is dense in X
iff and only if R(λ1− Ā) = X. Since Ā is dissipative we deduce that

λ1− Ā : D(Ā) → X

is bijective and

∥(λ− Ā)−1x∥ ≤ 1

λ
∥x∥, ∀x ∈ X.

Hence, the inverse ((λ − Ā)−1 is bounded, i.e., λ ∈ ρ(Ā). Conversely, if λ ∈ ρ(Ā), then
R(λ− Ā) = X. Thus (iii) ⇐⇒ (i) and (iv) ⇐⇒ (ii).

It suffices to prove that (iii) ⇒ (iv). To show this assume ∃λ0 > 0 such that R(λ0 − A) is
dense in X, then by Proposition 1.21 R(λ0 − Ā) = X. Let

Λ := {λ > 0 : λ ∈ ρ(Ā)}.

The set Λ is nonempty because λ0 ∈ Λ. Additionally, using the functional analysis result that
the resolvent set of any densely defined closed operator is open in C, we get that Λ is open in
(0,∞). To show Λ is closed in (0,∞), consider any sequence (λn)n∈N ∈ Λ such that λn → λ
for some λ ∈ (0,∞). Since each λn ∈ Λ, for any y ∈ X, there exists xn ∈ D(Ā) such that
(λn − Ā)xn = y. Thus, by the dissipativity of Ā, we have for all n ∈ N:

∥y∥ = ∥(λn −A)xn∥ ≥ λn∥xn∥.

In particular, since (λn)n∈N is bounded, we have ∥xn∥ ≤ C∥y∥, for some C > 0. Additionally,
given any n,m ∈ N, calculate

λm∥xn − xm∥ ≤ ∥(λm − Ā)(xn − xm) = ∥(λm − λn + λn − Ā)xn − y∥

= |λm − λn| · ∥xn∥ ≤ C|λm − λn| · ∥y∥
Since (λn)n∈N does not converge to zero, this implies that (xn)n∈N is a Cauchy sequence. Let
x be the limit of (xn)n∈N. Since Āxn = λnxn − y, it follows that Āxn → λx − y. Thus by
closedness we have (λ− Ā)x = y. Since y is arbitrary, it follows that R(λ− Ā) = X implying
λ ∈ Λ, so Λ is closed. Thus Λ = (0,∞), as desired.

⊓⊔

Theorem 1.23. Let A : D(A) ⊂ X → X be a closed and densely defined unbounded operator.
Then A the following.

(i) The operator A satisfies the Hille-Yosida conditions.
(ii) The operator A is dissipative and λ−A is surjective for some/all λ > 0.
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Proof. We follow the proofs of [4, Thm 3.5, Prop. 3.14].
(i) ⇒ (ii) We assume that A satisfies the HY conditions; in particular (0,∞) ⊂ ρ(A) and

λ∥R(λ,A)∥ < 1. We note that λ−A is surjective because (0,∞) ⊂ ρ(A). Additionally, for any
x ∈ D(A) and λ > 0, we set y := λx−Ax. Thus

∥λx−Ax∥ = ∥y∥ > λ∥R(λ,A)y∥ = λ∥x∥,
so A is dissipative.

(ii) ⇒ (i) We assume that A is dissipative and that λ − A is surjective for some/all λ > 0.
We first need to prove that λ−A is injective. Consider any x ∈ D(A) such that λx−Ax = 0.
By the dissipativity of A, for any λ > 0 we have

0 = ∥λx−Ax∥ > λ∥x∥
Thus x = 0 and λ−A is invertible for any λ > 0, so (0,∞) ⊂ ρ(A). Next we seek to show that
A satisfies the HY estimate λ∥R(λ,A)∥ < 1 for any λ > 0. For any λ > 0 and y ∈ D(A) with
∥y∥, the following calculation holds:

λ∥R(λ,A)y∥ ≤ ∥(λ−A)R(λ,A)y∥ = 1

Thus, we have λ∥R(λ,A)∥ ≤ 1, for all λ > 0, so A satisfies the HY conditions. ⊓⊔

Corollary 1.24 (Lummer-Phillips). Let A : D(A) ⊂ X → X be a densely defined dissipative
operator. Then its closure is the generator of a semigroup of contractions if and only if the
range of λ−A is dense in X for some/all λ > 0.

Proof. We follow the proof of [4, Thm. 3.5]. Assume first that Ā is the generator of a contraction
C0-semigroup. By Theorem 1.16 (0,∞) ⊂ ρ(A). For any λ > 0, by Lemma 1.22 R(λ − A) is
dense in X.

We assume that R(λ − A) is dense for some/all λ > 0. By Lemma 1.22, we have (0,∞) ⊂
ρ(Ā), so in particular λ − Ā is surjective. Since Ā is also dissipative, by Theorem 1.23 the
operator Ā satisfies the HY conditions, and is therefore the generator of a C0-semigroup of
contractions.

⊓⊔

Definition 1.25. Suppose that A : D(A) ⊂ X → X is a closed unbounded operator. A core of
A is a subspace D ⊂ D(A) such that G(A) = cl

(
G(A|D)

)
, where A|D denotes the restriction

of A to D. In other words, ∀x ∈ D(A), there exists a sequence (xn) ∈ D such that xn → x and
Axn → Ax as n → ∞. ⊓⊔

From Proposition 1.22 we deduce the following characterization of cores of generators of
semigroups of contraction.

Corollary 1.26. Suppose that A : D(A) ⊂ X → X is the generator of a semigroups of (linear)
contractions on the Banach space X. A subspace D ⊂ D(A) is a core of A if and only is D is
dense in X and

(
λ−A

)
(D) is dense in X for some/all λ > 0. ⊓⊔

Proposition 1.27. Suppose that A : D(A) ⊂ X → X is the generator of a semigroup of
(linear) contractions on Banach space X. If a linear subspace D ⊆ D(A) is ∥ · ∥-dense in X
and furthermore Tt(D) ⊆ D, for any t ≥ 0, then D is a core for A.
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Proof. We follow the proof of [4, Prop. 1.7]. By assumption, for any x ∈ D(A), we have a
sequence (xn)n∈N ∈ D such that xn → x. By continuity of s 7→ Tsx with respect to ∥ · ∥G(A),
and the continuity of the Bochner integral, we have for any t > 0:∥∥∥∥1t

∫ t

0
Tsxnds−

1

t

∫ t

0
Tsxds

∥∥∥∥
G(A)

→ 0 as n → ∞.

Additionally, by continuity of s 7→ Tsxn with respect to ∥ · ∥G(A), we have ∀n ∈ N,∥∥∥∥1t
∫ t

0
Tsxnds−

1

t
Tsxds

∥∥∥∥
G(A)

→ 0 as t ↘ 0.

The above two statements imply that give any ε > 0, ∃N ∈ N and δ > 0 such that for all
n ≥ N and 0 < t < δ, we have ∥∥∥∥1t

∫ t

0
Tsxnds− x

∥∥∥∥ < ε.

Finally, by continuity of s 7→ Tsxn with respect to ∥ · ∥G(A), we have that∫ t

0
Tsxnds ∈ cl(G(A|D)) ∀n ∈ N, ∀t > 0

This implies that x is in the ∥ · ∥G(A)-closure of D. ⊓⊔

Proposition 1.28. Let (Tt)t≥1 be a semigroup of contractions on the Banach space X with
generator A. Define inductively

D(An) :=
{
x ∈ D(An−1); Ax ∈ D(An−1)

}
.

Set
D(A∞) =

⋂
n≥1

D(An).

Then D(A∞) is a core of A.

Proof. We follow the proof of [4, Prop. 1.8]. By definition and Lemma 1.6, D(A∞) is a (Tt)t≥0

invariant subspace. Thus by Proposition 1.27, it suffices to show that D(A∞) is dense in X.
To show this, we construct a subspace of D(A∞) and show that it is dense in X.

Let
K := {φ ∈ C∞(R) : Suppφ is compact and Suppφ ⊂ (0,∞)}.

