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INTRODUCTION

The calculus of variations can be thought of as a sort of calculus in infinitely many variables.
The first problems of calculus of variations appeared immediately after the inception of calculus and
attracted the attention of all the classics of mathematics.

They first dealt with the description of paths in an Euclidean space that are extrema of certain
natural problems.

• Geodesics. The shortest paths on a given surface connecting a pair of given points.
• Brachistochones. Given two points P0, P1 in a vertical plane, find a path connecting P0 to P1

inside that plane such that a bead sliding along the path under its own weight will travel from
P0 to P1 in the shortest amount of time.
• Dido’s Problem. Find the closed plane curves of given length that surround the largest area.

The paths in each of the above examples are extrema of certain problems. We say that they are
defined by a variational principle. This imposes severe restrictions on their behavior: they must be
solutions of certain (nonlinear) second order differential equations called the Euler-Lagrange equa-
tions. Often, these suffice to determine the extrema, although many of the solutions of these equations
are not extrema.

Surprisingly, most of the equations of classical mechanics are of Euler-Lagrange type, and La-
grange used this point of view to lay the foundations of what is now commonly referred to as analyt-
ical1 mechanics. For a beautiful introduction to the Lagrangian approach to classical mechanics the
nice lecture by R. Feynman [FLS] is still the best source.

We can clearly think of several variables functions satisfying variational principles: minimal (area)
surfaces, multidimensional Dido (or isoperimetric) problem etc. The physical theory of classical
fields is about certain several variables functions satisfying variational principles. In this case, the

Last modified on November 14, 2008.
1In the view of this author, the attribute analytical is a misnomer. The term geometric seems more appropriate. Arnold’s

classic [A] is a strong argument in favor of the geometric point of view.
1

http://www.nd.edu/~jcaine1/index.html
http://www.nd.edu/~jcaine1/mppm.html
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Euler-Lagrange equations are nonlinear second order partial differential equations, and often are
very difficult to solve explicitly. Even existence of solutions to these equations is far from obvious.

In this case we can turn things on their heads, and use the variational principles to prove the
existence of solutions of very complicated partial differential equations.

In these notes we would like to present through examples some of the basic problems, principles
and applications of calculus of variations. For more details on the classical aspects of calculus of
variations we refer to Gelfand’s notes [GF].

1. ONE-DIMENSIONAL EULER-LAGRANGE EQUATIONS

Let us start with a simple motivating example. Consider a surface of revolution in the Euclidean
space R3 described in cylindrical coordinates (r, θ, z) by the equation

S =
{

(r, θ, z); r = f(z)
}
, (1.1)

where f is a smooth positive function defined on an interval a < z < b.

FIGURE 1. The Maple generated plot of the surface of revolution r = 2 + sin z,
−π < z < π.

We consider two points pi = (ri, θi, zi), i = 0, 1, and we seek a shortest smooth path on S that
connects p0 to p1. In Riemannian geometry, such a path is called a geodesic. How do we go about
finding such a geodesic?

A smooth path γ on S can be described by indicating the position of the point γ(t) in cylindrical
coordinates. Due to (1.1) it suffices to know only the coordinates z and θ. Thus a path on S is
described by a smooth path in the plane with coordinates (θ, z)

γ : [0, 1]→ R2
(θ,z), t 7→

(
θ(t), z(t)

)
We obtain a path on S using the defining equation of S

r = f(z(t)), θ = θ(t), z = z(t).

To find the length of this path we need to express it in Euclidean coordinates

x = r cos θ, y = r sin θ, z = z.
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We regard x, y, z as functions depending on the time variable t. A dot will denote a t-derivative. The
length of γ is then

`(γ) =
∫ 1

0
|γ̇|dt =

∫ 1

0

√
|ẋ|2 + |ẏ|2 + |ż|2dt =

∫ 1

0

√
|ṙ|2 + r2|θ̇|2 + |ż|2dt,

so that

`(γ) =
∫ 1

0

√
f(z)2|θ̇|2 + (1 + |f ′(z)|2)|ż|2︸ ︷︷ ︸

=:L

dt. (1.2)

The integrand is a function L depending on 4-variables L = L(θ, z, θ̇, ż). We denote the first pair
of variables by x and the second pair of variables by ẋ. We can now describe the length of γ as the
integral

`(γ) =
∫ 1

0
L
(
γ(t), γ̇(t)

)
dt.

