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SEMIGROUPS OF CONTRACTIONS

NOTATIONS

1 The identity operator.

B(X,Y) The space of continuous linear operators X — Y, X, Y are normed vector spaces.
B(X) = B(X,X).
Co(R) The space of continuous functions f : R — R satisfying limy f(z) = 0.
C.(R) The space of continuous functions f: R — R with compact support.
Cy(R) The space of bounded continuous functions f : R — R.
cl(S) The closure of the set S.

E[X] Expected value of random variable X.
® 11 The pushforward of measure ;1 by measurable map @.
IG(T:) The infinitesimal generator of the Cp-semigroup (73)¢>0.
Prob(R) The space of Borel probability measures on R.
i The Fourier transform of the probability measure u € Prob(R).
w* v The convolution of the probability measures u, v € Prob(R).
Px The distribution of a random variable X.
R* =R\ {0}.
RZO = [0, OO)
D(A) The domain of the linear operator A.
R(A) The range of map A.
A The closure of the unbounded operator A.
p(A) The resolvent set of the linear operator A.
R(A\, A) The resolvent of A at A\ € p(A): (A — A)~!, for A € p(A).
X* The topological dual of the normed vector space X.
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INTRODUCTION

One of the important motivations for the study of operator semigroups is the following
example from differential equations. For any a,x¢ € R, consider the one dimensional Cauchy

problem
¥ =ax
z(0) =’
t

It follows from elementary calculus that the solution to such a problem is z(t) = zoe®. G.
Peano observed that this generalizes as follows. For any fixed n € N; A € Mat,x,(R), and
yo € R™, the solution of the linear Cauchy problem

{ y = Ay
y(O) = Y0

tAgo, where

ik
tA _ k
et = E —k!A.
k>0

can be described as z(t) = e

We note that the family T} = e*4 : R — R" satisfy the following conditions:
To =1, Trys = TiTs, Vs, >0

and the map t — Tyo is continuous for any yo € R™, and d;T;|p = A.

Next, consider the heat equation on R", d;u = Awu with initial condition u(0,z) = ug(z) €
Cy(R™). This is formally similar to the above two Cauchy problem since it takes the form
f' = Lf, where L is a linear operator. This form motivates one to seek solutions in the form
u(t) = Jpug, where 7 satisfies the same conditions as T;. However, A is a linear operator on
an infinite dimensional vector spaces and this causes complications. The exponential e!2 is not
defined for t < 0 or for every u € C,(R"), or even everywhere on C2(R™). As a result, defining
what .7 should be, or even if such a family of operators exists satisfying Zjug solves v/ = Aw is
subtle, and requires more technical machinery than solving the first two Cauchy problems. The
theory of operator semigroups is what allows for determining when such families of operators
exist, and how to describe their behavior.

The first part of the thesis focuses on the theory of operator semigroups on Banach spaces.
Section 1.1 covers the foundations of the subject matter, including the relevant definitions. In
particular, in infinite dimensions there are two forms of continuity involving the maps .7. This
is reflected in the nature of the generator A = ;. its 1s bounded iff ¢ — .7} is continuous
in the norm topology,

Section 1.2 covers the Hille-Yosida theorem on generation of semigroups describing neces-
sary and sufficient conditions for an unbounded operator to be the generator of a continuous
semigroup.

In section Section 1.3 we prove The Lumer-Philips theorem that expresses the Hille-Yosida
conditions in termes of the more convenient concept of dissipative operators. .

Section 1.4 covers the Trotter-Kato approximation theorems. One consequence of these
results is the Chernoff product formula which we present in Section 1.5 covers.

The second part of the Thesis focuses on applications of operator semigroups to probability.

d
dt 1t=0
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Section 2.1 introduces basic properties of probability measures on R"™, and introduces the
convolution of probability measures. Convolution produces bounded operators spaces of con-
tinuous functions. This is is what allows for the theory of operator semigroups to be applied.

Section 2.2 introduces convolution semigroups of probability measures, which form an im-
portant class of operator semigroups. This section also contains many enlightening examples.
Sections 2.3 and 2.4 are dedicated to the examples of the translation semigroup and heat
semigroup respectively. In particular, we give an operator theoretic proof of the central limit
theorem.

The appendix contains a brief overview of Bochner integrals. The theory of semigroups is
not restricted to separable Banach Spaces; however, the Bochner integrals which arise in the
subject are always of continuous functions defined on an interval, which greatly simplify the
difficulties of integration functions valued in a possibly nonseparable Banach space.

1. STRONGLY CONTINUOUS SEMIGROUPS ON BANACH SPACES

1.1. Basic concepts. For a Banach space X we denote by B(X) the space of bounded linear
operators X — X. A (algebraic) semigroup of bounded operators operators on X is a one-
parameter family (7});>0 in B(X) such that

Tg = ]]., T3+t == TSTt, VS,t Z 0.
Equivalently, (T})¢>0 is a semigroup of bounded operators if it is a morphism of semigroups
(Rzov +) — (B(X)7 )

Definition 1.1 (Uniformly continuous semigroups). Let X be a Banach space and (73):>0 a
semigroup of bounded operators on X. T} is called uniformly continuous, or norm continuous,
if

lim || T3 — 1] = 0.
N0

A direct consequence of the above definition is that Vo € X,

lim Tix = x,
N0

uniformly for € B1(0) in the unit ball of X. Indeed, for any ||z| <1,
[Thw — || < [| T2 = 1| - ||| < |72 — 1.

The above definition is equivalent to the map ¢ — T} being continuous with respect to the
norm topology on B(X).

Definition 1.2 (Cp-semigroups of operators). A semigroup (7}):>0 of bounded operators on a
Banach space is called strongly continuous or Cy-semigroup if

Ve e X, lim||Tiz —z| =0.
N0

O

The above definition is equivalent to the map ¢ — T} being continuous with respect to the
strong operator topology. Clearly, any uniformly continuous semigroup is a Cy-semigroup.
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Lemma 1.3. Let (T})¢>0 be a Cy-semigroup of bounded operators on a Banach space X. Then,
for any 7 >0

M(7):= sup [Ty < oc.
te(0,7]

Proof. We follow the proof of Proposition 1.3 on page 4 of [4]. By the sub-multiplicity of the
operator norm, we have

1Tl = 1)l < 1 Tepnll™, VE>0, neN.

This proves that

M(1) < M(t/n)".
Thus, if M(7) = oo, then M(7/n) = oo, Vn € N. In particular, if M(7/n) = oo for all n € N,
then there exists a non-negative sequence t, ~\, 0 such that ||T}, || — oco. This contradicts the
uniform boundedness principle since

n—o0

lim T3, x =x, VYax€ X, whichimplies sup |1}, z|| < oo, Vae X.
neN
O
Proposition 1.4. Let (T)i>0 be a Co-semigroup of bounded operators on a Banach space X .
Then there exist M > 0 and w € R such that
|Ty|| < Me*t, vt >0.
Proof. We follow the proof of [1, Thm. 12.8]. Set

C:=|1l, K:= sup |T.
t€[0,1]

For any ¢ > 0 we have ¢t = |t| + r, for some r € [0,1), and it follows that
I < |7 ™ 1T < O K

o c>1
CUJ < ’ =5
ct—l, C<1.

Note that

Thus,
ol <aCt, a:=max(1,C7Y).
By choosing w :=log C' and M = aK, we deduce
T3] < aKe®t = Me*t, Wt >0.
g

Definition 1.5 (Infinitesimal generator of a Cyp-semigroup). Let (73) be a Cp-semigroup. Define

the set
Ttx -

D(A) ::{xGX: lim

Define the infinitesimal generator of 7} to be the (unbounded) linear operator

A:DA)CX = X

xr .
exists ¢.
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given by
Ty —
Az = lim i x‘
t\0 t

O

Lemma 1.6. Let A be the generator of a strongly continuous semigroup of contractions (Ty)i>0
defined on a Banach space X. Then the following hold.

(i) A: D(A) C X — X is linear.
(ii) For any x € X, Tyx € D(A), Vt > 0, the function

[0,00) 3t — Tix € X

1s differentiable and

%Ttx = ATyx = Ty Az, Vit > 0.
(iii) For any x € X
/Ot Tsxds € D(A) and Tix —x = A/Ot Tsxds.
(iv) If x € D(A) then, ¥t >0
Tix —x = /Ot TsAxds.

Proof. We follow the proof of [9, Thm. 2.4]. Let K =R or C be the field of scalars for X.
(i) Let A € Kand z,y € D(A). For any ¢ > 0, compute the following:

Tt()\l‘er)—a:c—y:)\Tta:—x+Tty—y
t t t '

This implies that lim o w exists and is AAx + Ay. Thus D(A) is a linear subspace,
and A is a linear operator.

(ii) For any x € D(A), t > 0 with T,z € D(A), and h € R*, we note the following equalities:

Tiipx — Tiw T The —x\  Th(Tix) — Tix
h ! h B h '

Because T is continuous, by the first equality in (1.6a)

Toon — T, Tz — Ty —
an:hmTt< U x):n(lim hxh m)thAm.

(1.6a)

h\O h R\0 h R\0
Because Tyxz € D(A), by the second equality in 1.6a:
}1}{% Tt+hh_ Tix _ }111{‘% Th(Ttxiz —Tix AT
Thus, it follows that ATix = Ty Ax. It remains to be shown that
Tiine —Tix

I
hl;‘% h
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exists. For s < 0, set h := —s and we have
T - T Tix — Ty
M—Tﬁxz%—ﬂflx
s

T _
— T, <’"‘”’hx — Ax) Ty, Az — T, Ax.