For any x ∈ X and φ ∈ K, define

xφ :=

∫ ∞

0
φ(s)Tsxds.

We now seek to show that xφ ∈ D(A∞), for all x ∈ X,φ ∈ K. More precisely we will show
that xφ ∈ D(A) and Axφ = x−φ. This implies inductively that xφ ∈ D(A∞).

For any h > 0, x ∈ X and φ ∈ Kwe have

Th − 1

h
xφ =

1

h

∫ ∞

0
φ(s)(Ts+h − Ts)xds =

1

h

∫ ∞

h
φ(s− h)Tsxds−

1

h

∫ ∞

0
φ(s)Tsxds

=
1

h

∫ ∞

h
(φ(s− h)− φ(s))Tsxds−

1

h

∫ h

0
φ(s)Tsxds.
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Next, using the fact that φ(s) = 0, for all s ≤ 0, we conclude

1

h

∫ ∞

h
(φ(s− h)− φ(s))Tsxds−

1

h

∫ h

0
φ(s)Tsxds =

∫ ∞

0

1

h
(φ(s− h)− φ(s))Tsxds.

We note that because 1
h(φ(s − h) − φ(s)) converges to φ′(s), and because φ has compact

support, ∥ 1
h(φ(s − h) − φ(s))Tsx∥ is bounded by B(s)∥Tsx∥, for some B : R → [0,∞). We

can assume without loss of generality that SuppB = Suppφ. Thus B has compact support, so∫∞
0 B(s)∥Tsx∥ds < ∞. Using the Proposition A.6 (ii) and the dominated convergence theorem
we deduce

lim
h↘0

∫ ∞

0

1

h
(φ(s− h)− φ(s))Tsxds =

∫ ∞

0
−φ′(s)Tsxds = x−φ′ .

This proves that xφ ∈ D(A) and Axφ = x−φ′ .
Set

D := span {xφ ∈ X : x ∈ X,φ ∈ K}.
We will show that D is dense in X. Assume for the sake of contradiction that D is not dense
in X. Hahn-Banach theorem implies that there exists x∗ ∈ X∗ such that D ⊂ ker(x∗) and
x∗ ̸= 0. Usiung Proposition A.6(ii) we deduce that for any x ∈ X and φ ∈ K, we have:

0 = x∗
(∫ ∞

0
φ(s)Tsxds

)
=

∫ ∞

0
φ(s)x∗(Tsx)ds.

Because the above is true for any φ ∈ K, and s 7→ x∗(Tsx) is continuous, we must have
x∗(Tsx) = 0 for all t ≥ 0 and for any x ∈ X. By setting s = 0, we have that x∗(x) = 0, for all
x ∈ X, which is a contradiction. Thus D is dense in X. ⊓⊔

1.4. Trotter-Kato Approximation Theorems.

Definition 1.29 (Pseudo-Resolvent). Let Λ ⊂ C and X be a Banach Space. A family of
operators (J (λ))λ∈Λ ∈ B(X) is called a pseudo-resolvent if ∀λ, µ ∈ Λ:

J (λ)− J (µ) = (µ− λ)J (λ)J (µ).

⊓⊔

Proposition 1.30. Let (Tn(t))n∈N,t≥0 be a sequence of contraction semigroups on the Banach
space X. Denote by An the generator of Tn. Assume that ∃λ0 > 0 such that

lim
n→∞

R(λ0, An)x exists ∀x ∈ X.

Then ∀λ > 0, and more generally any λ ∈ C with Re(λ) > 0

R(λ)x := lim
n→∞

R(λ,An)x exists ∀x ∈ X

and the family (R(λ))λ>0 is a pseudo-resolvent.

Proof. We follow the proof of [4, Prop. 1.4]. Define

Ω :=
{
λ ∈ C : Re(λ) > 0, and lim

n→∞
R(λ,An)x exists ∀x ∈ X

}
.

We note that λ0 ∈ Ω, so it is known that Ω is nonempty. We will prove that Ω is both a closed
and open subset of {Reλ > 0}.
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Fix µ ∈ Ω and α ∈ (0, 1) and define

Uα(µ) :=

{
λ ∈ C : Reλ > 0,

|µ− λ|
Re(µ)

< α

}
.

Note that Uα(µ) is an open subset of C containing µ. Moreover

|µ− λ∥R(µ,An)∥ < α, ∀n ∈ N, ∀λ ∈ Uα(µ).

Since Re(λ) > 0 and An generates a semigroup of contractions we deduce from the Hille-Yosida
theorem that λ−An is invertible. Moreover, from the equality

λ−An = µ−An + λ− µ =
(
1− (µ− λ)R(µ,An)

)(
µ−An

)
we deduce that

R(λ,An) = (λ−An)
−1 = R(µ,An)(1− (µ− λ)R(λ,An))

−1

=

∞∑
k=1

(µ− λ)k (R(µ,An))
k+1 .

Observe that for λ ∈ Uα we have

|µ− λ|k
∥∥∥(R(µ,An))

k+1
∥∥∥ ≤ 1

Re(µ)
αk

Hence the above convergence is uniform for λ ∈ Uα and n ∈ N. This implies that R(λ,An)x
converges for any x ∈ X as n → ∞, ∀λ ∈ Uα. Thus, µ has an open neighborhood in Ω, so Ω is
open.

To prove that Ω is also closed consider a cluster point λ of Ω, with Re(λ) > 0. We note
that ∀α ∈ (0, 1), can find µ ∈ Ω such that λ ∈ Uα(µ) for some α ∈ (0, 1). The above argument
shows that λ ∈ Ω, so Ω is closed in H := {z ∈ C : Re(z) > 0}. Since Ω ̸= ∅ is both closed and
open in H, we have that Ω ∩H = H by contentedness.

Since R(λ,An) all satisfy the pseudo-resolvent equation for all n, it follows that the limits
also satisfy the pseudo-resolvent equation, so R(λ) are a pseudo-resolvent. ⊓⊔

Lemma 1.31. Let X be a Banach space, Λ ⊆ C, and (J (λ))λ∈Λ a pseudo-resolvent

(i) The following hold ∀λ, µ ∈ Λ:
(a) J (λ)J (µ) = J (µ)J (λ)
(b) kerJ (λ) = kerJ (µ)
(c) RJ (λ) = RJ (µ)

(ii) The following are equivalent
(a) ∃A : D(A) → X densely defined and closed operator such that Λ ⊂ ρ(A) and

J (λ) = R(λ,A), ∀λ ∈ Λ.
(b) For some (or all) λ ∈ Λ, ker(J (λ)) = 0 and and it is dominant, i.e.,

R(J (λ)) = X.
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(iii) Assume ∃(λn)n∈N ∈ Λ is unbounded sequence. If ∀x ∈ X

lim
n→∞

λnJ (λn)x = x (1.5)

Then J (λ) is the resolvent of some densely defined closed operator.

Alternatively, if R(J (λ)) = Xand ∥λnJλn∥ ≤ 1, ∀n ∈ N, then (1.5) holds.

Proof. We follow the proofs of Lemma 1.5 on page 139, Proposition 1.6, and Corollary 1.7 of
[4].

(i) By the pseudo-resolvent equation, ∀λ, µ ∈ Λ:

J (λ) = J (µ) + (µ− λ)J (λ)J (µ) =
(
1+ (µ− λ)J (λ)

)
J (µ).

Thus, R(J (λ)) ⊆ R(J (µ)) and ker(J (µ)) ⊆ ker(J (λ)). Similarly:

J (µ) = J (λ) + (λ− µ)J (µ)J (λ) =
(
1+ (λ− µ)J (µ)

)
J (λ).

Thus, R(J (λ)) ⊇ R(J (µ)) and ker(J (µ)) ⊇ ker(J (λ)), implying equality. In particular,
this implies that for any pseudo-resolvent, the statements ‘for some’ and ‘for all’ are equivalent
when dealing with the range and kernel.