If we denote by Xp0,p1 the set of smooth paths on S that travel from p0 to p1 in one second, we see
that the length of the shortest paths is given by

min

{∫ 1

0
L
(
γ(t), γ̇(t)

)
dt; γ ∈ Xp0,p1 ,

}
.

As is often the case, it will be convenient to solve a more general problem, and then specialize to the
case at hand.

Consider the finite dimensional vector space E = Rn. Viewed as a smooth manifold, its tangent
bundle TE can be identified with the product E × E, where the tangent space TpE is be identified
with {p} × E. We will denote by x = (x1, . . . , xn) the coordinates on E by v = (v1, . . . , vn) the
coordinates of a tangent vector. A Lagrangian on E is then a smooth function

L : TE → R, L = L(x,v).

Any C1 path γ : [0, 1]→ E defines a continuous path on TE,

[0, 1] 3 t 7→
(
γ(t), γ̇(t)

)
∈ TE.

If X denotes the space of all C1 paths [0, 1] → E, then the Lagrangian function L defines an action
functional

SL : X→ R, X 3 γ 7→
∫ 1

0
L
(
γ(t), γ̇(t)

)
dt.

The number SL(γ) is called the action of the path γ with respect to the Lagrangian L. We seek least
action paths connecting two given points p0, p1 ∈ E. We denote by Xp0,p1 the set of paths in X

connecting p0 to p1.

Theorem 1.1 (The Least Action Principle). If γ : [0, 1] → E is a C2 path connecting two given
points p0, p1 and

SL(γ) ≤ SL(ϕ), ∀ϕ ∈ Xp0,p1

then γ satisfies the Euler-Lagrange equations
d

dt

∂L

∂v
(γ, γ̇) =

∂L

∂x
(γ, γ̇). (EL)

More precisely, γ satisfies the system of second order differential equations
d

dt

∂L

∂vi
(
γ(t), γ̇(t)

)
=
∂L

∂xi
(
γ(t), γ̇(t)

)
, i = 1, . . . , n.
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If we write γ(t) = (x1(t), . . . , xn(t)) then the above system can be rewritten as
n∑
j=1

( ∂2L

∂xj∂vi
(γ, γ̇)ẋj +

∂2L

∂vj∂vi
(γ, γ̇)ẍj

)
=
∂L

∂xi
(
γ(t), γ̇(t)

)
, i = 1, . . . , n.

Proof. Denote by C∞0 ([0, 1], E) the space of smooth maps δ : [0, 1] → E such that δ(t) = 0 in a
neighborhood of 0 and 1. For any smooth path δ ∈ C∞0 ([0, 1], E) and any γ ∈ Xp0,p1 we get a one
parameter family of paths γs ∈ Xp0,p01 (see Figure 2)

γs(t) = γ(t) + sδ(t), s ∈ R, t ∈ [0, 1].

γ( )

γ( )

δ( )

t

t

t

s

FIGURE 2. Deforming the path γ(t) using a displacement δ(t).

We say that the family γs is a deformation of the path γ(t). Define the smooth function

f : R→ R, f(s) = SL(γs).

If γ is a least action path, then

f(0) = SL(γ) ≤ SL(γs) = f(s), ∀s ∈ R.
Hence f ′(0) = 0 so that

d

ds
|s=0

∫ 1

0
L(γ + sδ, γ̇ + sδ̇)dt = 0.

We express δ(t) as a collection of paths t 7→ δi(t), 1 ≤ i ≤ n and we deduce

0 =
∫ 1

0

n∑
i=1

(
∂L

∂xi
(γ, γ̇)δi +

∂L

∂vi
(γ, γ̇)δ̇i

)
dt, ∀δ ∈ C∞0 ([0, 1], E) (1.3)

for any path γ ∈ Xp0,p1 such that

SL(γ) = min
ϕ∈Xp0,p1

SL(ϕ).