Since T is continuous, we have Ty_p Az — Ty Az — 0 as h N\ 0. Additionally, since ||T;_5|| <1
for h € [0, t] we deduce

Ther —x
T | —————A < 1i
”( z "’”)‘—h%

Thus the derivative of ¢t — T;x exists and additionally, we have:

Thr —x

— Az|| = ||[Az — Az|| =0

lim ‘
R\.0

d
—Tix = ATyx = T Ax.
dx

(iii) Let z € X, t > 0, and h € R*. By the commutativity of the Bochner integral with
continuous linear operators:

T —1 t 1 t 1 t+h 1 h
hh /0 Tsxds = h/o Tsipr — Tsxds = h/t Tsxds — h/o Tsxds

Since t — Tix is continuous, it follows from the fundamental theorem of calculus for Bochner
integrals that

Th -1 t t+h 1 h
lim / Tsxds = lim — Tsxds — / Tixds =Tix —x
h—0 h 0 h—0 h t h 0

Since the above limit exists, fg Tsxds € D(A).

(iv) Let x € D(A) and t > 0. We note that the proof of part (ii) implies that for any x € D(A)
we have

d
%Ttix = TtA$

After integrating the above equality, by the fundamental theorem of calculus, we have

t d t
Tta:—x:/ Tsxds:/ T, Azds.
o ds 0

a

Remark 1.7. Lemma 1.6(ii) shows that for any xp € X, the initial value
2'(t) = Ax(t), t>0, xz(0)= o, (1.1)
has at least one solution x € CO( [0, oo),X) N C’l((O, oo),X) when A is the generator of a
Co-semigroup. As explained in [9, Sec.4.1] this solution is unique. O

Theorem 1.8. let (T3)i>0 be a strongly continuous semigroup of contractions on the Banach
space X. Then its generator A is closed and densely defined and uniquely determines the
semigroup. More precisely, this means that different semigroups have different generators.
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Proof. We follow the proof of Corollary 2.5 on page 6 of [9]. First we will prove the density of
D(A). Let z € X. By Lemma 1.6 (ii), Ve > 0,

1 3
Te 1= / Tsxds € D(A)
€ Jo

Furthermore, since ¢ — Tz is continuous by 1.6 (ii), it follows that . — z as ¢ \, 0. Thus
D(A) is dense.

Next we will prove that A is a closed operator. Consider any sequence (zy)neny € D(A) such
that x,, — 0 and Az, — y, for some y € X. Firstly, by Lemma 1.6 (iv), for any A > 0 and
n € N, we have

h
Thty — xp = / T Az,ds
0

Secondly, using the fact that || Az, — y|| — 0, we note that for any h > 0,

h h
/ T Ax,ds — / Tsyds as n — oo because
0 0

h h
/ TSAiL‘ndS—/ Tsyds
0 0

Thirdly, by the above and Lemma 1.6 (iv)

h
< /0 ITy(Az, — y)|ds < hl| Az, — ]|

h
(Thxn — :En) :/ T, Az,ds.
0

On the other hand,

H([ﬁnm%@—Lfnmﬂ

h
The —x = lim (Tz, —zp) = / Tsyds
0

h
]s [ 145~ s < gz, — )

Hence

n—oo

This shows that
li 1(T ) =1i 1/%T d
im —(Tpx — ) = lim — s=y.
OB T N0 b oY Y
This proves that z € D(A) and Az = y. This implies that A is a closed operator. O

# Notation: We will use the notation A = IG(T};) to indicate that A is the generator of the
strongly continuous semigroup (7%)¢>o0.

Theorem 1.9. Let A: D(A) C X — X be an unbounded linear operator. Then the following
are equivalent.

(i) The operator A is bounded.
(ii) The operator A is the infinitesimal generator of a uniformly continuous semigroup of
linear operators.
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Proof. (i)=-(ii) Assume that A € B(X). Define
e}
o (tA)"
L=
n=0
Since B(X) is a Banach space it suffices to show that the above series is absolutely convergent.

This indeed the case because
1L IAI™ g
< E ol =e < 00

tA)"
%

n>0 n>0
For any © € R and any N > 0 we set
aly}
Sn(u) := Z o (uA)".
n=0

Then Sy(u) = T, in B(X) as N — oco. We will show that
]\}im HSQN(S—i-t) —SN(S)SN(t) H =0, Vs, teR.
—00

We deduce from the binomial theorem that

2N n
tA n—k (sA) (tA)*
San(s +1) = E:Z ku = 2 T
n=0 k=0 0<I+k<2N

On the other hand,

N sA) N tA)F sAV (+AVF
Sn(s)Sn(t) = <Z( ”)>.<Z(M) >: 3 (”) (k!) .

=0 k=0

From the two statements above, it follows that

SQN(S + t) - SN(S)SN(t) =

0<I+k<2N ) ’ 0<l+k<2N
>N k>N

Py (S,t) QN(S,t)

Note that Py (s,t) = Qn(t,s). It suffices to find an upper bound of || Py (s, t)|| that is symmetric
in s and ¢. Set

M = M(s,t) = max(L, |sA|, |¢A]])
Note that M(s,t) = M(t,s) and

sA) (tA)F 1 [+ k
HPN(Svt)H: Z (l' Lk SMQN Z (l+k>|< l >

0<I+k<2N ) 0<I+k<2N
I>N I>N
M2N 5 (l + k:> oM QXN: gm < 22M)2
- | - !
(N +1)! 0<I+Ek<2N ’ (N +1)! m=N+1 (N +1)!
I>N —_——

<22N+1
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Hence
4(2M)*N

(N +1)!

Let us prove that A generates T;. Indeed, for any x € X we have

Tix — 1 n
t JU—A:E— (tAw—l—x+Z )a:—x>—A:U

n=2

[Sen(s+1t) — Sn(s)Sn(t)] < —0 as N — 0.

o o
tn—lAn tn—lAn—l
:Z " x—Aa::AZTa:
so, by setting n =m + 1,

TtIE —
t

tA

- (elhAp™
<A = ][ (AT —1) =0 ast\,0.
m=1
(i) <= (ii) We follow the proof of [1, Thm. 1.4.21]. Assume that 7} is a uniformly continuous
semigroup on X. We are required to show that the generator of T} is bounded. By the continuity
of t — T, guaranteed by uniform continuity, we have

1 t
/ Tsds — 1.
tJo

1 £
Il—/ Tsds
€Jo

This implies that ¢! f0€ Tsds is invertible, thus W := foa Tyds is also invertible. We note that
for any ¢ > 0

Thus, 3¢ > 0 such that

5 t+e €
W(T; — 1) = / Teds(Ty — 1) = / Teds — / T.ds
0 t 0

t+e t t
:/ Tsds—/ Tsds = (T — ]l)/ Tsds.
€ 0 0

Set V := W~Y(T. — 1). This allows for the following computation, for any ¢ > 0:

t t t
/ VTsds:V/ Tods = W NT), — 11)/ Tids =T, — 1
0 0 0

Thus, for all ¢ > 0, we have

T,—1 1 [t
t :/VTsds
t t Jo

By the continuity of t — VT, it follows that VIy = V| is the generator of T3, and V is
continuous by construction.
O
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1.2. Hille-Yosida Theorem.

Definition 1.10. Let 7; be a Cy-semigroup on a Banach space X. The semigroup is called a
contraction semigroup if | T3] < 1, Vt > 0. 0

Definition 1.11. Let X be a Banach space and A : D(A) C X — X be an unbounded linear
operator on X.

(i) The resolvent set of A is
p(A):={Ae€C:(A—A) isinvertible with bounded inverse}.
(ii) The family of bounded operators R(\, A) : X — X, X € p(A),
R()‘7 A) - <)\ - A)_17

is called the resolvent of A.
(iii) The Hille-Yosida approzimations of A are the bounded operators.

A(\) := AR\, A) = R\, A)A = X2R(\, A) — A
g

Remark 1.12. Let A: D(A) — X be a closed linear operator on Banach space X. The closed
graph theorem shows that A € p(A) if and only if (A — A) is invertible. 0

Lemma 1.13. Let A be a closed operator and p(A) its resolvent set. Then for all \,u € p(A),
we have the following identities.

AR(MN A) = AR(MNA) -1, (1.12a)
R(M\A) — R(p, A) = (up— AR\, A)R(p, A). (1.12b)
Proof. The first identity is immediate, as for any A € p(A) we have
AR(NA) = (=2 4+ A)(A = AP+ AR\, A) = AR(\, A) — 1.
We also have the following identity, for all A € p(A),
RO\ A)A= (A=A H(=A+A) + R\, AX= AR\, A) — 1.
Additionally, the above implies that 1T = (A — A)R(\, A) = R(\, A)(A — A), for any A € p(A).
It follows that we have the following equality, for any A, p € p(A):
RO\, 4) = R(u, 4) = RO\ A) (i — A)R(s, A) + RO\ A)(A — N R(, A)
= pRN A)R(pu, A) — AR(N, A)R(p, A) — R(N\, A)AR(p, A) + R(N\, A)AR(p, A)
= (= NRO\ A)R(p, A).
O

Lemma 1.14. Let A be an unbounded linear operator on the Banach space X and assume that
A satisfies the HY conditions. Then the resolvent of A satisfies the following.
(i) Ve € X
lim AR\, A)x =z, VrelX. (1.2)
A—00
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(ii) Yz € D(A),
lim A(\)z = Az. (1.3)
A—00
Proof. We follow the proofs of [9, Lemmas 3.2, 3.3].
(i) Suppose first that z € D(A). Then, as A — oo,

AR, A)z —z|| = [AMA=A) = Dzf| = | A - DA =A) "+ AN - A" — 1)z ||

1

= |1+ AR, A) = D)z = [AR(A, A)z|| = [|R(A, A)Az[| < B

This proves (1.2) for z € D(A). Suppose now that z € X. Since D(A) is dense, Ve > 0 there
exists z. € D(A) such that

||Az|| — 0.

g
H.CE - xs” < §

The HY conditions imply that [[AR(\, A)|| < 1 so that
IAR(N, A)z — AR(\, A)z.|| < %
Since AR(\, A)x. — x. as A — oo, there exists N. > 0 such that
YAS N AR, A)ze — 22 < %
Then, VA > N, we have
IR\, )z — 2] < [AR(A, A)z — AR(,, A)ael| + AR, Az — ]| + [Je — ] < &
(ii) We deduce from (i) that
lim A(\)x = /\li_}n;o AR(N, A)Azx = Ax.