For commutativity, by the pseudo-resolvent equation, ∀λ, µ ∈ Λ:

J (λ)J (µ) =
1

µ− λ

(
J (λ)− J (µ)

)
=

1

λ− µ

(
J (µ)− J (λ)

)
= J (µ)J (λ).

(ii) (b) ⇒ (a) Assume that for some (or all) λ ∈ Λ, J (λ) is injective and has dense range.
Define the unbounded linear operator A : D(A) → X by A := µ − J (µ)−1, for fixed µ ∈ Λ.
By assumption A is densely defined, because D(A) = R(J (µ)).

We next seek to show that A is closed. Indeed, for any sequence (xn)n∈N ∈ D(A) that
satisfies xn → 0 and Axn → y for some y ∈ X, the sequence must also satisfy the following:

J (µ)(Axn) = J (µ)(µxn − J (µ)−1xn) = µJ (µ)xn − xn → 0

Since J (µ) is injective and continuous, we have Axn → 0. Thus A is closed, as desired.
Additionally, by the construction of A, we have ∀λ ∈ Λ

(λ−A)J (λ) = ((λ− µ) + (µ−A))J (λ)

= ((λ− µ) + (µ−A))
(
1+ (µ− λ)J (λ)

)
J (µ) =

= 1+ (λ− µ)
(
J (µ)− J (λ)− (λ− µ)J (λ)J (µ)

)
= 1.

The last two equalities follow from the pseudo-resolvent equation. Similarly, ∀λ ∈ Λ:

J (λ)(µ−A) = J (λ)
(
(λ− µ) + (µ−A)

)
=
(
1+ (µ− λ)J (λ)

)
J (µ)

(
(λ− µ) + (µ−A)

)
=

= 1+ (λ− µ)
(
J (µ)− J (λ)− (λ− µ)J (λ)J (µ)

)
= 1.

Thus, J (λ) = R(λ,A), ∀λ ∈ Λ.

(a) ⇒ (b) The proof is by contradiction. Assume that for some (or all) λ ∈ Λ, J (λ) is not
injective nor J (λ) is not dominant.

If J (λ) is not injective ∃x ∈ X, x ̸= 0 such that J (λ)x = 0. Then for any densely defined
closed operator A : D(A) → X such that (λ − A)−1 ∈ B(X), we must have(λ − A)0 = 0 ̸= x.
This implies that (λ−A)−1x ̸= 0 = J (λ)x. Thus J (λ) ̸= R(λ,A).
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If J (λ) is not dominant, then for any densely defined closed operator A : D(A) → X such
that (λ−A)−1 ∈ B(X), (λ−A)−1 is dominant, so (λ−A)−1 ̸= J (λ).

(iii) Firstly note that if (1.5) holds, then

X =
⋃
n∈N

R(J (λn)) = R(J (λ)), ∀λ ∈ Λ.

Additionally, if (1.5) holds, then kerJ (λ) = 0. Indeed, if x ∈ kerJ (λ), then x ∈ kerJ (λn),
∀n we must have

x = lim
n→∞

λnJ (λn)x = 0.

Thus, by (ii), J (λ) is the resolvent of some densely defined closed operator.

Assume that R(J (λ)) = X and ∥λnJ (λn)∥ ≤ 1, ∀n ∈ N. It follows that

∥J (λ0)∥ ≤ 1

|λn|
, ∀n ∈ N.

This implies, ∀µ ∈ Λ we have

lim
n→∞

∥∥(λnJ (λn)− 1)J (µ)
∥∥ = lim

n→∞

∥∥λnJ (λn)Jν − J (µ)
∥∥

= lim
n→∞

∥∥µJ (λn)J (µ)− J (λn)
∥∥ = 0.

Thus (1.5) holds.
⊓⊔

Theorem 1.32 (First Trotter-Kato approximation theorem). Let X be a Banach space and
let (T (t))t≥0 and (Tn(t))t≥0, ∀n ∈ N, be contraction semigroups on X. Let A and An denote
the infinitesimal generators of T (t) and Tn(t) respectively. Let D ⊂ X be a core of A. Then
we have the sequence of implications

(i) =⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv)

involving the statements below.

(i) D ⊂ D(An), ∀n ∈ N and Anx → Ax, ∀x ∈ D.
(ii) ∀x ∈ D, ∃xn ∈ D(An), ∀n ∈ N such that

xn → x and Anxn → Ax.

(iii) R(λ,An)x → R(λ,A)x, ∀x ∈ X for some (all) λ > 0.
(iv) Tn(t)x → T (t)x ∀x ∈ X, and uniformly for t on any compact interval.

Proof. We follow the proof of Theorem 1.8 on page 141 of [4].

(i) ⇒ (ii) Assume that D ⊂ D(An), ∀n ∈ N and that Anx → Ax, ∀x ∈ D. Thus (ii) holds
with (xn) the constant sequence xn = x ∈ D(An), ∀n ∈ N.

(ii) ⇒ (iii) Assume that for all x ∈ D and n ∈ N, ∃xn ∈ D(An) such that

xn → x and Anxn → Ax.

Let λ > 0. We note that ∥R(λ,An)∥ ≤ 1, for all n ∈ N, by the Hille-Yosida theorem, since
An generate contraction semigroups. It suffices to show that ∀y ∈ (λ − A)(D), R(λ,An)y →
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R(λ,A)y, by the uniform boundedness principle. Take any x ∈ D and set y = (λ − A)x. By
assumption, ∃xn ∈ D(An) such that xn → x and Anxn → Ax. We set

yn := (λ−An)xn → x−Ax = y.

This implies:

∥R(λ,An)y −R(λ,A)y∥ = ∥R(λ,An)y −R(λ,An)yn +R(λ,An)yn −R(λ,A)y∥

≤ ∥R(λ,An)y −R(λ,An)yn∥+ ∥R(λ,An)yn −R(λ,A)y∥.
By choice of y = (λ−A)x, it follows that:

∥R(λ,An)y −R(λ,An)yn∥+ ∥R(λ,An)yn −R(λ,A)y∥

≤ ∥R(λ,An)∥ · ∥y − yn∥+ ∥xn − x∥ → 0.

Thus

lim
n→∞

∥R(λ,An)y −R(λ,A)y∥ = 0.

(iii) ⇒ (ii) Assume that R(λ,An)x → R(λ,A)x, For all x ∈ X and some λ > 0. For any
x ∈ D, pick y such that x = R(λ,A)y and define the sequence xn := R(λ,An)y, ∀n ∈ N. Thus,
by construction, we have

Anxn = AnR(λ,An) = λR(λ,An)y − y → λR(λ,A)y − y = Ax.

(iv) ⇒ (iii) Assume that T (n, t)x → Ttx for all x ∈ X, and uniformly on any compact interval.
By the integral representation of the resolvent, ∀λ > 0, ∀x ∈ X we have

∥R(λ,An)x−R(λ,An)x∥ =

∥∥∥∥∫ ∞

0
e−λt

(
T (t)x− Tn(t)x

)
dt

∥∥∥∥
≤
∫ ∞

0
e−λt∥T (t)x− Tn(t)x∥dt.

By the dominated convergence theorem, this converges to 0, so R(λ,An)x → R(λ,A)x.

(iii) ⇒ (iv) Assume that R(λ,An)x → R(λ,A)x, ∀x ∈ X for some λ > 0. Fix some t0 > 0.
For all x ∈ X and ∀t ∈ [0, t0], we have, using the fact that R(λ,A) and Tt commute and
R(λ,An) and T (n, t) commute,

∥(Tn(t))− T (t))R(λ,A)x∥ =∥∥Tn(t)(R(λ,A)−R(λ,An))x+R(λ,An)(Tn(t)− T (t))x+ (R(λ,An)−R(λ,A))x
∥∥

≤ ∥Tn(t)(R(λ,A)−R(λ,An))x∥︸ ︷︷ ︸
D1(n)

+ ∥R(λ,An)(Tn(t)− T (t))x∥︸ ︷︷ ︸
D2(n)

+ ∥(R(λ,An)−R(λ,A))x∥︸ ︷︷ ︸
D3(n)

.