If γ is actually a C2 path, then an intgration by parts shows∫ 1

0

∂L

∂vi
(γ, γ̇)δ̇idt =

(
∂L

∂vi
(γ, γ̇)δi(t)

) ∣∣∣t=1

t=0
−
∫ 1

0

d

dt

∂L

∂vi
(γ, γ̇)δidt = −

∫ 1

0

d

dt

∂L

∂vi
(γ, γ̇)δidt.

Hence, if γ is a C2 least action path then∫ 1

0

n∑
i=1

(
∂L

∂xi
(γ, γ̇)− d

dt

∂L

∂vi
(γ, γ̇)

)
δidt = 0,
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for any δ ∈ C∞0 ([0, 1], E). Because δ is arbitrary we conclude

∂L

∂xi
(γ, γ̇)− d

dt

∂L

∂vi
(γ, γ̇) = 0, ∀i = 1, . . . , n.

ut

Definition 1.2. A path γ : (a, b)→ E satisfying the Euler-Lagrange equations (EL) with respect to
the Lagrangian function L : TE → R is called an extremal of the Lagrangian L. ut

Before we discuss several concrete applications of the least action principle let us comment on
some issues raised by the above proof. These were eloquently and vigorously raised by K. Weierstrass
more than a century and a half ago and had the effect of casting a shadow on this line of reasoning.

Remark 1.3 (Weierstrass critique). A. Existence The above proof assumes a priori that a least action
path exists. This requires a rigorous proof.
B. Regularity. Even if a minimizer exists, it might only be a C1 path, so the last step in the proof
fails. Thus one needs to prove that a minimizer, which a priori is only C1, must have better regularity,
namely that it is actually a C2-path.

These two issues are even more severe for multi-dimensional variational calculus to be discussed
in the next section. David Hilbert considered these to be fundamental issues and included them as
problems 19, 20 in the famous list of Hilbert problems. ut

Example 1.4. Suppose F : R3 → R3 is a conservative force filed in R3, i.e., there exists a smooth
function U : R3 → R called potential such that

F = −∇U.
The motion of a particle particle of mass m affected by this force field is governed by Newton’s
equations

mẍ = F (x) = −∇U(x)⇐⇒mẍi = −∂U
∂xi

(x1, x2, x3), i = 1, 2, 3..

Consider the Lagrangian L = LU : TR3 → R

L(x,v =
1
2
m|v|2 − U(x) =

m

2
(

(v1)2 + (v2)2 + (v3)2
)
− U(x1, x2, x3).

Then
∂L

∂vi
= mvi,

∂L

∂xi
= −∂U

∂xi
.

If the path t 7→ x(t) satisfies the Euler-Lagrange equations (EL) with respect to this Lagrangian
function then

d

dt

∂L

∂vi
(x, ẋ) = m

d

dt
ẋi = ẍi =

∂L

∂xi
− ∂U

∂xi
(x).

We see that Newton’s equation of motion are none other than the Euler-Lagrange equations for this
Lagrangian function. ut

Example 1.5 (Geodesics on a surface of revolution. Part 1). Consider the Lagrangian L : TR2 → R
we encountered in when we sought geodesics on a surface of revolution

L(θ, z, θ̇, ż) =
√
f(z)2|θ̇|2 + (1 + |f ′(z)|2)|ż|2

For simplicity we set
h(z) :=

√
(1 + |f ′(z)|2)

http://aleph0.clarku.edu/~djoyce/hilbert/problems.html
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so that we can write

L(θ, z, θ̇, ż) =
√
f(z)2|θ̇|2 + h(z)2|ż|2.

We observe that
∂L

∂θ
= 0,

∂L

∂z
=

1
L

(
f(z)f ′(z)|θ̇|2 + h(z)h′(z)|ż|2

)
∂L

∂θ̇
=

1
L
f(z)2θ̇,

∂L

∂ż
=

1
L
h(z)2ż.

Thus the Euler-Lagrange equations take the form
1
Lf(z)2θ̈ + 2

Lf(z)f ′(z)żθ̇ + d
dt

(
1
L

)
f(z)2θ̇ = 0

1
Lh(z)2z̈ + 2

Lh(z)h′(z)ż2 + d
dt

(
1
L

)
h(z)2θ̇ = 1

L

(
f(z)f ′(z)|θ̇|2 + h(z)h′(z)|ż|2

)
.