A—00

O

Lemma 1.15. If A satisfies the HY estimates, and let A(\) be the Yosida approzimations,
then the following hold.

(i) For any A > 0 the operator A(X) generates a uniformly continuous semigroups of

contractions which is given by etAW)
(i) Ve e X, A>0, u>0

ANz — AW || < | ANz — A(p) .

Proof. We follow the proof of Lemma 3.4 on page 10 of [9].

(i) The Yosida approximation, A(\) = A2R(\, A) — ), is a bounded linear operator. Theorem
1.9 implies that e!4™) is a uniformly continuous semigroup of operators. Additionally:
HetA()\)H _ eft)\Het)\QR()\,A)H < eft)\et)\zuR()\,A)H <1.

Thus, 4™ is a contraction semigroup VA > 0.

(ii) For any A, i > 0, consider the operators A(\) and A(u), and we deduce from the product
rule that and any =z € X:

1
AR (A | — H / %etsft(x)etu—sm(mx)ds
0
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1
< /O t| AN - A(N)z — A(pr)ar)||ds < | ANz — A()]).
O

Theorem 1.16 (Hille-Yosida). Let X be a Banach Space. A linear operator A on X is the
generator of a contraction semigroup if and only if it satisfies the Hille-Yosida conditions.

(i) A is closed and densely defined.
(ii) The resolvent set p(A) contains (0,00) and

1
VA>0: IR A < 5

For the sake of brevity the Hille-Yosida conditions will be referred to as the HY conditions

Proof. Proof that the HY conditions are necessary to generate a contraction semigroup. Assume
that A is the infinitesimal generator of a contraction semigroup (7}):>0. We are required to
show that it satisfies the Hille -Yosida conditions.

Theorem 1.8 implies that A is densely defined. It suffices to prove the second of the HY-
conditions.

Proposition A.6 implies immediately the following result.

Lemma 1.17. Let X,Y be Banach spaces, I an interval of the real axis and f : I — X a
continuous function such that

/ 1£(8)dt < o0
I

and thus f is Bochner integrable. Suppose that A : D(A) C X —Y closed linear operator, and
assume that f(t) € D(A), Vt € I. Then the function Af is also Bochner integrable. Then

/IAf(t)dt = A/Ifdt.

O
The following lemma will be needed.
Lemma 1.18. For any A > 0 and x € X define
RNz = /000 e MTyxdt. (1.4)
Then the map x — R(\)x defines a bounded linear operator which satisfies,
1
IRV < 5

and additionally, R(A\) = R(\, A).

Proof of Lemma 1.18. We follow the proof of [1, Thm. 1.5.25]. The integral in the right-
had-side of (1.4) is well defined since e T}z is continuous and Bochner integrable since:

oo o 1
/ e M Tyz||dt < </ e_)‘tdt> |z = <|lz|| < oo.
0 0 A
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This implies that [|[R(\)|| < }. Fior any h > 0 we have

Ty, — 1 1 [ 1 [ _\g— 1 [ _
_ - _ - (t—h) _ / At
N h/o 1t+hx Tyx)dt = h/h e Tyxdt h ), e MTixdt

-1 o] eAh h
= / e_)‘tTtxt - — e_)‘tTtxdt.
h o Jo hJo

Thus, by continuity:
M1 [0 A rh
}13{% ; /O e Myt — - /0 e MTyxdt = (AR(N) — 1)z.
This implies that R(A\)z € D(A), Vo € X and AR(N)x = ARy — 1, so AR(\) = AR()\) — 1 and
1 =(\—A)R()\). Additionally, Yx € D(A), since A is closed, we deduce from Lemma 1.17
that

R(\)Azx :/ e Ty Axdt :/ e M ATyxdt = A/ e Mizdt = AR(\)z.
0 0 0

This implies that R(\)(A — A)z = 2, Vo € D(A), X > 0 and furthermore R(\) = (A — A)~!
VA > 0. This implies that A satisfies the second HY condition, as desired. O

For the proof that the HY conditions are sufficient for the generation of a contraction semi-
group, we follow the proofs of [4, Thm. 3.5] and Theorem 2.6 in [7, Thm. 2.6].

Let us assume that A satisfies the Hille-Yosida conditions. We want to show that A is the
generator of a strongly continuous semigroup of contractions. Recall for any A > 0, the Yosida
approximations,

A(N) := MAR(M, A) = M2R(\, A) — ),
are bounded operators. Theorem 1.9 implies that for any A > 0, T)\(¢) := exp(tA(\)) are
uniformly continuous semigroups. It suffices to show the following three statements are true:
(a) For all x € X, Tyx := limy, 00 T}, (t)x exists.
(b) T} is a contraction Cp-semigroup.
(c) The generator of T} is A.
)

(a) First, we note that exp(tA(\) is a contraction semigroup, YA > 0, because
lexp(tAN)| = [ exp(t(A*R(A, A) = V)| < e M exp(|AZR(N, A)1t) < e MeM = 1.

Next, using the result from functional analysis that on bounded subsets of B(X), convergence
with respect to the strong operator topology is equivalent to pointwise convergence on a dense
subset, it suffices to show that !4z converges Vo € D(A). We will show that it is Cauchy.

Indeed, for any x € D(A), we deduce from Proposition A.6(ii) and the fundamental theorem
of calculus that, given any A\, u > 0

exp(tA(N)x — exp(tA(p)x = /0 %( exp((t — s)A(p)) exp(sA(N))z )ds

t
= /0 exp((t — s)A(p) exp(sAN)) (A(N)z — A(p)z )ds.
Since T'(n,-) is a contraction semigroup for any n > 0, we deduce from the above that
| exp(tA(A)z — exp(sA(A)z|| < t|A(N)z — A(p)x]|
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Thus (exp(tA(n)z),en is a Cauchy sequence for any ¢t > 0, because (tA(n)z)pen is a Cauchy
sequence.

(b) It is clear that ||T;|| < 1, Vt > 0, because T, (t) are contraction semigroups Vn € N.
Additionally for any z € X,

Tsyrx := lim T, (s +t)z = lim T,,(s)T,(t)x
n—oo n—oo

The above limit is equal to TsT;x. Indeed, given any € > 0, N1, N» € N such that
€

V> Ni, |Tu(t)e — Tl < ==, where M i= sup |T(n, 5)|,
2M neN
and -
Vn > Na, ||Ths)Tix — TsTsz|| < 7
Thus, given any n > max(Ny, Na2), we have:

IT(s) Tt — TyTyal| < | Tuls) | - [ Ta(®) — Tiall + | To(s)Thw — TyTa] < e.
Additionally, for any x € X, the map t — Tix is the uniform limit of continuous maps and is
therefore continuous. Thus, T} is a Cp-semigroup of contractions.

(c) Let B : D(B) — X denote the generator of T;. Fix an arbitrary 7 > 0 and = € D(A)
and consider the maps &,,& : [0, 7] — X given by &,(t) = T, (t)x, for any n € N and £(t) = Tyx.
By part (a), &, converge uniformly to £. Additionally, VYn € N, &, is differentiable, with
& (t) = Th(t)A(n)z. We note that the £/, converge uniformly to n : [0,7] — X, given by
n(t) = TyAxz. This implies that ¢ is differentiable and that £ = n. Thus B is an extension of A.

By assumption, A € p(A), so A — A is a bijection from D(A) to X. Additionally, by the
forwards implication A € p(B), so A — B is a bijection from D(B) to X. However, since A C B,
it follows that A = B.

O

1.3. Dissipative operators and cores. We want to describe an equivalent formulation of
Hille-Yosida’s theorem more convenient to use in applications.

Suppose that A : D(A) C X — X is an unbounded operator. We say that A is closable if
the closure in X x X of its graph G(A) is the graph of another unbounded operator A, i.e.,

cl (G(A) ) = G(A).
It is easily seen that A is closable if and only if
({0} x X )nel (G(A)) ={(0,0)}.
In other words, if (x,),>1 is a sequence in D(A) such that x, — 0 and Az, — y, then y = 0.
Definition 1.19. Let A: D(A) C X — X be an unbounded operator on the Banach space X.
We say that A is dissipative if
Az — Az|| > A||z||, Vx € D(A), A>0.
(|

Proposition 1.20. Let A : D(A) C X — X be a dissipative operator on a Banach space X .
Then the following are equivalent.
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(i) The operator A is closed.
(ii) There exists A > 0 such that the image of A — A is closed.
(iii) For any X\ > 0 the image of A\ — A is closed.

Proof. We follow the proof of Lemma 2.2. on page 12 of [5]. Obviously (iii) = (ii).
(i) = (iii) Assume that A is closed. Fix A > 0. Let y € cl(R(A—A)). There exist x,, € D(A)
such that y, := (A — A)z, — y. The dissipativity of A implies that
I = vl 2 3 om =
Yn — Yml| =2 \ In — Tml|,

S0 I, is Cauchy and thus converges to some some x. On the other hand Az, = Az, — y, is
also convergent.
Since A is closed we deduce x € D(A) and

Az =limAz, = X —y=y=A—Ax e R(A—A).

(ii) = (i) Assume that R(A — A) is closed for some A > 0. Consider any (z,)nen € D(A)
such that x,, — 0 and Az, — y. Consider the sequence (A — A)x,. Since R(A — A) is closed, it
follows that (A — A)z, - 0—y € R(A— A). Thus 3z € D(A) such that (A — A)z, — (A — A)z.
Since A is dissipative, Vn € N:

(A = A)(@n — 2)[| = Allzn — 2|

Thus x, — x, so x = 0, implying 0 —y = (A — A)z = 0, so A is closed.
O

Proposition 1.21. Let A : D(A) C X — X be a densely defined dissipative operator on a
Banach space X. Then A is closable, its closure is dissipative and

RA—A)=cl(R(A—-A4)), VA>0.