The goal is now to show that Di(n) → 0 as n → ∞, for i = 1, 2, 3.
Firstly, we note that ∥Tn(t)∥ ≤ 1, ∀n ∈ N and t ∈ [0, t0]. This implies by the uniform

boundedness principle and continuity that:

lim
n→∞

D1(n) = lim
n→∞

∥Tn(t)(R(λ,A)−R(λ,An))x∥ = 0.

Additionally, this convergence is uniform, by the uniform boundedness principle.
Secondly, note that

D3(n) = ∥(R(λ,An)−R(λ,A))x∥ → 0
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By assumption that R(λ,An)x → R(λ,A)x. Additionally, this convergence is uniform since
[0, t0] is compact and t 7→ T (t)x is uniformly continuous.

Thirdly, we note that

D2(n) = ∥R(λ,An)(Tn(t)− T (t))x∥ ≤ ∥R(λ,An)
(
T (t)− Tn(t)

)
R(λ,A)x∥,

because ∥R(λ,A)∥ ≤ 1. Next, we seek to show that above expression can be represented as an
integral. We define

G(s) := Tn(t− s)R(λ,An)T (s)R(λ,A)x,

so that

G(t)−G(0) = R(λ,An)
(
T (t)− Tn(t)

)
R(λ,A)x.

Then
d

ds
G(s) = Tn(t− s)

(
−AnR(λ,An)T (s) +R(λ,An)T (s)A

)
R(λ,A)x

= Tn(t− s)
(
(1− λR(λ,An)R(λ,A) +R(λ,An)(−1+ λR(λ,A)

)
T (s)x

= Tn(t− s)
(
R(λ,A)−R(λ,An)

)
T (s)x.

Using the fact that ∥Tn(t− s)∥ ≤ 1, this allows for the following bound on D2(n):

D3(n) ≤ ∥R(λ,An)(T (t)− Tn(t))R(λ,A)x∥ ≤
∫ t

0
∥(R(λ,A)−R(λ,An)T (s)x∥ds

≤ sup
s∈[0,t0]

∥(R(λ,A)−R(λ,An)T (s)x∥.

By repeating the same argument which showed D3(n) → 0, we have D2(n) → 0, uniformly on
[0, t0], as n → ∞

Thus, for any x ∈ X, we have that ∥(T (n, t)− Tt)R(λ,A)x∥ → 0, uniformly on [0, t0]. Since
any y ∈ D(A) can be written as R(λ,A)x, for some x ∈ X, it follows that ∥T (n, t)y−Tty∥ → 0
for all y ∈ D(A) and uniformly on [0, t0]. Thus, by the uniform boundedness principle and the
fact that ∥T (n, t)y − Tty∥ ≤ 2, we have that T (n, t)x → Ttx, for any x ∈ X and uniformly on
[0, t0]. ⊓⊔

Theorem 1.33 (Second Trotter-Kato approximation theorem). Let X be a Banach space and
suppose that for any n ∈ N (Tn(t))t≥0 is a contraction semigroup on X with generator An. For
λ0 > 0 we have the implications

(i) =⇒ (ii) ⇐⇒ (iii)

involving statements listed below. Additionally if (i) holds, then G = Ā.

(i) There exists a densely defined unbounded operator A : D(A) ⊂ X → X, a core D of A
and λ0 > 0 such that R(λ0 −A) is dense in X and Anx → Ax, ∀x ∈ D.

(ii) The operators R(λ0, An) converge strongly to some R ∈ B(X) with dense image (R is
dominant).

(iii) The semigroups (Tn(t))t≥0 converge strongly and uniformly on compact interval as
n → ∞, to a contraction semigroup (Tt)t≥0 C0-semigroup on X with infinitesimal
generator G such that R(λ,A) = R
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Proof. Similarly to the first Trotter-Kato approximation theorem, we will prove for contraction
semigroups. We follow the proof of Theorem 1.9 on page 144 of [4].

(i) ⇒ (ii) Because each An generate a semigroup of contractions, they satisfy the HY-
conditions. Thus, by Theorem 1.23, we have that each An is dissipative and λ−An is surjective
for all λ > 0 and n ∈ N. This implies that A is also dissipative since

∥λx−Ax∥ = lim
n→∞

∥λx−Anx∥ ≥ λ∥x∥, ∀x ∈ D.

Corollary 1.24 shows that A is closable and its closure Ā generates a contraction semigroup.
In particular Ā satisfies the Hille-Yosida conditions so (0,∞) ⊂ ρ(Ā).

Set R = R(λ0, Ā). Its image is the domain of Ā so it is dense. We will show that R =
limn→∞R(λ0, An) with respect to the strong operator topology.

For any x ∈ (λ0− Ā)(D), there exists y ∈ D such that (λ0− Ā)y = x; in particular, y = Rx.
This allows for the following calculation, for any x ∈ (λ0 − Ā)(D),

R(λ0, An)x = R(λ0, An)
(
λ0 −An − (λ0 −An) + (λ0 − Ā)

)
y

= y +R(λ0, An)(Any − Āy) → y = Rx.

By the Hille-Yosida theorem, we have ∥R(λ0, An)∥ ≤ 1
λ0
, for all n ∈ N. This allows for the

following computation

∥R(λ0, An)(Any − Āy)∥ ≤ ∥R(λ0, An)∥ · ∥Any − Āy∥ ≤ 1

λ0
∥Any − Āy∥ → 0.

Thus R(λ0, An) → R with respect to the strong operator topology because (λ0 − Ā)(D) is
dense.

(iii) ⇒ (ii) Follows directly from the first Trotter-Kato Approximation theorem.

(ii) ⇒ (iii) Assume that R(λ0, An) converge strongly to some R ∈ B(X) with dense image.
Define the following family of operators on X:

R(λ), λ > 0 by R(λ)x := lim
n→∞

R(λ,An)x.

R(λ) form a pseudo-resolvent since R(λ,An) are a pseudo-resolvent for each n ∈ N. Note
that ∀λ > 0, ∥λR(λ)∥ ≤ 1 by the uniform boundedness principle, and has dense image. By
Lemma 1.31 implies there exists B : D(B) → X densely defined closed operator such that
R(λ) = R(λ,B), ∀λ > 0. By the Hille-Yosida theorem, this generates a C0-semigroup. Then,
by the first Trotter-Kato Theorem, the semigroups converge.

Additionally, if (i) holds, then R(λ0) = R(λ0, G). Since D is a core of Ā, we have

R(λ0)(λ0 −A)x = x, ∀x ∈ D.

Additionally because R(λ0 − Ā) is X, we also have

R(λ)(λ0 − Ā)x = x, ∀x ∈ X.

Next, we note that because λ0 ∈ ρ(Ā), R(λ,G) = R(λ, Ā) because both operators are continu-
ous and agree on a dense subset. Thus G = Ā. ⊓⊔
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1.5. Chernoff product formula.

Lemma 1.34. Let A ∈ B(X) satisfy ∥An∥ ≤ M , for all n ∈ N. Then

∥ exp(n(A− 1))x−Anx∥ ≤
√
nM∥Ax− x∥.

Proof. We follow the proof of Lemma 2.1 on page 149 of [4]. Fix any n ∈ N. Then we have the
following algebraic manipulation,

exp(n(A− 1))−An = e−n(enA − enAn) = e−n
∞∑
k=0

nk

k!
(Ak −An).

Additionally, for any k ∈ N, with k > n, we have

Ak −An =
k−1∑
j=n

Aj+1 −Aj =
k−1∑
j=n

Aj(A− 1).

This implies the following bound for any k > n, k ∈ N,
∥Akx−Anx∥ ≤ (k − n)M∥Ax− x∥.