(1.4)

They seem hopeless, don’t they! At this point, we need to rely on the geometric nature of this problem
to make further progress.

Observe that if γ : [0, 1] → S is a shortest length path between p0 and p0 then for very smooth,
increasing function α : [0, a]→ [0, 1] such that α(0) = 0, α(a) = 1 the composition

[0, 1] 3 s 7→ α(s) 7→ γ(α(s)) ∈ S,

is also a shortest length path because the length of a path is independent of the reparametrization of a
path.

Now consider the arclength function along γ(t),

s(t) =
∫ t

0
|γ̇(τ)|dτ =

∫ t

0
L(γ(τ), γ̇(τ) )dτ.

Hence ds = Ldt so that
d

dt
= L

d

ds
and in particular, γ̇ =

dγ

dt
= L

dγ

ds
.

We deduce
∂L

∂θ̇
(γ, γ̇) =

1
L
f(z)2dθ

dt
= f(z)2dθ

ds
.

Similarly
∂L

∂ż
=

1
L
h(z)2dz

dt
= h(z)2dz

ds
The Euler-Lagrange equations become

0 =
d

dt

∂L

∂θ̇
= L

d

ds

(
f(z)2dθ

ds

)
(1.5a)

∂L

∂z
=

d

dt

∂L

∂ż
= L

d

ds

(
h(z)2dz

ds

)
(1.5b)

From (1.5a) we deduce that f(z)2 dθ
ds is independent of s. Hence, there exists a constant c such that

dθ

ds
=

c

f(z)2
. (1.6)

Observing that

∂L

∂z
=

1
L

(
f(z)f ′(z)|θ̇|2 + h(z)h′(z)|ż|2

)
= L

(
f(z)f ′(z)

∣∣∣∣dθds
∣∣∣∣2 + h(z)h′(z)

∣∣∣∣dzds
∣∣∣∣2
)
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we deduce from (1.5b) that

d

ds

(
h(z)2dz

ds

)
= f(z)f ′(z)

∣∣∣∣dθds
∣∣∣∣2 + h(z)h′(z)

∣∣∣∣dzds
∣∣∣∣2 ,

or equivalently

h(z)
d

ds

(
h(z)

dz

ds

)
= f(z)f ′(z)

∣∣∣∣dθds
∣∣∣∣2 =

c2f ′(z)
f(z)3

.

From the last equality we can determine z explicitly as a function of s. Then using (1.6) we can also
determine θ explicitly as a function of s. The exact expressions may not be as illuminating. However
the equality

f(z)2dθ

ds
= c

has a nice geometric interpretation.
Our computations show that the tensor

g = f(z)2dθ2 + h(z)2dz2

is the metric on the surface of revolution induced by the Euclidean metric. Then we can write

γ̇ = θ̇∂θ + ż∂z,

and we have
|∂θ|2 = g(∂θ, ∂θ) = f(z)2, g(γ̇, ∂θ) = θ̇f(z)2.

Observe that ∂θ is tangent to the parallels z = const. If we denote by ϕ = ϕ(t) the angle between γ
and the parallel that it intersects at time t we have

|∂θ| · |γ̇| cosϕ = g(γ̇, ∂θ) = θ̇f(z)2

If we divide by the length of γ̇ we deduce

r cosϕ = f(z) cos θ = |∂θ| cosϕ =
1
L
θ̇f(z)2 = f(z)2dθ

ds
= const (1.7)

so that the quantity r cosϕ is constant along a geodesic. The last equality is known as Clairaut’s
theorem. It has the following geometric interpretation. The quantity r measures the distance from
a point on the geodesic to the axis of revolution, while ϕ is the angle between the geodesic and the
parallel that it intersects at a given moment.