Proof. We follow the proof of Lemma 2.11 on page 16 of [5]. Let (yn)nen € D(A) converge to
y. Thus by continuity of the norm, VYA > 0:

I Ay — Myl = (3~ Ay — A Jim Az = T [\~ Ay — A
—00 k—o00

Because x, — 0 and A is dissipative, we have
lm [[(A = A)yn — Azy|| = lim [[(A = A)(yn — Azg)[| = Hm Alyn + Ak = Allynl|-
k—o0 k—oo k—o0
Thus, VA > 0:
1 _
T = Ay = Ayl = (1 = A YAy =yl =y > |lyal-
Since ||yn — y|| = 0, |lyn|l =0, so y = 0. Thus A is closable.

By definition of closure of a subset, R(A — A) D cl(A — A), since (A — A) is closed becuase A
is closed and dissipative. Additionally, R(A — A) C cl(\ — A) follows from the definition of
closure of an operator.

O
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Proposition 1.22. Let A : D(A) C X — X be a densely defined dissipative operator on a
Banach space X. Denote by A its closure. Then the following are equivalent.

() p(A) 1 (0,50) # 0.

(i) (0,00) < p(A).

(iii) There exists A > 0 such that the range of A — A is dense in X.
)

(iv) For any X > 0 the range of A — A is dense in X.

Proof. We follow the proof of Lemma 2.3 on page 12 of [5] and Theorem 4.3 on page 14 of [9].
Clearly (ii) = (i) and (iv) = (iii).

To show (iii) = (i), let A > 0. In view of Proposition 1.21, the range of A — A is dense in X
iff and only if R(A\1 — A) = X. Since A is dissipative we deduce that

M —A:D(A) - X
is bijective and
- 1
I = A)~ || < el vz e X,

Hence, the inverse ((A\ — A)~' is bounded, i.e., A\ € p(A). Conversely, if A € p(A), then
R(A— A) = X. Thus (iii) <= (i) and (iv) <= (ii).
It suffices to prove that (iii) = (iv). To show this assume 3\g > 0 such that R(\g — A) is

dense in X, then by Proposition 1.21 R(Ag — A) = X. Let

A:={A>0: A€ p(A)}.
The set A is nonempty because \g € A. Additionally, using the functional analysis result that
the resolvent set of any densely defined closed operator is open in C, we get that A is open in
(0,00). To show A is closed in (0, 00), consider any sequence (A,)nen € A such that A, — A

for some A € (0,00). Since each A\, € A, for any y € X, there exists x,, € D(A) such that
(A, — A)z,, = y. Thus, by the dissipativity of A, we have for all n € N:

1yl = 1(An = A)znll = Anllznl-

In particular, since (A, )nen is bounded, we have ||z, || < C||ly||, for some C' > 0. Additionally,
given any n,m € N, calculate

A llTn — 2wl < ||(Am — A)(xn — Zm) = [[(Am — An + An — A)m” —yll
= [Am = An| - Jz]l < CAm = Aal - 1yl

Since (A )nen does not converge to zero, this implies that (z,)nen is a Cauchy sequence. Let
x be the limit of (7, )neyn. Since Az, = Az, — v, it follows that Az, — Az —y. Thus by
closedness we have (A — A)z = y. Since y is arbitrary, it follows that R(A — A) = X implying
A € A, so A is closed. Thus A = (0,00), as desired.

O

Theorem 1.23. Let A: D(A) C X — X be a closed and densely defined unbounded operator.
Then A the following.

(i) The operator A satisfies the Hille-Yosida conditions.
(ii) The operator A is dissipative and X\ — A is surjective for some/all X > 0.
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Proof. We follow the proofs of [4, Thm 3.5, Prop. 3.14].

(i) = (ii) We assume that A satisfies the HY conditions; in particular (0,00) C p(A) and
M| R(X, A)|| < 1. We note that A — A is surjective because (0,00) C p(A). Additionally, for any
x € D(A) and X > 0, we set y := Az — Az. Thus

Az — Az|| = [lyll > MR, Ayl = A=,
so A is dissipative.

(ii) = (i) We assume that A is dissipative and that A — A is surjective for some/all A > 0.
We first need to prove that A — A is injective. Consider any x € D(A) such that Az — Az = 0.
By the dissipativity of A, for any A > 0 we have

0= [[Ax — Azx| > Al|z||

Thus x = 0 and A — A is invertible for any A > 0, so (0,00) C p(A). Next we seek to show that
A satisfies the HY estimate A||R(A, A)|| < 1 for any A > 0. For any A > 0 and y € D(A) with
llyl|, the following calculation holds:

AR Ayl < [[(A = A)R(A, Ayl = 1
Thus, we have A||R(\, A)|| <1, for all A > 0, so A satisfies the HY conditions. 0

Corollary 1.24 (Lummer-Phillips). Let A : D(A) C X — X be a densely defined dissipative
operator. Then its closure is the generator of a semigroup of contractions if and only if the
range of A — A is dense in X for some/all A > 0.

Proof. We follow the proof of [4, Thm. 3.5]. Assume first that A is the generator of a contraction
Co-semigroup. By Theorem 1.16 (0,00) C p(A). For any A > 0, by Lemma 1.22 R(A — A) is
dense in X.

We assume that R(A — A) is dense for some/all A > 0. By Lemma 1.22, we have (0,00) C
p(A), so in particular A — A is surjective. Since A is also dissipative, by Theorem 1.23 the
operator A satisfies the HY conditions, and is therefore the generator of a Cp-semigroup of
contractions.

O

Definition 1.25. Suppose that A: D(A) C X — X is a closed unbounded operator. A core of
A is a subspace D C D(A) such that G(A) = ¢l (G(A|p) ), where A|p denotes the restriction
of A to D. In other words, Vo € D(A), there exists a sequence (z,) € D such that z,, — = and
Az, — Ax as n — oo. O

From Proposition 1.22 we deduce the following characterization of cores of generators of
semigroups of contraction.

Corollary 1.26. Suppose that A: D(A) C X — X is the generator of a semigroups of (linear)
contractions on the Banach space X. A subspace D C D(A) is a core of A if and only is D is
dense in X and (A — A)(D) is dense in X for some/all X > 0. 0

Proposition 1.27. Suppose that A : D(A) C X — X is the generator of a semigroup of
(linear) contractions on Banach space X. If a linear subspace D C D(A) is || - ||-dense in X
and furthermore Ty(D) C D, for any t > 0, then D is a core for A.
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Proof. We follow the proof of [4, Prop. 1.7]. By assumption, for any z € D(A), we have a
sequence (7, )nen € D such that z,, — x. By continuity of s +— Tz with respect to || - [[¢(a),
and the continuity of the Bochner integral, we have for any ¢ > 0:

1 [t 1 [t
H/ Tsxpds — / Tsxds
tJo tJo

Additionally, by continuity of s — Tz, with respect to || - ||g(4), we have ¥n € N,

1/t 1
Ht/ Tsa:nds—gTsxds
0

—0 asn — oo.

G(4)

—0 ast\0.
G(4)

The above two statements imply that give any ¢ > 0, 3N € N and § > 0 such that for all
n > N and 0 < t <, we have
1 t
H/ Tsxpds —x
t Jo

Finally, by continuity of s — Tz, with respect to || - [[g(4), we have that

<e.

¢
/ Tsxnds € cl(G(A|lp)) Vn e N,Vt >0
0
This implies that x is in the [| - [|(4)-closure of D. 0

Proposition 1.28. Let (T;)i>1 be a semigroup of contractions on the Banach space X with
generator A. Define inductively
D(A") :={x € D(A""); Az e DA™ )}
Set
D(A®) = (] D(A™).
n>1

Then D(A) is a core of A.

Proof. We follow the proof of [4, Prop. 1.8]. By definition and Lemma 1.6, D(A*) is a (T})t>0
invariant subspace. Thus by Proposition 1.27, it suffices to show that D(A*) is dense in X.
To show this, we construct a subspace of D(A*°) and show that it is dense in X.
Let
K :={p € C*(R) : Supp ¢ is compact and Supp¢ C (0,00)}.
For any z € X and ¢ € K, define

Ty ::/ o(s)Tszds.
0

We now seek to show that x, € D(A>), for all € X,p € K. More precisely we will show
that z, € D(A) and Az, = x_,. This implies inductively that z, € D(A>).
For any h > 0, x € X and ¢ € Kwe have

T, — 1 1 [ 1 [ L[
L= [T e T~ Twds = 1 [ ots = Tuads 1 [ el Tuads
h h 0 h h h 0

1 [ I
— [T tets =) = o) Tasds — [ o).
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Next, using the fact that p(s) =0, for all s <0, we conclude

1 [ 1 [P o q
h/h (o(s = h) —p(s))Tsxds — h/o o(s)Tsxds = /0 E(go(s —h) — @(s))Tsxds.

We note that because +(¢(s — h) — ¢(s)) converges to ¢'(s), and because ¢ has compact

support, ||%(¢(s — h) — ¢(s))Tsz| is bounded by B(s)||Tsz|, for some B : R — [0,00). We
can assume without loss of generality that Supp B = Supp ¢. Thus B has compact support, so
Js° B(s)|| Tsx||ds < oo. Using the Proposition A.6 (ii) and the dominated convergence theorem
we deduce

o0 1 oo
IP{‘I(I) ; E(cp(s —h) —p(s))Tsxds = /0 —¢'(8)Tsxds = x_ .
This proves that z, € D(A) and Az, = z_,.

Set
D :=span{r, € X :zx € X, € K}.
We will show that D is dense in X. Assume for the sake of contradiction that D is not dense
in X. Hahn-Banach theorem implies that there exists z* € X* such that D C ker(z*) and
x* # 0. Usiung Proposition A.6(ii) we deduce that for any z € X and ¢ € K, we have:

0= " ( /0 h ga(s)TSxds) _ /0 ” o(s)2* (Tuz)ds.

Because the above is true for any ¢ € K, and s — z*(Tsz) is continuous, we must have
z*(Tsx) = 0 for all t > 0 and for any = € X. By setting s = 0, we have that z*(z) = 0, for all
x € X, which is a contradiction. Thus D is dense in X. O
1.4. Trotter-Kato Approximation Theorems.