This bound yields

∥ exp(n(A− 1))x−Anx∥ ≤ e−nM∥Ax− x∥
∞∑
k=0

(
nk

k!

)1/2(
nk

k!

)1/2

(k − n),

and by the ℓ2 Cauchy Schwarz inequality,

≤ e−nM∥Ax− x∥

( ∞∑
k=0

nk

k!︸ ︷︷ ︸
=:α

)1/2( ∞∑
k=0

nk

k!
(k − n)2︸ ︷︷ ︸
=:β

)1/2

.

We have α = en and

β =
∑
k≥0

k2
nk

k!
− 2n

∑
k≥0

k
nk

k!
+ n2

∑
≥0

nk

k!

(use (2.5) and (2.6) with λ = n)

= en(n+ n2)− 2n2en + n2en = nen.

We deduce

∥ exp(n(A− 1))x−Anx∥ ≤ e−nM∥Ax− x∥en/2(nen)1/2 =
√
nM∥Ax− x∥.

⊓⊔

Theorem 1.35 (Chernoff product formula). Suppose that
(
V (t)

)
t≥0

be a family of linear

contractions on the Banach space X with there following properties.

(i) V (0) = 1.
(ii) There exists a dense subspace D ⊂ X such that for any x ∈ D the limit

lim
h↘0

1

h
(V (h)x− x)

exists. We denote it by Ax.
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(iii) There exists λ0 > 0 such that (λ0 −A)(D) is dense in X.

Then A is closable, its closure Ā generates a semigroup of contractions (Tt)t≥0 and

Ttx = lim
n→∞

V

(
t

n

)n

x, ∀x ∈ X. (1.6)

Additionally, this convergence is uniform on compact intervals.

Proof. We follow the proof of [4, Thm.2.2]. Define

An(s) =
n

s
(V (s/n)− 1) ∈ B(X), ∀s > 0.

Clearly An(s)x → Ax for all x ∈ D as n → ∞, and uniformly on s ∈ [s0, s1]. Note that

∥etAn(s)∥ ≤ e−tn/s

∥∥∥∥exp( tn

s
V (s/n)

)∥∥∥∥ ≤ e−tn/s
∞∑

m=0

(tn)m∥V (s/n)m∥
smm!

≤ 1.

Because both D and (λ − A)(D) are dense in X, we can apply the second Trotter-Kato The-
orem 1.33 to the sequence of contraction semigroups exp(tAn(s)), to get that Ā generates a
contraction semigroup, which will be called Tt. Additionally, by Theorem 1.33, Tt also satisfies

∥Ttx− etAn(s)x∥ → 0 as n → ∞ and uniformly for s ∈ [s0, s1].

Next, we seek to show the equality in 1.6. By Lemma 1.34, we calculate the following, for any
n ∈ N, x ∈ X and s > 0,∥∥∥exp (sAn(s))x− V

( s
n

)n
x
∥∥∥ =

∥∥∥exp(n(V ( s
n

)
− 1

))
x− V

( s
n

)n
x
∥∥∥

≤
√
n
∥∥∥V ( s

n

)
x− x

∥∥∥ =
s√
n
∥An(s)x∥.

Finally we note that s√
n
∥An(s)x∥ → 0 as n → ∞, for all x ∈ D, and uniformly on any compact

s ∈ [s0, s1]. Because D is dense, and
∥∥exp (sAn(s))x− V

(
s
n

)n
x
∥∥ ≤ 2 for all s ≥ 0, n ∈ N and

x ∈ X, we have the desired convergence for any x ∈ X by the uniform boundedness principle.
⊓⊔

Example 1.36 (Yosida’s approximation). Suppose that (Tt)t≥0 is a semigroup of contractions
on the Banach space X with generator A. For any t > 0 we set

V (t) =
(
1− tA

)−1
= t−1

(
t−1 −A

)−1
= t−1R(t−1, A).

SSet λ := t−1. Since ∥R(λ,A)∥ ≤ 1
λ we deduce ∥V (t)∥ ≤ 1. Note that

1

t

(
V (t)− 1

)
= λ

(
λR(λ,A)− 1

)
= λ2R(λ,A)− λ = A(λ).

Lemma 1.14 shows that

lim
λ→∞

Aλx = Ax, ∀x ∈ D(A).

Hence

lim
t↘0

1

t

(
V (t)− 1

)
x = Ax, ∀x ∈ D(A).
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We deduce from Chernoff’s product formula(
1− t

n
A

)−n

x → Ttx, ∀x ∈ X.

⊓⊔

2. Semigroups of probability measures

In this section we will describe some probabilistic applications of the theory of semigroups
we have developed in the previous section.

2.1. The space of Borel probability measures on R. Denote by Prob(R) the space of
probability measures on R. Denote by B the sigma-algebra of Borel subsets of R, by Cb(R) the
space of bounded continuous functions R → R, and by C0(R) the space of continuous functions
f : R → R such that

lim
x→±∞

f(x) = 0.

Denote by ∥ − ∥ the sup-norm on Cb(R). For f ∈ Cb(R) and µ ∈ Prob(R) we set

µ
[
f
]
:=

∫
R
f(x)µ[dx].

The set of atoms of µ ∈ Prob(R) is the collection

Aµ =
{
x ∈ R; µ

[
{x}

]
> 0

}
.

Clearly the set of atoms is at most countable since for any n ∈ N the collection{
x ∈ R; µ

[
{x}

]
> 1/n

}
has cardinality < n.

Definition 2.1. A sequence (µn)n ∈ N in Prob(R) is said to converge weakly to µ ∈ Prob(R),
and we write this µn ⇒ µ, if

lim
n→∞

µn

[
f
]
= µ

[
f
]
, ∀f ∈ Cb(R).

⊓⊔

The Fourier transform of a measure µ ∈ Prob(R) is the function

µ̂ : R → C, µ̂(ξ) =

∫
R
eiξxµ[dx].

For a proof of the following result we refer to [8, Sec. 2.2].

Theorem 2.2. Let (µn)n∈N be a sequence in Prob(R) and µ ∈ Prob(R). The following state-
ments are equivalent.

(i) The sequence (µn) converges weakly to µ.
(ii) For any f ∈ C0(R)

µn

[
f
]
→ µ

[
f
]
.

(iii) For any a, b ∈ R \ Aµ, a < b

lim
n→∞

µn

[
(a, b)

]
= µ

[
(a, b)

]
.
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(iv) For any ξ ∈ R
lim
n→∞

µ̂n(ξ) = µ̂(ξ).

⊓⊔

For any µ ∈ Prob(R) and f ∈ Cb(R) we denote by Tµf the function R → R defined by

Tµf(x) =

∫
R
f(x+ y)µ[dy].

Clearly Tµf ∈ Cb(R), ∀f ∈ Cb(R). The dominated convergence theorem implies that

Tµf ∈ C0(R), ∀f ∈ C0(R).
Note that

∥Tµf∥ ≤ ∥f∥, ∀f ∈ Cb(R), ∀µ ∈ Prob(R).
For any random variable Y we set TY = TPY

, where PY ∈ Prob(R) is the distribution of Y .
Note that for any f ∈ Cb(R) we have

TY f(x) = E
[
f(x+ Y )

]
, x ∈ R,

where E
[
−
]
denotes the expectation of a random variable.

Theorem 2.3. Let (µn)n∈N be a sequence in Prob(R) and µ ∈ Prob(R). The following state-
ments are equivalent.

(i) The sequence (µn) converges weakly to µ.
(ii) For any f ∈ C0(R)

lim
n→∞

∥Tµnf − Tµf∥ = 0.

Proof. (i) ⇒ (ii) Let f ∈ C0(R). For each x ∈ R we define

fx : R → R, fx(y) = f(x+ y), ∀y ∈ R.
Then

Tµnf(x) = µn

[
fx
]
.

Since f is uniformly continuous the map

R ∋ x 7→ fx ∈ C0(R)
is also uniformly continuous with respect to the sup-norm.