Observe that if γ(t) is a geodesic, i.e., a solution of (1.4), then so is the reparametrized curve
t 7→ γ(ct), where c is a positive constant. Since the length of the velocity vector along a geodesic
is constant, we may assume after a possible affine reparametrization that this length is 1, i.e., the
geodesic is arclength parametrized.

If we define a meridian on S to be the intersection of the surface with a plane containing the axis of
revolution, and a parallel to be the intersection of the surface with a horizontal plane z = const, we
see that the meridians intersect the parallels orthogonally, and thus, along the meridians the quantity
r cosϕ is constant, equal to 0. This shows that the meridians are geodesics on a surface of revolutions.

The case of the round sphere is very special. A sphere admits infinitely many axes of symmetry.
If γ(t) is a geodesic on the sphere parametrized by arclength, and p0 is a point on the geodesic,
then there exists a unique plane through the center of the sphere and p0 that is orthogonal to γ(t) at
p0. Choose as axis of symmetry the diameter orthogonal to this plane. With respect to this axis of
symmetry the quantity r cosϕ must be zero along this geodesic, so that this geodesic must be an arc
of a meridian on the sphere.

ut
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Remark 1.6. The above discussion has avoided one important issue: how do we decide if an extremal
for a given Lagrangian is indeed a least action path? This investigation has been carried out in
many instances, including the case of geodesics on manifolds. This has lead to many important
developments in Riemannian geometry and topology; see e.g. [F, N].

In particular, one can show that on a compact Riemann manifold, for any pair of points, there exists
a minimal geodesic connecting them. If moreover, the points are not too far apart, then this minimal
geodesic is unique. The uniqueness does not extend to relatively far apart points. For example there
exist infinitely many minimal geodesics on the round sphere connecting two opposite poles. ut

Consider again the Lagrangian L in Example 1.4

L(x,v) =
1
2
m|v|2 − U(x).

Following the terminology of classical mechanics we will refer to the quantities

pi : TR3 → R, pi = mvi

as the momenta.

H : TR3 → R, H(x,v) =
1
2
m|v|2 + U(x)

is called the total energy = kinetic energy + potential energy. Observe that

pi =
∂L

∂vi
, H =

( 3∑
i=1

vipi

)
− L.

This justifies the following terminology.

Definition 1.7. Suppose L : TE → R is a Lagrangian function on the vector space E = Rn. The
momenta of L are the functions

pi = pi(x,v) =
∂L

∂vi
, i = 1, . . . , n.

The total energy of L is the function

HL = HL(x,v) =
( n∑
i=1

vipi

)
− L. ut

Observe that the Euler-Lagrange equations can be rewritten as

ṗi =
∂L

∂xi
, i = 1, . . . , n. (1.8)

Theorem 1.8 (Conservation of Energy). Consider a Lagrangian L on the space E = Rn. Then the
total energy of L is conserved along any extremal of L. In other words, if t 7→ x(t) ∈ E is an
extremal of L then the function

t 7→ HL(x(t), ẋ(t) )

is independent of t. ut

Proof. We set H(t) = HL(x(t), ẋ(t) ). We have to prove that Ḣ = 0. We have

Ḣ =
d

dt

( n∑
i=1

vipi

)
− d

dt
L(x(t), ẋ(t) ) =

n∑
i=1

(
v̇ipi + viṗi

)
−

n∑
i=1

( ∂L
∂xi

ẋi +
∂L

∂vi
ẍi
)
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(vi = ẋi along the extremal)

=
n∑
i=1

vi
(
ṗi − ∂L

∂xi

)
+

n∑
i=1

v̈i
(
pi −

∂L

∂vi

)
.

The first sum is zero due to the Euler-Lagrange equations (1.8), while the second sum is zero due to
the definition of the momenta pi. ut

Theorem 1.9 (Conservation of Momentum). Suppose L is a Lagrangian on Rn such that for some
i = 1, . . .m

∂L

∂xi
= 0.

Then the momentum pi is conserved along any extremal of L.

Proof. This is an immediate consequence of (1.8). ut

We want to conclude this section with a more in depth look at the two conservation laws we
presented above.