Definition 1.29 (Pseudo-Resolvent). Let A C C and X be a Banach Space. A family of
operators (_# (X))xea € B(X) is called a pseudo-resolvent if VA, u € A:

SN =)= =277 W)

O

Proposition 1.30. Let (T5,(t))nen>0 be a sequence of contraction semigroups on the Banach
space X. Denote by A, the generator of T,,. Assume that Iy > 0 such that

nh_)rglo R(Xo, An)x  exists Vx € X.
Then YA > 0, and more generally any A € C with Re(\) > 0
RNz := nh_}n(}o R\, Ap)x exists Vo € X
and the family (R(X))a>o is a pseudo-resolvent.
Proof. We follow the proof of [4, Prop. 1.4]. Define
Q= {)\ € C:Re(\) >0, and nl;rlgo R(\, Ap)z exists Vo € X} .

We note that )y € €2, so it is known that € is nonempty. We will prove that €2 is both a closed
and open subset of {Re\ > 0}.
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Fix p € Q and a € (0,1) and define

— : b — Al
Ua(u).—{)\ec. Re ) > 0, Re(,u)<a .

Note that U,(p) is an open subset of C containing u. Moreover
= ARk, An)[| <, Vn €N, VA € Ua(p).

Since Re(\) > 0 and A,, generates a semigroup of contractions we deduce from the Hille-Yosida
theorem that A — A,, is invertible. Moreover, from the equality

A=Ap=p—An+A—p=(1-(u—NR(u An))(p— An)
we deduce that
ROV AR) = (= A) ™" = R, Ag) (1 — (11— MR, Ay)) ™"

Observe that for A € U, we have

1
o A0 < e
= AP (R 4,1 < o
Hence the above convergence is uniform for A € U, and n € N. This implies that R(\, A, )z
converges for any x € X as n — oo, VA € U,. Thus, p has an open neighborhood in €2, so Q is
open.

To prove that €2 is also closed consider a cluster point A of 2, with Re(\) > 0. We note
that Vo € (0,1), can find p € Q such that A € Uy () for some a € (0,1). The above argument
shows that A € Q, so Q is closed in H := {z € C: Re(z) > 0}. Since Q # @ is both closed and
open in H, we have that 2 N H = H by contentedness.

Since R(A, A,,) all satisfy the pseudo-resolvent equation for all n, it follows that the limits
also satisfy the pseudo-resolvent equation, so R(\) are a pseudo-resolvent. O

Lemma 1.31. Let X be a Banach space, A C C, and (_7 (X))xea a pseudo-resolvent

(i) The following hold Y\, u € A:
(@) SO F W) = 7 () F )
(b) Fer 7(%) = ker 7 (1)
(©) R 7(\) = R 7 (1)
(ii) The following are equivalent
(a) A : D(A) — X densely defined and closed operator such that A C p(A) and
F(AN) =R\ A), VAeA.
(b) For some (or all) A € A, ker(_#Z (X)) =0 and and it is dominant, i.e.,

R( 7)) = X.
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(iii) Assume I(Ap)nen € A is unbounded sequence. If Vo € X
li_)m A I (M) =2 (1.5)

Then 7 (X) is the resolvent of some densely defined closed operator.
Alternatively, if R(_Z (X)) = Xand | A, _Zx, || <1, Vn € N, then (1.5) holds.

Proof. We follow the proofs of Lemma 1.5 on page 139, Proposition 1.6, and Corollary 1.7 of
[4].
(i) By the pseudo-resolvent equation, VA, u € A:

N =W+ =27 = (T+ =2 70N).7 (1)
Thus, R(_# (\)) C R(_7 (1)) and ker(_# (u )) - ker(/( )). Similarly:

Sw)y=FN+A=p) W) N = (1+N=p) 1))

Thus, R(_Z(\)) 2 R(_Z(n)) and ker(_# (u)) 2 ker(_#Z (X)), implying equality. In particular,
this implies that for any pseudo-resolvent, the statements ‘for some’ and ‘for all’ are equivalent
when dealing with the range and kernel.

For commutativity, by the pseudo-resolvent equation, VA, u € A:

FONF W= =5 (SN = 7)) = 3= (S = ) = S (S .

(ii) (b) = (a) Assume that for some (or all) A € A, #Z()) is injective and has dense range.
Define the unbounded linear operator A : D(A) — X by A := u— #(u)~!, for fixed pu € A.
By assumption A is densely defined, because D(A) = R(_Z (i)).

We next seek to show that A is closed. Indeed, for any sequence (x,)nen € D(A) that
satisfies x,, — 0 and Az, — y for some y € X, the sequence must also satisfy the following:

I () (Azn) = 7 (1) (pan — 7 (1) wn) = p 2 (0)an — xn — 0

Since _#(u) is injective and continuous, we have Az, — 0. Thus A is closed, as desired.
Additionally, by the construction of A, we have VA € A

A=A) N =((A=pw)+(n— ))f()\)
= (A=) + (=) (L+ (=) 7 (N) .7 (1)
= ]l+()\—ﬂ)(/(u)—/(A)—()\—u)/(/\)/(u)) =1
The last two equalities follow from the pseudo-resolvent equation. Similarly, VA € A:
I N =A)=_FN(A=p)+(n-A))
= (L+ =N N)) A W((A—p)+p-A)) =
=1+ A=) (I ()= N = A=p) fN) I () =1
Thus, Z(X) = R(\, A), VA € A
(a) = (b) The proof is by contradiction. Assume that for some (or all) A € A, #()) is not
injective nor _# () is not dominant.
If _# () is not injective 3z € X, x # 0 such that _# (\)x = 0. Then for any densely defined

closed operator A : D(A) — X such that (A — A)~! € B(X), we must have(A — 4)0 = 0 # .
This implies that (A — A) "tz #£ 0= _#(\)z. Thus _Z()\) # R(), A).
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If _#(\) is not dominant, then for any densely defined closed operator A : D(A) — X such
that (A — A)~! € B(X), (A — A)~! is dominant, so (A — A)~1 £ _Z()).
(iii) Firstly note that if (1.5) holds, then

X=[JR(Z(\)=R(Z(N),  VreA

neN

Additionally, if (1.5) holds, then ker #(A) = 0. Indeed, if 2 € ker # (), then x € ker 7 (\,),
Vn we must have

x = 7}1_)1120 An Z (An)z = 0.

Thus, by (ii), # ()) is the resolvent of some densely defined closed operator.
Assume that R(_# (\)) = X and ||A,_Z (M\)| <1, Vn € N. It follows that

1
1.7 (M)l St vn € N.

This implies, Vi € A we have
[ (o) = 1)) = Jim [ O 5 — 2
— lim |12 (M) £ (1) — 7 ()] = 0.

n—o0

Thus (1.5) holds.
O

Theorem 1.32 (First Trotter-Kato approximation theorem). Let X be a Banach space and
let (T'(t))i>0 and (T (t))e>0, Vn € N, be contraction semigroups on X. Let A and A, denote
the infinitesimal generators of T(t) and T,(t) respectively. Let D C X be a core of A. Then
we have the sequence of implications
() = (i) < (i) < (iv)

mvolving the statements below.

(i) D € D(A,), Yn € N and Apx — Ax, Yz € D.

(ii) Yx € D, 3z, € D(Ay), ¥Yn € N such that

Ty — 2 and Anx, — Ax.

(iii) RN, Ap)z — R(\, A)z, Vo € X for some (all) A > 0.
(iv) T(t)x — T(t)x Yo € X, and uniformly for t on any compact interval.

Proof. We follow the proof of Theorem 1.8 on page 141 of [4].

(i) = (ii) Assume that D C D(A,), Vn € N and that A,z — Az, Vo € D. Thus (ii) holds
with (z,,) the constant sequence x,, = x € D(A,), ¥n € N.

(ii) = (iii) Assume that for all x € D and n € N, 3x,, € D(A,,) such that
T, — ¢ and A,z, — Azx.

Let A > 0. We note that |R(X\, 4,)]| < 1, for all n € N, by the Hille-Yosida theorem, since
A, generate contraction semigroups. It suffices to show that Yy € (A — A)(D), R(\, Ap)y —



SEMIGROUPS OF CONTRACTIONS 25
R(\, A)y, by the uniform boundedness principle. Take any = € D and set y = (A — A)x. By
assumption, Jx,, € D(A4,,) such that z,, — = and A,x, — Ax. We set

=AN—Ay))z, >z — Az =y.
This implies:
[R(A An)y — RA, Ayl = [|R(A, An)y — R(A, An)yn + R(A, Ap)yn — R(A, A)y||
< ”R()\, An)y - R()\, An)yn” + ||R()\, An)yn - R()\, A)yH
By choice of y = (A — A)z, it follows that:
||R()\, An)y - R()‘a An)ynH + HR()H An)yn - R()\, A)yH
<R Al - 1y = yull + |2 — =] — 0.

Thus

lim [[RO, Au)y — RO\ A)yl| = 0.

(iii) = (ii) Assume that R(\, A,)x — R(\, A)z, For all z € X and some A > 0. For any
x € D, pick y such that x = R(\, A)y and define the sequence x,, := R(\, A,)y, ¥n € N. Thus,
by construction, we have

Apxy = ApR(N, Ap) = ARN Ap)y —y = AR(N, A)y —y = Ax.

(iv) = (iii) Assume that T'(n,t)x — Tyx for all z € X, and uniformly on any compact interval.
By the integral representation of the resolvent, VA > 0, Vo € X we have

|IR(N, Ap)z — RN, Ap)z|| = h e_)‘t(T(t)$ —T,(t)x )dtH

g/ e M| T(t)x — Ty (t)x||dt.
0

By the dominated convergence theorem, this converges to 0, so R(\, Ap)z — R(\, A)z.