Fix ε > 0. Since µn ⇒ µ there exists M > 0 such that

µn

[
{|y| > M}

]
, µn

[
{|y| > M}

]
< ε, ∀n ∈ N

We can assume that M,−M are not atoms of µ. We have∣∣µn

[
fx
]
− µ

[
f
]∣∣ ≤ ∣∣∣∣∣

∫
[−M,M ]

fx(y)µn[dy]−
∫
[−M,M ]

fx(y)µ[dy]

∣∣∣∣∣
+

∫
|y|>M

|f |µn|dy] +
∫
|y|>M

|f |µ[dy]

≤

∣∣∣∣∣
∫
[−M,M ]

fx(y)µn[dy]−
∫
[−M,M ]

fx(y)µn[dy]

∣∣∣∣∣+ 2ε∥f∥.
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Hence

sup
x∈R

∣∣µn

[
fx
]
− µ

[
f
]∣∣ ≤ sup

x∈R

∣∣∣∣∣
∫
[−M,M ]

fx(y)µn[dy]−
∫
[−M,M ]

fx(y)µn[dy]

∣∣∣∣∣+ 2ε∥f∥.

Since f ∈ C0(R), ∀ε > 0 there exists K > 0 such that

sup
y∈[−M,M ]

|fx(y)| < ε, ∀|x| > K.

Hence ∣∣∣∣∣
∫
[−M,M ]

fx(y)µn[dy]−
∫
[−M,M ]

fx(y)µn[dy]

∣∣∣∣∣ < 2ε, ∀|x| > K, ∀n ∈ N. (2.1)

We deduce from (2.1) that

sup
|x|>K

∣∣µn

[
fx
]
− µ

[
f
]∣∣ ≤ 2ε+ 2ε∥f∥. (2.2)

Consider now the continuous functions

g, gn : [−K,K] → R, gn(x) =

∫
[−M,M ]

fx(y)µn[dy], g(x) =

∫
[−M,M ]

fx(y)µn[dy].

Since µn ⇒ µ, and M,−M are not atoms of µ we deduce

gn(x) → g(x), ∀x ∈ [−K,K].

The sequence (gn) is equicontinuous since x 7→ fx is uniformly continuous with respect to the
sup-norm. Hence gn converges uniformly to g on [−K,K], i.e.,

lim
n→∞

sup
|x|≤K

|gn(x)− g(x)| = 0.

We have
sup
|x|≤K

∣∣µn

[
fx
]
− µ

[
f
]∣∣ ≤ sup

|x|≤K
|gn(x)− g(x)|+ 2ε∥f∥.

Hence
lim sup
n→∞

sup
|x|≤K

∣∣µn

[
fx
]
− µ

[
f
]∣∣ ≤ 2ε∥f∥.

Using (2.2) we deduce that ∀ε > 0 we have

lim sup
n→∞

sup
x∈R

∣∣µn

[
fx
]
− µ

[
f
]∣∣ ≤ 2ε+ 2ε∥f∥.

This proves (ii). The implication (ii) ⇒ (i) is immediate since

µ
[
f
]
= Tµf(0), ∀µ ∈ Prob(R), ∀f ∈ Cb(R).

⊓⊔

Definition 2.4 (Convolution of measures). Let µ, ν ∈ Prob(R). Then the convolution of µ
and ν is the Borel measure µ ∗ ν on R defined if

µ ∗ ν
[
B
]
=

∫
R
ν
[
B − x

]
µ[dx],

for any B ∈ B. Clearly µ ∗ ν is a probability measure.
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One can prove (see [8, Sec. 1.3.6]) that µ ∗ ν = α#(µ ⊗ ν)-the pushforward of the product
measure µ ⊗ ν on R2 via the addition map α : R2 → R, α(x, y) = x + y. More explicitly, this
means that for any Borel set B ⊂ R

µ ∗ ν(B) = µ⊗ ν(α−1(B)) =: α#(µ⊗ ν)(B). (2.3)

This leads to the following probabilistic interpretation of the operation of convolution. Let

X,Y : (Ω,S ,P) → R

be two independent random variables with distributions PX ,PY ∈ Prob(R). Then

PX+Y = PX ∗ PY . (2.4)

In particular

TX+Y = TX · TY .

For a proof of the following result we refer to [8].

Lemma 2.5. The convolution ∗ : Prob(R)×Prob(R) → Prob(R) is commutative and associa-
tive. The Dirac measure δ0 is the identity element with respect to the convolution. In other
words

(
Prob(R), ∗) is a commutative semigroup with 1.

Moreover, if µ and ν are absolutely continuous with respect to the Lebesgue measure on R,

µ[dx] = ρµdx, ν[dx] = ρν(x)dx,

then

µ ∗ ν[dx] = ρµ ∗ ρν(x)dx,
where

ρµ ∗ ρν(x) =
∫
R
ρµ(x− y)ρµ(y)dy.

⊓⊔

From (2.3) one obtains immediately that

µ̂ ∗ ν(ξ) = µ̂(ξ) · ν̂(ξ), ∀ξ ∈ R, ∀µ, ν ∈ R.

The following result follows immediately from the definition.

Proposition 2.6. For any µ, ν ∈ Prob(R)

TµTν = Tµ∗ν , ∀µ, ν ∈ Prob(R).

In other words the correspondence µ → Tµ is a continuous morphism from the semigroup
(Prob(R), ∗) to (B(X), ·). ⊓⊔

2.2. Convolution semigroups of probability measures. A family of Borel probability mea-
sures (µt)t≥0 on R is called a convolution semigroup if it satisfies the following conditions

(i) µ0 = δ0.
(ii) µs+t = µs ∗ µt.
(iii) µt ⇒ µ0 as t ↘ 0.
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Condition (iii) signifies that the measure µt converges weakly to the Dirac measure δ0. It
implies that the map

[0,∞) ∋ t 7→ µt ∈ Prob(R)
is continuous with respect to the topology of weak convergence on Prob(R). We see that (µt)t≥0

is a convolution semigroup if ∀t, s ≥ 0, ξ ∈ R

µ̂t+s(ξ) = µ̂t(ξ) · µ̂s(ξ), µ̂0(ξ) = 1,

and the map t → µ̂t(ξ) is continuous.
Theorem 2.3 has the following immediate consequence

Corollary 2.7. Let (µt)t≥0 be a convolution semigroup of probability measures. Then the
induced operator semigroup,

Tµtf(x) :=

∫
R
f(x+ y)µt[dy],

is a strongly continuous semigroup of contractions on C0(R). In other words,

lim
t↘0

∥Tµtf − f∥ = 0, ∀f ∈ C0(R),

where ∥ − ∥ denotes the sup-norm on C0(R). ⊓⊔

Example 2.8 (The translation semigroup). The family of Dirac measures (δt)t≥0 o is a con-
volution semigroup. Indeed

δ̂t(ξ) = eitξ

and obviously

δ̂t(ξ)δ̂t(ξ) = δ̂t+s(ξ).

⊓⊔

Example 2.9 (The heat semigroup). For each t > 0 we denote by γt ∈ Prob(R) the Gaussian
measure with mean 0 and variance t. More precisely

γt[dx] =
1√
2πt

e−
x2

2t λ[dx].

Its Fourier transform is

γ̂t(ξ) = e−tξ2/2.

We set γ0 := δ0. The family
(
γt
)
t≥0

is a convolution semigroup since

γ̂t(ξ)γ̂s(ξ) = γ̂t+s(ξ), ∀s, t ≥ 0.

⊓⊔

Example 2.10. For λ > 0 we define the Poisson measure µλ ∈ Prob(R) to be

µλ =
∑
k≥0

e−λλ
k

k!
δk.
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Its Fourier transform is

µ̂λ(ξ) =
∑
n≥0

e−λ e
ikξλk

k!
= ee

iξλ−λ = eλ(e
iξ−1).