Suppose L is a Lagrangian on the vector space E, L : TE → R. Following the terminology dear
to physicists, we define a symmetry of E to be a 1-parameter group of diffeomorphisms of E,

Φ : R× E → E, R× E 3 (t,x) 7→ Φt(x) ∈ E, Φ0 = 1E , Φt ◦ Φs = Φt+s.

This defines a vector field on E,

F : E → E, F (x) :=
d

dt
|t=0Φt(x).

We denote by F 1, . . . , Fn the components of F ,

F (x) =
(
F 1(x), . . . , Fn(x)

)
.

The symmetry Φt of E defines a symmetry Φ̂t of TE

Φ̂t(x,v) =
(

Φt(x), DxΦt(v)
)
,

where DxG denotes the differential at x of a smooth map G : E → E defined by

DxG(v) =
d

ds
|s=0G(x + sv).

We say that the Lagrangian L is invariant under the symmetry Φt if

L ◦ Φ̂t = L, ∀t ∈ R.

This is equivalent to the condition

d

dt
L(Φ̂t(x,v)) = 0, ∀t ∈ R, x,v ∈ R,

which further translates into
n∑
i=1

F i
∂L

∂xi
+

n∑
j,k=1

vjpk
∂F k

∂xj
= 0. (1.9)
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Example 1.10. Consider for example the symmetry

Φt(x1, . . . , xn) = (x1 + t, x2, . . . , xn).

The associated vector field is
F = (1, 0, . . . , 0),

and a Lagrangian is invariant with respect to this symmetry if an only if

∂L

∂x1
= 0,

i.e., L is independent of the variable x1. ut

Example 1.11. Consider the symmetry of R3

Φt(x1, x2, x3) = (x1 cos t− x2 sin t, x1 sin t+ x2 cos t, x3)

In other words, Φt is the counterclockwise rotation of angle t about the x3-axis. Then

F = (−x2, x1, 0),

i.e.,
F 1 = −x2, F 2 = x1, F 3 = 0.

A lagrangian L is invariant under this symmetry if

−x2 ∂L

∂x1
+ x1 ∂L

∂x2
= v2 ∂L

∂v1
− v1 ∂L

∂v2
.

If we use cylindrical coordinates

x1 = r cos θ, x2 = r sin θ, x3 = x2.

then
v1 = ẋ1 = ṙ cos θ − (r sin θ)θ̇, v2 = ẋ2 = ṙ sin θ + (r cos θ)θ̇

and we can express a lagrangian L(x1, x2, x3, ẋ1, ẋ2, ẋ3) in terms of (r, θ, x3, ṙ, θ̇, ẋ3).
In the cylicndrical coordinates the above symmetry has the simple expression

Φt(r, θ, x3) = (r, θ + t, x3)

and we deduce that L is invariant under this symmetry if

∂

∂θ
(r, θ, x3, ṙ, θ̇, ẋ3) = 0.

For example, if

L(x,v) =
1
2
m|v|2 − U(x)

then
|v|2 = |ẋ1|2 + |ẋ2|2 + |ẋ3|2 = |ṙ|2 + r2|θ̇|2 + |ẋ3|2,

and
L =

m

2
(|ṙ|2 + r2|θ̇|2 + |ẋ3|2)2 − U(r, θ, x3).

Thus L is invariant under this symmetry if and only if ∂U
∂θ = 0, i.e., the function U is roationally

symmetric with respect to the rotations about the axis x3. ut
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To any symmetry Φt of E with associated vector field F , and any Lagrangian L on E we associate
the generalized momentum

pΦ :=
n∑
i=1

piF
i.

Theorem 1.12 (Emy Noether’s Conservation Principle). If the Lagrangian L is invariant under
the symmetry Φ, then the generalized momentum pΦ is constant along any extremal of L. ut

The proof is a simple application of the Euler-Lagrange equations and the invariance condition
(1.9). For more details an applications we refer to [A].