(iii) = (iv) Assume that R(\, Ap)z — R(\, A)z, Vo € X for some A > 0. Fix some ¢y > 0.
For all x € X and V¢ € [0,%9], we have, using the fact that R(\, A) and T; commute and
R(\, Ay) and T'(n,t) commute,

I(Tn(t)) = T@) R, A)z|| =
[ Tn () (R(A, A) = R(A, Ap))z + R(A, Ap)(Tu(t) = T(t))a + (R(A, An) — R(X, A))a |
S Ta@)(RA, A) = RO, A))zl| + [[RO, An)(To (1) — T(@))]| + IR, An) — R(A, A))]|
Di(n) Da(n) D3(n)
The goal is now to show that D;(n) — 0 as n — oo, for i = 1,2,3.

Firstly, we note that ||7,,(t)|| < 1, ¥n € N and t € [0,tp]. This implies by the uniform
boundedness principle and continuity that:

lim Di(n) = lim | T,(t)(R(\, A) — RO\ Ap)e| = 0.

Additionally, this convergence is uniform, by the uniform boundedness principle.
Secondly, note that
Ds(n) = [[(R(A, An) — R(A, A))z|| = 0
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By assumption that R(\, Ay)x — R(\, A)z. Additionally, this convergence is uniform since
[0, to] is compact and t — T'(¢)z is uniformly continuous.
Thirdly, we note that

Dy(n) = [R(X, An)(Tn(t) = T(1)z]| < [R(X, An) (T'() — Tn(t) )R(N, A)z]|,
because ||R(A, A)|| < 1. Next, we seek to show that above expression can be represented as an
integral. We define
G(s) =Tyt — s)R(A, Ap)T(s)R(\, A)z,
so that
G(t) — G(0) = R(\, Ay) (T(t) — T (t) )R(N, A)z.
Then
d%G(S) = T, (t — s)( — A RN\, An)T(s) + RO, An)T(s)A>R(A, A)z

= Tt — s) ((11 AR, AR A) + RO An) (=1 + AR(M, A))T(s)x

=Tn(t — 5) (RN, A) — R(\, Ap))T'(s)z.
Using the fact that |7, (t — s)|| < 1, this allows for the following bound on Da(n):

Ds(n) < [|RO\ AW)(T(t) — Tu(D)R(A, Az < /0 I(R(\, A) = RO\ AT (s)z|ds
< sup (RO A) — RO AT (s)].

By repeating the same argument which showed D3(n) — 0, we have Dy(n) — 0, uniformly on
[0,t0], as m — 00

Thus, for any = € X, we have that ||(T'(n,t) — T;) R(\, A)x|| — 0, uniformly on [0, ¢y]. Since
any y € D(A) can be written as R(\, A)z, for some x € X, it follows that ||T'(n,t)y — Tiy|| — 0
for all y € D(A) and uniformly on [0, tp]. Thus, by the uniform boundedness principle and the
fact that ||T'(n,t)y — Tyy|| < 2, we have that T'(n,t)z — Tyz, for any x € X and uniformly on
[0, t()]. d

Theorem 1.33 (Second Trotter-Kato approximation theorem). Let X be a Banach space and
suppose that for any n € N (T,,(t))s>0 is a contraction semigroup on X with generator A,. For
Ao > 0 we have the implications

(i) = (i) <= (ii)
involving statements listed below. Additionally if (i) holds, then G = A.

(i) There exists a densely defined unbounded operator A : D(A) C X — X, a core D of A
and Ao > 0 such that R(A\g — A) is dense in X and Apx — Az, Vz € D.
(ii) The operators R(Xo, An) converge strongly to some R € B(X) with dense image (R is
dominant).
(iii) The semigroups (Ty(t))t>0 converge strongly and uniformly on compact interval as
n — 00, to a contraction semigroup (T;)i>0 Co-semigroup on X with infinitesimal

generator G such that R(A\,A) = R
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Proof. Similarly to the first Trotter-Kato approximation theorem, we will prove for contraction
semigroups. We follow the proof of Theorem 1.9 on page 144 of [4].

(i) = (ii) Because each A, generate a semigroup of contractions, they satisfy the HY-
conditions. Thus, by Theorem 1.23, we have that each A,, is dissipative and A — A,, is surjective
for all A > 0 and n € N. This implies that A is also dissipative since

|A\x — Az|| = le Az — Apx|| > M|z||, Vze€ D.

Corollary 1.24 shows that A is closable and its closure A generates a contraction semigroup.
In particular A satisfies the Hille-Yosida conditions so (0,00) C p(A).

Set R = R(\g,A). Its image is the domain of A so it is dense. We will show that R =
lim,, 00 R(Ao, Ay) with respect to the strong operator topology.

For any x € (Ao — A)(D), there exists y € D such that (Ao — A)y = z; in particular, y = Rx.
This allows for the following calculation, for any x € (A — A)(D),

R()\(), An)CC = R()\o,An)()\o — A, — ()\0 — An) + ()\0 — A) )y

=y + R(X\o, A,)(Any — Ay) — y = Ra.

By the Hille-Yosida theorem, we have ||R(\g, 4y)| < /\1—0, for all n € N. This allows for the
following computation

_ _ 1 _
[R(Ao0; An)(Any — Ay)[| < [[R(Xo, An)l| - [[Any — Ayl < TOIIAny — Ayl — 0.

Thus R(M\o, A,) — R with respect to the strong operator topology because (A\g — A)(D) is
dense.

(iii) = (ii) Follows directly from the first Trotter-Kato Approximation theorem.

(ii) = (iii) Assume that R(\o, A,) converge strongly to some R € B(X) with dense image.
Define the following family of operators on X:

R(A),A>0 by RNz := ILm R\ Ap)z.
R(\) form a pseudo-resolvent since R(A, A;) are a pseudo-resolvent for each n € N. Note
that YA > 0, |AR(M\)|| < 1 by the uniform boundedness principle, and has dense image. By
Lemma 1.31 implies there exists B : D(B) — X densely defined closed operator such that
R(\) = R(\,B), VA > 0. By the Hille-Yosida theorem, this generates a Cp-semigroup. Then,

by the first Trotter-Kato Theorem, the semigroups converge. B
Additionally, if () holds, then R(A\g) = R(\o, G). Since D is a core of A, we have

R(/\())()\[) — A)x =z, Vx € D.
Additionally because R(\g — A) is X, we also have

R(A) (Ao — A)x =z, Vo € X.

Next, we note that because Ao € p(A4), R(A, G) = R(A, A) because both operators are continu-
ous and agree on a dense subset. Thus G = A. O
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1.5. Chernoff product formula.
Lemma 1.34. Let A € B(X) satisfy ||A"|| < M, for alln € N. Then
Jexp(n(A — 1))z — A < VM| Az - a.
Proof. We follow the proof of Lemma 2.1 on page 149 of [4]. Fix any n € N. Then we have the
following algebraic manipulation,
k

exp(n(A — 1)) — A" = e (" —e"A") =™ Z n—'

k=0
Additionally, for any k& € N, with & > n, we have
k—1 ‘ ‘ k—1 '
AR —Ar =N AT AT =D A (A -
j=n j=n

This implies the following bound for any k£ > n, k € N,
A2 — Az|| < (k —n)M| Az — z||.
This bound yields

lexp(n(A — 1)z — A" < e M| Az — 2] Z ( )1/2 (j;)m (k ),

and by the ¢? Cauchy Schwarz inequality,

00 k 1/2 o) k 1/2
—-n n n 2
o !

k=0
= ::ﬁ
We have o = €™ and
2 n* 2 n*
8= Zk ——QnZkH—&-n Zﬂ
E>0 k>0 >0

(use (2.5) and (2.6) with A =n)
=e"(n+n?) — 2n%e" + n?e" = ne".
We deduce
lexp(n(A = 1))z — A"z|| < e"M|| Az — a|je"/?(ne")/? = VnM || Az — z|.
g

Theorem 1.35 (Chernoff product formula). Suppose that (V(t))
contractions on the Banach space X with there following properties.
(i) V(0) = 1.
(ii) There exists a dense subspace D C X such that for any x € D the limit

>0 be a family of linear

1
]111{% h(V(h)a: — )

exists. We denote it by Azx.
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(iii) There exists Ao > 0 such that (Ao — A)(D) is dense in X.

Then A is closable, its closure A generates a semigroup of contractions (T¥)t>0 and

Tix = lim V (t) x, VrelX. (1.6)

n— 00 n

Additionally, this convergence is uniform on compact intervals.

Proof. We follow the proof of [4, Thm.2.2]. Define
Ap(s) = %(V(s/n) —1) € B(X), V¥s>0.

Clearly A, (s)x — Az for all z € D as n — oo, and uniformly on s € [sp, s1]. Note that

[e.e]

et < et/ |lexp (TV(s/n)>H <3 )V s/

Because both D and (A — A)(D) are dense in X, we can apply the second Trotter-Kato The-
orem 1.33 to the sequence of contraction semigroups exp(tA,(s)), to get that A generates a
contraction semigroup, which will be called T;. Additionally, by Theorem 1.33, T; also satisfies

| Tz — ez = 0 as n — oo and uniformly for s € [so, s1].

Next, we seek to show the equality in 1.6. By Lemma 1.34, we calculate the following, for any
neN, ze X and s >0,

S\ S S\ 1
etz (2| oy () 0)e-v 2
s s
< — — - )
ViV (3)e e = Zalanee
Finally we note that ﬁHAn(s)xH — 0 asn — oo, for all x € D, and uniformly on any compact

s € [s0, s1). Because D is dense, and |[exp (sAn(s))z —V (£)"z|| < 2 for all s > 0, n € N and
x € X, we have the desired convergence for any x € X by the uniform boundedness principle.
g

Example 1.36 (Yosida’s approximation). Suppose that (7})¢>0 is a semigroup of contractions
on the Banach space X with generator A. For any ¢ > 0 we set

V)= (1—tA) =1 (1= A) T =¢TR(, A).
SSet A :=t~1. Since ||[R(), A)|| < + we deduce ||V (t)|| < 1. Note that

%(V(t) —1) =A(AR\,A) — 1) = N2R(\, A) — X = A(N).