This proves that for any λ > 0 the family
(
µtλ

)
t≥0

is a convolution semigroup. This is called

the Poisson semigroup with parameter λ.
Note that the function x 7→ etx is µλ-integrable for any t ∈ R and

Mλ(t) :=

∫
R
etxµλ

[
dx
]
=
∑
n≥0

e−λ e
ktλk

k!
= eλ(e

t−1).

We can derivate under the integral sign in the above equality and we deduce

M ′
λ(0) =

∫
R
xµλ

[
dx
]
=
∑
n≥0

e−λk
λk

k!

Note that M ′
λ(t) = λeteλ(e

t−1) so

λeλ = eλM ′
λ(0) =

∑
k≥0

k
λk

k!
. (2.5)

We have

M ′′
λ (t) = λeteλ(e

t−1) + λ2e2teλ(e
t−1)

Hence M ′′
λ (0) = λ+ λ2 and we deduce

(λ+ λ2)eλ = eλM ′′
λ (0) =

∑
k≥0

k2
λk

k!
. (2.6)

⊓⊔

2.3. The translation semigroup. The family of Dirac measures (δt)t≥0 ois a convolution
semigroup. Moreover

Tδtf(x) = f(x+ t), ∀x ∈ R, , ∀t ≥ 0.

We denote by A the infinitesimal generator of Tt. We define inductively

Ck
0 (R) :=

{
f ∈ Ck−1

0 (R) ∩ C2(R); f ′ ∈ Ck−1
0 (R)

}
.

Note that Ck
0 (R) is dense in C0(R) with respect to the sup-norm. Moreover

Tt

(
Ck
0 (R)

)
⊂ Ck

0 (R).

Proposition 2.11. The space C2
0 (R) is contained in D(A) and

Af = f ′, ∀f ∈ C2
0 (R).

In particular, C2
0 (R) is a core of A.
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Proof. Let f ∈ C2
0 (R). For any t > 0 we deduce from Taylor’s formula with Lagrange remainder

that

Ttf(x) = f(x+ t)− f(x) = f ′(x)t+
t2

2
f ′′(ξ), ξ ∈ (x, x+ t).

We deduce that for any t > 0 we have

sup
x∈R

∣∣∣∣f(x+ t)− f(x)

t
− f ′(x)

∣∣∣∣ ≤ ∥f ′′∥
2

t

Hence

lim
t↘0

∥∥∥∥1t (Ttf − f
)
− f ′

∥∥∥∥ = 0

This proves that 1
t

(
Ttf − f

)
converges in the sup-norm to f ′. Hence f ∈ D(A) and Af = f ′.

The fact that C2
0 (R) is a core of A now follows from Proposition 1.27. ⊓⊔

For h > 0 define

∆h : C0(R) → C0(R), ∆hf(x) =
f(x+ h)− f(x)

h
=

1

h

(
Thf(x)− f(x)

)
The first Trotter-Kato approximation theorem implies that

lim
h↘0

et∆h = Tt, t ≥ 0,

in the strong operator topology. Hence, for any f ∈ C0(R), t > 0 and any x ∈ R

u(x+ t) = lim
h↘0

et∆hf(x) (2.7)

uniformy in x.
One should compare this with the Taylor expansion for a real analytic function. If we set

D = d
dx , and f is real analytic, then we have a Taylor expansion

f(x+ t) =
∑
n≥0

tn

n!
Dnf(x) = etDf(x) (2.8)

where the right-hand-side converges uniformly for small t. Formally, (2.8) is obtained from
(2.7) by letting h ↘ 0 since ∆h → D as h ↘ 0.

The equality (2.7) can be rewritten as

e
t
h
(Th−1)f → Ttf as h → 0.

Equivalently

e−
t
h e

t
h
Thf → Ttf. (2.9)

Let µλ be the Poisson measure parameter λ > 0 described in Example 2.10. Consider the
continuous map

[0,∞) ∋ s 7→ Fh(s) = Tshf ∈ C0(R).
Define

Fλ,h(s) :=

∫
[0,∞)

Fh(s)µλ

[
ds
]
.
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The right-hand-side of the above equality is an average of the bounded function Fh(s) with
respect to the measure µλ. Then

e−
t
h e

t
h
Thf = Ft/h,h(s). (2.10)

The equality (2.9 ) shows that if λ ↗ ∞
lim
λ→∞

Fλ,t/λ(1) = Ttf = Ft(1). (2.11)

For a very interesting discussion of the probabilistic meaning of (2.10) and implications of the
above “accident” we refer to [6, Sec. VII.5,VII.6, X.9].

2.4. The heat semigroup. Consider the heat semigroup (γt) described in Example 2.9. Set
Ht := Tγt . The contraction semigroup (Ht)t≥0 is also referred to as the heat semigroup. Denote
by A the generator of the heat semigroup. Note that

Htf(x) =
1√
2πt

∫
R
f(x+ y)e−

y2

2t dy =
1√
2πt

∫
R
f(z)e−

(z−x)2

2t dz.

This proves that Htf ∈ C∞(R), ∀f ∈ C0(R). Note that HtC
k
0 (R) ⊂ Ck

0 (R), ∀k.

Proposition 2.12. The subspace C3
0 (R) is a core of A and

Af =
1

2
f ′′, ∀f ∈ C3

0 (R).

Proof. Let f ∈ C3
0 (R). We have

Hffx)− f(x) =
1√
2πt

∫
R
f(x+ y)e−

y2

2t dy − f(x)

=
1√
2π

∫
R
f(x+ t1/2z)e−z2/2dz − 1√

2πt

∫
R
f(x)e−z2/2dz

=
1√
2π

∫
R

(
f(x+ t1/2z)− f(x)− f ′(x)t1/2z

)
e−z2/2dz

Using the Taylor expansion with Lagrange remainder we deduce that

f(x+ t1/2z)− f(x)− f ′(x)t1/2z =
t

2
f ′′(x)z2 +

1

3!
f (3)(η)t3/2

for some η ∈ (x, x+ t1/2z). Hence∣∣∣∣∣f(x+ t1/2z)− f(x)− f ′(x)t1/2z

t
− 1

2
f ′′(x)z2

∣∣∣∣∣ ≤ t1/2|z|3

6
∥f (3)∥.

Since
1√
2π

∫
R
z2e−z2/2dz = 1

we deduce that
1

t

(
Htf(x)− f(x)

)
− 1

2
f ′′(x)

=
1√
2π

∫
R

(
f(x+ t1/2z)− f(x)− f ′(x)t1/2z

t
− 1

2
f ′′(x)z2

)
e−z2/2dz
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Hence, ∀x ∈ R we have ∣∣∣∣1t (Htf(x)− f(x)
)
− 1

2
f ′′(x)

∣∣∣∣
≤ 1√

2π

∫
R

∣∣∣∣∣f(x+ t1/2z)− f(x)− f ′(x)t1/2z

t
− 1

2
f ′′(x)z2

∣∣∣∣∣ e−z2/2dz

≤ ∥f (3)∥t1/2√
2π

∫
R

|z|3

6
e−z2/2dz

⊓⊔

Here is a remarkable consequence of Proposition 2.12 and Remark 1.7.

Corollary 2.13. For any function f0 ∈ C0(R) there exists a unique function u ∈ C0
(
[0,∞)×

R
)
∩ C∞( (0,∞)× R

)
such that

x 7→ u(t, x) ∈ C0(R), ∀t ≥ 0,

lim
t↘0

sup
x∈R

|u(t, x)− f0(x)| = 0, (2.12)

∂tu(t, x)−
1

2
∂2
xxu(t, x) = 0, ∀(t, x) ∈ (0,∞)× R. (2.13)

⊓⊔

Suppose now that µ ∈ Prob(R) is a probability measure satisfying the conditions∫
R
xµ
[
dx
]
= 0,

∫
R
x2µ

[
dx
]
= 1. (2.14)

Fix a random variable X with distribution µ, PX = µ. Then we can rewrite (2.14) as

E
[
X
]
= 0, Var

[
X
]
= E

[
X2
]
= 1. (2.15)

For t > 0 we denote by Rt the rescaling map

Rt : R → R, Rt(x) = tx.