2. THE DIRECT METHOD IN THE CALCULUS OF VARIATIONS

In the previous section we investigated functions depending on a single variable that are extrema
of some action functionals. We can define such action functionals for functions of several variables
but the resulting Euler-Lagrange equations are nonlinear, second order partial differential equations
and they are much more difficult to deal with.

Example 2.1 (Maxwell’s equations). For example, consider the Space-Time R1,3 with coordinates
(t, x, y, z). To an electromagnetic field in vacuum we can non-uniquely associate a (scalar) electric
potential U and a (vector) magnetic potential A = Axi + Ayi + Azk. These can be collected in a
single 1-form

ω = Udt+Axdx+Aydy +Azdz ∈ Ω1(R4).
Its exterior differential F = dω has a decomposition

F = dt ∧ (Exdx+ Eydy + Ezdz) +Bxdy ∧ dz +Bydz ∧ dy +Bzdx ∧ dy,
where

E = Exi + Eyi + Ezk = −∇U
is the electric field, and

B = Bxi +Byi +Bzk = ∇×A

is the magnetic field. The Minkowski energy (density) of F is

E(F ) := |E|2 − |B|2 = |Ex|2 + |Ey|2 + |Ez|2 − (|Bx|2 + |By|2 + |Bz|2).

One half of Maxwell’s four equations amount to saying that dF = 0. More precisely

dF = 0⇐⇒∂B

∂t
= ∇×E, div B = 0.

The other half,
∂E

∂t
= ∇×B, ∇×E = 0,

states that F is an extremal of the action functional

S(ω) =
∫

R4

E(F )dt dx dy dz. ut

Calculus of variations is often used in reverse. For example, if by some means we can conclude
that an action functional has minima, we can then conclude that the corresponding Euler-Lagrange
equations do have solutions. Fortunately we have such a very general existence principle.

Theorem 2.2 (Fundamental Existence Theorem). Suppose H is a separable real Hilbert space and
f : H → R is a bounded from below function satisfying the following additional conditions.

• The function f is convex, i.e., for any c ∈ R the sublevel set {f ≤ c} is a convex subset of H .
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• The function f is lower semicontinuous, i.e., for any real number c the sublevel set f ≤ c} is
a subset of H closed with respect to the norm topology.
• The function f is coercive, i.e., for any real number c the sublevel set {f ≤ c} is a bounded

subset of H .
Then there exists x0 ∈ H such that

f(x0) ≤ f(x), ∀x ∈ H. ut

The proof of this theorem is an application of some fundamental principles of functional analysis
and we refer to [B, Chap. III] for more details.

Let us explain how to use the above existence theorem to solve a famous problem in geometry,
namely the uniformization problem for Riemann surfaces. For details we refer to [N, §10.3.3]. Sup-
pose Σ is a compact, oriented surface of genus ≥ 2 so that the Euler characteristic is negative,

χ(Σ) < 0.

One possible formulation of the uniformization problem is the following.
For any Riemann metric g on Σ there exists a unique smooth function u on Σ such that the scalar

curvature of the metric gu = eug is equal to −1.
A direct computation shows that such a function u must be a solution of the partial differential

equation
∆gu+ eu = −s(x), (2.1)

where s(x) is the scalar curvature2 of the metric g, and ∆g : C∞(Σ) → C∞(Σ) is the Laplace
operator determined by the metric g. We can assume without loss of generality that the volume of the
initial metric g is 1. Note that the Gauss-Bonnet theorem implies that∫

Σ
s(x) = 4πχ(Σ) < 0. (2.2)

Let us look at a more general equation

∆gu+ f(u) = h(x), (Ef,h)

where f : R→ R and h : Σ→ R are C1-functions. Define the action functional

S = Sf,h : C1(Σ)→ R, S(u) =
∫

Σ

(1
2
|du|2g + F (u)− hu

)
dVg,

where F is an antiderivative of f . Arguing as in the proof of the Least Action Principle we deduce
that if u ∈ C1(Σ) is a minimum of S,

S(u) ≤ S(v), ∀v ∈ C1(Σ),

then u satisfies ∫
M

(
g(∇u,∇ϕ) + (f(u)− h)ϕ

)
dVg = 0, ∀ϕ ∈ C1(Σ). (2.3)

If additionally u is twice continuously differentiable, then an integration by parts as in the proof of
the Least Action principle shows that u satisfies (Ef,h).