Lemma 1.14 shows that
lim Ayz = Az, Vz € D(A).
A—00

Hence

1
%{(I})Z(V(t) — 1)z = Az, Ve D(A).
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We deduce from Chernoff’s product formula

—n
<1—tA> r— Tix, VzeX.
n

2. SEMIGROUPS OF PROBABILITY MEASURES

In this section we will describe some probabilistic applications of the theory of semigroups
we have developed in the previous section.

2.1. The space of Borel probability measures on R. Denote by Prob(R) the space of
probability measures on R. Denote by Z the sigma-algebra of Borel subsets of R, by Cy(R) the
space of bounded continuous functions R — R, and by Cy(R) the space of continuous functions
f :R — R such that

lim f(z)=0.
T—rFo0
Denote by || — || the sup-norm on Cy(R). For f € Cy(R) and p € Prob(R) we set

ulf] = [ sl
The set of atoms of u € Prob(R) is the collection
gy ={xeR; p[{z}]>0}.
Clearly the set of atoms is at most countable since for any n € N the collection

{zeR; p[{z}]>1/n}
has cardinality < n.

Definition 2.1. A sequence (u,)n € N in Prob(R) is said to converge weakly to p € Prob(R),
and we write this u, = pu, if

lim pun [ f] =n[f], VfeCy(R).

n—o0

The Fourier transform of a measure p € Prob(R) is the function
RiRo T A(E) = [ ldal
R
For a proof of the following result we refer to [8, Sec. 2.2].

Theorem 2.2. Let (pin)nen be a sequence in Prob(R) and pu € Prob(R). The following state-
ments are equivalent.

(i) The sequence (pu,) converges weakly to .
(ii) For any f € Co(R)
pnl f] = u[f]-
(ili) For any a,b e R\ o, a <b

lim pn [ (a,b)] = u[(a,b)].

n—oo



SEMIGROUPS OF CONTRACTIONS 31

(iv) For any € € R
lim 72, (§) = p()-

n—oo

For any p € Prob(R) and f € Cy(R) we denote by T}, f the function R — R defined by

ZJ@%=Af@+yMWM

Clearly T,,f € Cp(R), Vf € Cy(R). The dominated convergence theorem implies that
T’uf S C()(R), Vf e C()(R)

Note that
| T f < NIfIls Vf € Co(R), Yu € Prob(R).

For any random variable Y we set Ty = Tp,, where Py € Prob(R) is the distribution of Y.
Note that for any f € Cp(R) we have

Ty f(z) =E[f(z+Y)], z€R,
where IE[ — } denotes the expectation of a random variable.

Theorem 2.3. Let (pin)nen be a sequence in Prob(R) and pu € Prob(R). The following state-
ments are equivalent.

(i) The sequence (u,) converges weakly to p.
(ii) For any f € Co(R)
nh_{go [T, f = Tuf|l = 0.
Proof. (i) = (ii) Let f € Cp(R). For each x € R we define
fo:R=R, fuly) = flz+y), vy eR.
Then

Since f is uniformly continuous the map
RB.%'—)foCQ(R)

is also uniformly continuous with respect to the sup-norm.
Fix € > 0. Since pu, = u there exists M > 0 such that

pal {lyl > M} ], pa[{lyl > M}] <e, Vn €N

We can assume that M, —M are not atoms of u. We have

t/ .mwam—/ fo()pldy
[—M,M] [—M,M]

ld d
+/y|>M!f\M | y]+/|y>M\f|u[ Y]

/ fm(y)un[dy] - / fx(y),un [dy]
[—M,M]

[7M»M}

ln[ fo] —p[f]] <

<

+ 2¢|| £
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Hence
suplua[£2] < ulf)| <swp| [ fe@alds) = [ felyald] + 2601
z€R z€R |J[—M,M) [— M, M]
Since f € Cy(R), Ve > 0 there exists K > 0 such that
sup |fz(y)| <e, V|z| > K.
yG[—M,M]
Hence
[ @l = [ @] <2 Vel > K e @)
[—M,M] [=M,M]
We deduce from (2.1) that
swp [pin [ f2] — [ £]] < 2 + 2] 1. 2.2

lz|>K
Consider now the continuous functions

g,9n : [_KaK] — R? gn(.%') :/
[_M7M]

Fo(w)nldy], g(z) = / Fo ) nldy)

[_MvM]
Since p, = u, and M, —M are not atoms of u we deduce
gn(z) = g(z), Voe|-K, K]|.
The sequence (gy,) is equicontinuous since x — f, is uniformly continuous with respect to the

sup-norm. Hence g, converges uniformly to g on [—K, K], i.e.,

lim sup |gn(z) — g(2)| = 0.

We have

sup |pn [ fo] = [ ]| < sup |gn(z) — g(2)| + 22| f].
ja| <K 2| <K

Hence
limsup sup [oa] f2] - [ £]] < 201,

n—o0 |x|§K

Using (2.2) we deduce that Ve > 0 we have
limsupsup | [ fo ] — [ f]] < 2 + 2¢]|f]|.

n—o0 zeR
This proves (ii). The implication (ii) = (i) is immediate since

M[f] = Tuf(0)7 VM € PI‘Ob(R), Vf S Cb(R)
g

Definition 2.4 (Convolution of measures). Let p,v € Prob(R). Then the convolution of
and v is the Borel measure y * v on R defined if

pxv|[B] :/RI/[B—Z'][L[d$],

for any B € %. Clearly u * v is a probability measure.
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One can prove (see [8, Sec. 1.3.6]) that p* v = ax(u ® v)-the pushforward of the product
measure 1 ® v on R? via the addition map a : R? = R, a(z,y) = = +y. More explicitly, this
means that for any Borel set B C R

pxv(B) = p @ v(a~\(B)) = ay(u® v)(B). (2.3)
This leads to the following probabilistic interpretation of the operation of convolution. Let
X, Y:(Q,7P) =R
be two independent random variables with distributions Px,Py € Prob(R). Then
Pxiy =Px x Py. (2.4)
In particular
Txyy =Tx - Ty.

For a proof of the following result we refer to [8].

Lemma 2.5. The convolution * : Prob(R) x Prob(R) — Prob(R) is commutative and associa-
tive. The Dirac measure dy is the identity element with respect to the convolution. In other
words ( Prob(R), x) is a commutative semigroup with 1.

Moreover, if p and v are absolutely continuous with respect to the Lebesgue measure on R,

ulda] = pude,  vida] = py(@)da,
then

pox vide] = py * py(x)de,
where

pu* py(x) = /Rpu(w —Y)pu(y)dy.

From (2.3) one obtains immediately that

pHv(§) =) - v(6), VEER, VuveR.
The following result follows immediately from the definition.
Proposition 2.6. For any u,v € Prob(R)
1,17, = Ty, Vp,v € Prob(R).
In other words the correspondence pu — 1), is a continuous morphism from the semigroup
(Prob(R), %) to (B(X),"). O
2.2. Convolution semigroups of probability measures. A family of Borel probability mea-

sures (pt)r>0 on R is called a convolution semigroup if it satisfies the following conditions

(1) Ho = 50.
(1) frse = s * pir.
(iil) pe = po as t 0.
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Condition (iii) signifies that the measure p; converges weakly to the Dirac measure dy. It
implies that the map

[0,00) 3t +— py € Prob(R)

is continuous with respect to the topology of weak convergence on Prob(R). We see that (ut)¢>0
is a convolution semigroup if V¢,s > 0, £ € R

ﬁt+s(§) = ﬁt(§> ) ﬁs(§>v //IO(E) =1,

and the map t — [1;(£) is continuous.
Theorem 2.3 has the following immediate consequence

Corollary 2.7. Let (ut)i>0 be a convolution semigroup of probability measures. Then the
induced operator semigroup,

T (@) = [ Fa+ pyulds]
is a strongly continuous semigroup of contractions on Cy(R). In other words,
%{% HTMtf - f” = 07 vf S CO(R)a
where || — || denotes the sup-norm on Cp(R). 0

Example 2.8 (The translation semigroup). The family of Dirac measures (d¢)i>0 0 is a con-
volution semigroup. Indeed

5i(€) = e

and obviously

~ ~

51(6)04(€) = Ors5(€)-
O

Example 2.9 (The heat semigroup). For each ¢ > 0 we denote by 7, € Prob(R) the Gaussian
measure with mean 0 and variance t. More precisely

I a2
’yt[dx]:\/%e 2t \[dx].

Its Fourier transform is
(€)= e 2,

We set g := dg. The family (’yt) is a convolution semigroup since

>0
Y (E)Vs (&) = Yrs(&), Vs, t > 0.

Example 2.10. For A\ > 0 we define the Poisson measure py € Prob(R) to be
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Its Fourier transform is

k& \k , ,
~ €A I WY Aet6—1)
m(é)—éoe o= =e .

This proves that for any A > 0 the family ( Iy ) 4> 18 @ convolution semigroup. This is called
the Poisson semigroup with parameter \.
Note that the function z + e is uy-integrable for any ¢t € R and

M)\(t) ::/Retx/i,\[dl'] :Zef)\ek' :6)\(6’571).