We set

µt := (Rt)#µ ⇐⇒ µt

[
(a, b)

]
= µ

[
(t−1a, t−1b)

]
, ∀a, b, t > 0.

Equivalently, µt is the distribution on tX. Note that µt ⇒ δ0. Moreover

Tµtf(x) = TtXf(x) =

∫
R
f(x+ ty)µ

[
dy
]
.

We set V (t) = Tµt .

Proposition 2.14. For any f ∈ C3
0 (R) we have

lim
t↘0

∥∥∥∥1t (V (t)− 1
)
f − 1

2
f ′′
∥∥∥∥ = 0.
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Proof. Let f ∈ C3
0 (R). Using (2.14) we deduce that(

Vµ(t)− 1
)
f(x) =

∫
R

(
f
(
x+ t1/2y

)
− f(x)− t1/2yf ′(x)

)
µ
[
dy
]
,

1

t

(
Vµ(t)− 1

)
f(x)− 1

2
f ′′(x)

=

∫
R

1

t

(
f
(
x+ t1/2y

)
− f(x)− f ′(x)t1/2y − 1

2
f ′′(x)ty2

)
︸ ︷︷ ︸

=Ut(x,y)

µ
[
dy
]
.

Using Taylor’s formula with Lagrange remainder

f
(
x+ t1/2y

)
− f(x)− f ′(x)t1/2y =

1

2
f ′′(ξ)ty2

for some ξ = ξx,y ∈ (x, x+ t1/2y). Hence∣∣∣ f(x+ t1/2y
)
− f(x)− f ′(x)t1/2y − 1

2
f ′′(x)ty2

∣∣∣ = ∣∣∣ 1
2
f ′′(ξ)− 1

2
f ′′(x)

∣∣∣ · ty2
≤ min

(
t∥f∥C2 |y|2,

1

2
∥f∥C3t3/2|y|3

)
≤ t∥f∥C3 min

(
|y|2, 1

2
t1/2|y|3

)
, ∀t > 0, x, y ∈ R.

Hence

0 ≤ Ut(x, y) ≤ ∥f∥C3 min
(
|y|2, 1

2
t1/2|y|3

)
, ∀t > 0, x, y ∈ R

We deduce that∥∥∥1
t

(
Vµ(t)− 1

)
f − 1

2
f ′′
∥∥∥ ≤ ∥f∥C3

∫
R
min

(
|y|2, 1

2
t1/2|y|3

)
µ
[
dy
]

≤ 1

2
∥f∥C3

∫
|y|<R

t1/2|y|3 + ∥f∥C3

∫
|y|>R

|y|2µ
[
dy
]

≤ t1/2

2
R3∥f∥C3︸ ︷︷ ︸

=:A(R,t)

+ ∥f∥C3

∫
|y|>R

|y|2µ
[
dy
]

︸ ︷︷ ︸
=:B(R)

.

Since ∫
R
y2µ
[
dy
]
< ∞

we deduce that for any ε > 0 there exists R(ε) > 0 such that B
(
R(ε)

)
< ε

2 . Next, choose

δ(ε) > 0 such that A
(
R(ε), δ(ε)

)
< ε

2 . Then for t < δ(ε)∥∥∥1
t

(
Vµ(t)− 1

)
f − 1

2
f ′′
∥∥∥ < ε.

⊓⊔
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We deduce from Chernoff’s product formula that

lim
n→∞

Vµ(t/n)
nf → Htf, ∀f ∈ C0(R). (2.16)

Let us observe that if µ, ν ∈ Prob(R), then

(µ ∗ ν)t = µt ∗ νt ∀t > 0. (2.17)

Indeed, if X and Y are independent random variables with distributions µ and respectively ν,
we have

Pt1/2(X+Y ) = Pt1/2X ∗ Pt1/2Y .

Suppose now that (Xn)n∈N is a sequence of independent and identically distributed (i.i.d.)
random variables such that

E
[
Xn

]
= 0, E

[
X2

n

]
= 1, ∀n ∈ N.

Denote by µ the common distribution of these random variables. Set

Zn :=
1√
n

(
X1 + · · ·+Xn

)
.

Observe that

E
[
Zn

]
= 0, E

[
Z2
n

]
= 1, ∀n ∈ N,

and

Tt1/2Zn
= T(t/n)1/2X1

· · ·T(t/n)1/2Xn
=
(
Tµt/n

)n
= Vµ(t/n)

n → Ht as n → ∞.

We have thus proved the celebrated Central Limit Theorem

Corollary 2.15. Suppose that (Xn)n∈N a sequence of i.i.d. random variables such that

E
[
X2

n

]
= 1, E

[
Xn

]
= 0, ∀n.

then the random variables
1√
n

(
X1 + · · ·+Xn

)
converge in distribution to a standard normal random variable. ⊓⊔

Appendix A. A brief introduction to Bochner integral

We survey here a few facts about the Bochner integral. For proofs and more details we refer
to [2, Sec.7.5], [3, III.6] or [10, V.5, V.6].

Throughout this appendix (Ω,S , µ) will denotes a measured space, X a real Banach space,
and X∗ the topological dual of X. We denote by by

〈
−,−

〉
the natural pairing〈

−,−
〉
: X∗ ×X → R, X∗ ×X ∋ (ξ, x) 7→

〈
ξ, x⟩ := ξ(x).

A function, f : Ω → X, is called simple or elementary if there exist Sn ∈ S and x1, . . . , xn ∈
X such that

f(ω) =
n∑

i=1

ISi(ω)xi, ∀ω ∈ Ω,

where ISi denotes the indicator function of Si. We denote by Elem(Ω,S , X) the space of
elementary functions from (Ω,S ) → X.
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Definition A.1. A function f : Ω → X is said to be strongly measurable if there exists a
sequence (fn)n∈N ⊂ Elem(Ω,S , X) such that

f(ω) = lim
n→∞

fn(ω), ∀ω ∈ Ω.

⊓⊔

Definition A.2 (Bochner integrability). A strongly measurable function f : Ω → X is called
Bochner integrable or strongly integrable if the non-negative function ∥f∥ : Ω → R is integrable
with respect to the measure µ. ⊓⊔

Definition A.3. For g ∈ Elem(Ω,S , X)

g =
n∑

i=1

ISixi,

we define the Bochner integral of g over Ω as:∫
Ω
gdµ =

n∑
i=1

µ[Si]xi.

Clearly g is Bochner integrable iff µ[ISi ] < ∞, ∀i = 1, . . . , n.

Lemma A.4. Suppose that f : Ω → X is a Bochner integrable function. Let (fn)n∈N, (gn)n∈N ∈
Elem(Ω,S , X) be sequences of Bochner integral elementary functions s.t. fn, gn → f . Then
the limits

lim
n→∞

∫
Ω
fndµ and lim

n→∞

∫
Ω
gndµ

exists and are equal. ⊓⊔

Definition A.5 (The Bochner Integral). Suppose that f : Ω → X is a Bochner integrable
function. Let (fn)n∈N ∈ Elem(Ω,S , X) be a sequence of Bochner integral elementary functions
s.t. fn → f . Define the Bochner integral of f over Ω as∫

Ω
fdµ := lim

n→∞

∫
Ω
fndµ

⊓⊔

In the remainder of this sequence we will focus exclusively on the special case when (Ω,S , µ)
is an interval ⊂ R equipped with the Borel sigma-algebra and the Lebesgue measure. Theorems
[2, Thm.7.5.4, 7.5.6] imply the following result.

Proposition A.6. Suppose that f : I → X is a continuous function. Then the following hold.

(i) f : I → X is strongly integrable iff ∥f∥ is integrable.
(ii) ∀ξ ∈ X∗ 〈

ξ,

∫
I
f(t)dt

〉
=

∫
Y

〈
ξ, f(t)

〉
dt.

⊓⊔
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