To apply our existence principle we need first of all a convex functional. The functional Sf,h is
convex if and only if F (u) is convex, i.e., the function f(u) is increasing. This is certainly the case
if f(u) = eu. In this situation we choose F (u) = eu. Thus, in the sequel we will assume that f(u)

2A word of warning: the scalar curvature of a Riemann surface is twice its sectional curvature, whence the constant 4π
in the Gauss-Bonnet formula instead of the usual 2π.
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is increasing. The monotonicity of f has an added bonus. More precisely we have the following
comparison principle.

Theorem 2.3 (Comparison Principle). 3 If u, v ∈ C2(Σ) satisfy

(∆gu)(x) + f(u(x)) ≤ (∆gv)(x) + f(v(x)), ∀x ∈ Σ,

where f is a strictly increasing C1-function, then u(x) ≤ v(x), ∀x ∈ Σ. In particular, the equation
(Ef,h) admits at most one solution. ut

To apply the Fundamental Existence Theorem we need a Hilbert space. The correct Hilbert space
for our problem is the Sobolev space L1,2(Σ) defined as the closure of C1(Σ) in L2(Σ) with respect
to the norm

‖u‖1,2 :=
∫

Σ
(|du|2g + u2)dVg.

Unfortunately, for functions in u ∈ L1,2(Σ) the integral
∫

Σ F (u)dVg could be infinite. For certain
functions f there is a way out of this quandary.

For every r ≥ 0 we denote by fr the unique C1-function fr : R→ R such that fr is linear on the
interval [r,∞) while fr(u) = eu, ∀u ≤ r; see Figure 3. More explicitly

fr(u) =

{
eu, u ≤ r
er(u− r + 1), u ≥ r.

f (u)
eu r

r

FIGURE 3. The graphs of eu and fr(u)

Since the function eu is convex, we deduce

1 + u ≤ fr(u) ≤ eu, ∀u ∈ R. (2.4)

Denote by Fr the antiderivative of fr such that Fr(0) = e0 = 1. Then one can prove that there exists
a constant Cr > 0 such that

|Fr(u)| ≤ Cr(|u|2 + 1), ∀u ∈ R.
This proves that ∫

Σ
Fr(u)dVg <∞, ∀u ∈ L1,2(Σ).

We set Sr,h := Sfr,h. We have the following result.

3The comparison principle in the above form was first used by Guido Stampacchia. We refer to [N, §10.3.3] for a proof
which relies on some basic facts about Sobolev spaces.
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Theorem 2.4. Suppose that

h̄ :=
∫

Σ
hdVg > 0. (2.5)

Then for any r > log h̄ the functional Sr,h : L1,2(Σ) → R is convex, bounded from below, lower
semicountinuous and coercive4 and thus it has minima. Moreover, any function u ∈ L1,2(Σ) that
minimizes Sr,h is in fact twice differentiable and satisfies the differential equation

∆gu+ fr(u) = h(x) (2.6)

ut

The proof of this theorem is quite involved and we refer to [N, §10.3.3] for details.
Denote by ur the unique solution of the equation (2.6). We set C = maxx∈Σ |h(x)| and let K be

a positive number such that 1 +K > C. We view K as a constant function on Σ and we deduce

∆gK + fr(K) = fr(K)
(2.4)

≥ 1 +K ≥ h(x) = ∆gur + fr(ur)

From the comparison principle we deduce that ur ≤ K. Thus for r ≥ K we have

fr(ur) = eur .

Hence, if r > max(K, log h̄) the function ur is actually a solution of

∆gur + eur = h(x). (2.7)

We have thus obtained the following result.

Corollary 2.5. If h is a smooth function on Σ whose average is positive,∫
Σ
hdVg > 0,

then the equation
∆gu+ eu = h(x)

has a unique smooth solution. ut

From (2.2) we deduce that the above corollary is applicable to the function h(x) = −s(x) and we
conclude that the equation (2.7) has a unique solution.
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