We have
M//\l(t) _ )\ete)\(et—l) + )\2€2t6)\(et—1)
Hence MY (0) = A+ A? and we deduce

k
A+ X6 = ML) = 3 18%. (2.6)
E>0 ’

O

2.3. The translation semigroup. The family of Dirac measures (d;);>¢ ois a convolution
semigroup. Moreover

T5,f(x) = f(x +1t), Ve € R,, Vt > 0.
We denote by A the infinitesimal generator of T;. We define inductively

CER):={feCi ' R)NCAR); f e CFHR) .
Note that C%(R) is dense in Cp(R) with respect to the sup-norm. Moreover
T,(CER)) € CE(R).
Proposition 2.11. The space C3(R) is contained in D(A) and
Af = f', Vf € C2(R).
In particular, C3(R) is a core of A.
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Proof. Let f € C2(R). For any t > 0 we deduce from Taylor’s formula with Lagrange remainder
that

2
Tf(@) = fa+1) = f(z) = [@)t+ 1), €€ (@ +1).
We deduce that for any ¢ > 0 we have

L0 =1 f,(x)‘ e,
zeR t 2
Hence
tim | (72~ 1)~ || =0

This proves that %(th — f) converges in the sup-norm to f’. Hence f € D(A) and Af = f.
The fact that CZ(R) is a core of A now follows from Proposition 1.27. O

For h > 0 define

f<x+h2—f<x> = (/@) - f(z))

The first Trotter-Kato approximation theorem implies that

Ap: Co(R) = Co(R), Apf(z) =

lim e!® =Ty, ¢ >0,

AN
in the strong operator topology. Hence, for any f € Cy(R), ¢t > 0 and any z € R
t) = lim e*®r 2.7
(e + 1) = Jim ¢ £ () (2.7)

uniformy in .
One should compare this with the Taylor expansion for a real analytic function. If we set

D= d%, and f is real analytic, then we have a Taylor expansion

fle+ =3 S0 @) = P f(a) 2
n>0

where the right-hand-side converges uniformly for small ¢. Formally, (2.8) is obtained from
(2.7) by letting h 0 since Ay, — D as h \, 0.
The equality (2.7) can be rewritten as

e%(Th_l)f —Tf ash—0.
Equivalently
e nenthf = T,f. (2.9)

Let py be the Poisson measure parameter A > 0 described in Example 2.10. Consider the
continuous map

[0,00) S S Fh(S) = Tshf € Co(R)
Define

Fyn(s) 32/[0 )Fh(s)m[dS]-
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The right-hand-side of the above equality is an average of the bounded function Fj(s) with
respect to the measure ). Then

e_%e%Thf = Fy/nn(s)- (2.10)
The equality (2.9 ) shows that if A " oo
AILHOIO F>\7t//\(1) = th = Ft(l) (211)

For a very interesting discussion of the probabilistic meaning of (2.10) and implications of the
above “accident” we refer to [6, Sec. VIL.5,VIL.6, X.9].

2.4. The heat semigroup. Consider the heat semigroup (;) described in Example 2.9. Set
H; :=T,,. The contraction semigroup (H)¢> is also referred to as the heat semigroup. Denote
by A the generator of the heat semigroup. Note that

_ (z—ac)2

1 y? 1
H = — —|— _gd = / 2t d .
tf(x) \/TM/RJC(J; y)@ Yy m Rf(Z)e z
This proves that H,f € C®°(R), Vf € Co(R). Note that H,C¥(R) C C¥(R), Vk.

Proposition 2.12. The subspace C3(R) is a core of A and

1
Af = 3 " VYfeC3R).
Proof. Let f € C3(R). We have

Hyf2) = @) = = [ fa+ ety 1)

_ L 1/2 .\ ,—2%/2 _L —22/2

—m/Rf(x+t z)e dz \/Tﬂ/Rf(x)e dz

= \/127/ (f(:v+t1/2z) — f(z) — f’(:r:)tl/Qz)e_Zg/de
™JR

Using the Taylor expansion with Lagrange remainder we deduce that

Fla+1%2) = f(a) = F @) = 1)+ 5 7O )

for some 1 € (z,x + t'/2z). Hence
'f(fv+t1/22) — fl@) — f@)t2 1 i

- 6

S I (@)2? LFE.

t 2

Since

1 2 —22/2
— | 2% dz=1
\/27T/R

(@)~ () = 5 (@)

_ \/127 /R (f(ﬂ:+t1/22) ~ ) - fl@)t 2z ! f,,(x)zz> /2,

we deduce that
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Hence, Vz € R we have

1 1
§f (z)

(1) - ) -

fla+t22) = fa) = f@)t 2 1
t 2

||f(3)||t1/2 [ 2 oy,

f//(.T)ZQ e—ZZ/QdZ

<

7w

Here is a remarkable consequence of Proposition 2.12 and Remark 1.7.

Corollary 2.13. For any function fo € Co(R) there exists a unique function u € C’O( [0, 00) x
R)NC>®((0,00) xR) such that

xz = u(t,z) € Co(R), Vt >0,

tim sup [u(t, ) — fo(o)] =0 (212
(9tu(t,x) - %agxu(tax) = 07 V(t, J,‘) S (0, OO) x R. (2]_3)
O

Suppose now that p € Prob(R) is a probability measure satisfying the conditions

= 2plde] = 1. .
/R:r:,u[dx] =0, /R pldz] =1 (2.14)

Fix a random variable X with distribution p, Px = pu. Then we can rewrite (2.14) as
E[X]=0, Var[X]=E[X?]=1. (2.15)
For t > 0 we denote by %, the rescaling map
KR —R, Z(x)=tx.

We set
o= (R)pn = wf(a.b)] = p[(ta,t70) ], Va,b, t>0.

Equivalently, p; is the distribution on tX. Note that p; = dg. Moreover
T, (@) = Tixfa) = [ fla+tyuldy).

We set V(t) =1Ty,.

Proposition 2.14. For any f € C3(R) we have

1 1
5/

lim =0.

i | (v - 1)1 -
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Proof. Let f € C3(R). Using (2.14) we deduce that

UMw—ﬂN@%jé(ﬂw+H”w—f@%4yﬁfmﬁuwﬂ,

%(Vu(t) —1)f(x) - %f”(@
_ /R %(f(x +t%y) — fz) - ()t Py — %f”(m)mﬂ) #ldy].
=U(x,y)

Using Taylor’s formula with Lagrange remainder
1
o+t 2y) = @) = f @ty = S @ty

for some £ =&, € (v, 2 + t'/2y). Hence

IR

— 5@ | = |55 - 5

[P+ t2y) = f(2) = @)y -

) 1
< min (¢ fllcelyl, 51 oot ol

<t f e min Iyl 502l ), ¥e>0, 0y € R

Hence
0<Uilar,y) < Iflamin Iy, 562l ), i >0, 2y € R

We deduce that
lf//

S - 1)f -

|3

<Iles | min (1ol 572" Yl du]

1
<Ifles [ 8PP+ flos [ lyPuldy]
lyl<R

ly|>R
72 )
<Rl + Wles [ lyPuldy].
—_—— ‘y|>R
=: (R,t) Z:B(R)
Since
/R y*uldy] < oo

we deduce that for any ¢ > 0 there exists R(¢) > 0 such that B(R(¢)) < 5. Next, choose
&(g) > 0 such that A( R(¢),d(c) ) < 5. Then for t < (¢)

SVl = 1) = o f

F

<e.
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We deduce from Chernoff’s product formula that
li_)m Vu(t/n)"f — Hif, YfeCo(R). (2.16)
Let us observe that if p, v € Prob(R), then
(Wxv)y=puxvy Vt>0. (2.17)

Indeed, if X and Y are independent random variables with distributions p and respectively v,
we have

Poraxqvy = Paex * Pujay.
Suppose now that (X,),en is a sequence of independent and identically distributed (i.i.d.)
random variables such that

E[X,]=0, E[X:]=1, VneN.

Denote by p the common distribution of these random variables. Set

1
Zn ::W(X1+---+Xn).

Observe that
E[Z,] =0, E[Z2]=1, VYneN,
and
Threg, = Tymyex,  Tamyprex, = (Tut/n )n =Vu(t/n)" - H; asn — oo.
We have thus proved the celebrated Central Limit Theorem

Corollary 2.15. Suppose that (X,)nen a sequence of i.i.d. random variables such that
E[X2] =1, E[X,]=0, Vn

then the random wvariables )
NG

converge in distribution to a standard normal random variable. O

(X144 X,)

APPENDIX A. A BRIEF INTRODUCTION TO BOCHNER INTEGRAL

We survey here a few facts about the Bochner integral. For proofs and more details we refer
to [2, Sec.7.5], [3, I11.6] or [10, V.5, V.6].
Throughout this appendix (2,.%, 1) will denotes a measured space, X a real Banach space,
and X* the topological dual of X. We denote by by < - = > the natural pairing
(= =) X"xX >R, X*xX>5 () (&) :=E(x).

A function, f: Q — X, is called simple or elementary if there exist S, € . and z1,...,z, €
X such that

flw) =) Is (i, YweQ,
=1

where Ig, denotes the indicator function of S;. We denote by Elem((2,.#, X) the space of
elementary functions from (Q2,.) — X.



SEMIGROUPS OF CONTRACTIONS 41

Definition A.1. A function f : Q — X is said to be strongly measurable if there exists a
sequence (f)nen C Elem(€2,.%, X) such that

fw) = lim fp(w), YweQ.
n—oo
(|
Definition A.2 (Bochner integrability). A strongly measurable function f : Q — X is called

Bochner integrable or strongly integrable if the non-negative function || f|| :  — R is integrable
with respect to the measure p. a

Definition A.3. For g € Elem(9,., X)

n
g=> Ism,
i=1

we define the Bochner integral of g over (2 as:

/ gdp =" p[Six;.
Q i=1

Clearly g is Bochner integrable iff u[lg,] < oo, Vi =1,...,n.

Lemma A.4. Suppose that f : Q@ — X is a Bochner integrable function. Let (fn)neN, (Gn)nen €
Elem(Q), .7, X) be sequences of Bochner integral elementary functions s.t. fn,gn — f. Then
the limits

n—o0

lim fndu and lim /gndu
Q n—oo (¢}

exists and are equal. O

Definition A.5 (The Bochner Integral). Suppose that f : @ — X is a Bochner integrable
function. Let (f,)nen € Elem(£2, ., X) be a sequence of Bochner integral elementary functions
s.t. fn — f. Define the Bochner integral of f over 2 as

fdp == lim fndp
\/S] n—o0 Q
g

In the remainder of this sequence we will focus exclusively on the special case when (€, .7, u)
is an interval C R equipped with the Borel sigma-algebra and the Lebesgue measure. Theorems
[2, Thm.7.5.4, 7.5.6] imply the following result.

Proposition A.6. Suppose that f: I — X is a continuous function. Then the following hold.
(i) f: 1 — X is strongly integrable iff || f|| is integrable.

(i) Ve e X
<§, /1 f(t)dt> - /Y (€ £(1) )t
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