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Abstract

Following the survey article by Griffiths and Schmid, I’ll talk about the existence of a nat-
ural mixed Hodge structure on the cohomology of projective varieties whose irreducible
components are smooth and meet at singular subsets that look like coordinate hyperplane
intersections. I will compute some simple examples and also use the Mayer-Vietoris sequence
to provide motivation for the existence of such a structure.

1 Motivation

Suppose that one wants to compute the cohomology of the subvariety of P
2 consisting of

two generic cubic curves (topologically each one is S1 × S1). Bézout’s theorem says that
these curves meet at 9 distinct points. Let V = V1 ∪ V2 be this variety, so that V1 ∩ V2 =
{p1, . . . , p9}, pi ∈ P

2.
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We use the Mayer-Vietoris sequence of the constant sheaf CV ,

0 → CV → i1∗ CV1
⊕i2∗ CV2

→ i12∗ CV1∩V2
→ 0

The sequence is not fine (or flasque, etc..), but it is exact so we get a long exact sequence
in cohomology:
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0 → H0(V, CV ) → H0(V, i1∗ CV1
⊕i2∗ CV2

) →α H0(V, i12∗ CV1∩V2
) →

H1(V, CV ) →β H1(V, i1∗ CV1
⊕i2∗ CV2

) → H1(V, i12∗ CV1∩V2
) → · · ·

Remark 1.1. Recall that for any closed subvariety i : Y ↪→ V and any sheaf F on Y we
have that: H i(V, i∗F) ∼= H i(Y,F). Indeed, we may compute cohomology using a flasque
resolution on Y . Its direct image is still flasque on V and is still a resolution since the
functor is exact on a sequence of flasque sheaves (the higher direct image sheaves vanish) [2]
(III.8 Cor. 8.3).

Now we see a short exact sequence that determines H1(V, CV ):

0 → coker α ∼= C → H1(V, CV ) → H1(V1, CV1
) ⊕ H1(V2, CV2

) → 0

One way of interpreting this sequence is that there is an increasing filtration:
0 ⊂ W0 ⊂ W1 = H1(V, CV ) where W0 = coker α and so the quotient W1/W0

∼=
H1(V1, CV1

) ⊕ H1(V2, CV2
).

The point of this is that we have a filtration on H1(V, CV ) whose associated graded spaces
are either the 1-st cohomology of a disjoint union of smooth complex projective varieties,
or are a quotient of the 0-th cohomology of a disjoint union of smooth (and 0-dimensional)
projective varieties, i.e. the points of intersection. Each of these spaces has a pure hodge
structure of weight 1 and 0 respectively.

Thus we have produced in a rough way a mixed hodge structure on the cohomology of
our variety with normal crossings. The goal of these notes is to explain how to do this in
general on a nice class of singular projective varieties, and also to do it in a functorial way.

2 Varieties with normal crossings

Now we’ll construct a functorial mixed hodge structure for arbitrary varieties with normal
crossings. But first, what is a “projective variety with only normal crossing singularities”?

Definition 2.1. Call a closed (not neccesarily irreducible) subvariety V ⊂ P
n+1 a variety

with normal crossings if

1. V = ∪N
i=1Vi with Vi smooth closed subvarieties.

2. Locally (in the metric topology) there is a 1 ≤ k ≤ n + 1 and an ε > 0 such that
V ∼= {(z1, . . . , zn+1) ∈ C

n+1| z1 · z2 · · · zk = 0, |zi|< ε}

Condition 2 just says that the every point of V has a neighborhood which looks like
some number of coordinate hyperplanes meeting at the origin. If the number is 1 then the
point is obviously a smooth point. Otherwise the singularities are fairly mild. Note that the
definition allows for at most (n + 1) hyperplanes to meet if the dimension of V is n.
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Example 2.2. The simplest example of a projective variety with normal crossings is two
generic lines in P

2 that meet at a point: {[x, y, z] | x · y = 0}. However the normal crossings
condition rules out the variety {[x, y, z] | x·y ·(x+y) = 0} which looks like three lines meeting
at the origin of an appropriate affine patch.

Normal Crossing Non−normal crossing

One consequence of the definition is that if we take any subset of indices {i1, . . . iq} ⊂
{1, . . . , N} then the intersection Vi1···iq := Vi1 ∩ · · · ∩ Viq is a smooth and projective variety.

The basic idea of the construction in section 4 is to compute the cohomology of V
by slicing it up into the irreducible components Vi whose cohomologies have pure hodge
structures. Then we reassemble V keeping careful track of the intersections of the Vi which
also have pure hodge structures, being smooth projective varieties. This is accomplished
with a spectral sequence which takes the place of the Mayer-Vietoris sequence used in the
initial example.

3 Spectral sequence of a double complex revisited

We’ll use one of the two spectral sequences associated to a double complex. Let {A•,•, d, δ}
be a first quadrant double complex of vector spaces over C (the convention here is that the
first “bullet” is the x-coordinate, second is the y-coordinate so that d does to the right and
δ goes upward).

Recall that there is a spectral sequence {E•,•
r , dr} which converges to the cohomology of

the total complex: TA := ⊕k(⊕p+q=kA
p,q) with differential D = d + δ). The data for this

spectral sequence is the following:

(E0 = A, d0 = d)
(E1 = H∗

d(A), d1 = δ)
(E2 = H∗

δ (H∗
d(A)), d2 = ?)

For this data the choice of filtration on A is by rows [3] (Thm 2.15): W̃r := ⊕i≥rA
∗,i. This

is a decreasing filtration. It induces decreasing and increasing filtrations on the cohomology
of the total complex which are denoted by W̃ and W respectively. The convergence of this
spectral sequence is guaranteed (since we’re assuming it is bounded) and the limit term is:
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Ep,q
∞

∼= gr
fW
q Hp+q(TA, D) = W̃qH

p+q(TA, D)/W̃q+1H
p+q(TA, D)

The decreasing filtration mentioned on Hm(TA, D) is defined to be Wr := W̃m−r so in
terms of W the limit term is:

Ep,q
∞

∼= grW
p+q−qH

p+q(TA, D) ∼= grW
p Hp+q(TA, D) (1)

Where now W is an increasing filtration. Note that we want the weight filtration of our
mixed hodge structure to be increasing.

Now, at several points we want to show that such a spectral sequence degenerates. This
will have to be done even in the case where the differentials dr have non-zero domain and
target, which means we need to understand better what the dr do.

Definition 3.1. ([4] Chapter III section 14) An element a ∈ Ap,q is said to survive to Er

if its class in Ep,q
i is a non-zero cocycle for di for all i < r

Recall that each Ep,q
i is a sub-quotient of Ap,q so the definition makes sense. It can be seen

that an element a as above surviving to Er implies that it can be “extended to a zig-zag”:

c2

c1

d r ([a])

cr−2

r−1
c

cr−1

d

δ

0a

=δ

where ci ∈ Ap+i,q−i and

da = 0

δa = dc1

δc1 = dc2

...

δcr−2 = dcr−1
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This zig-zag is important because it determines the differential at stage r: dr([a]) =

[δcr−1] ∈ E
p−(r−1),q+r
r . Most importantly the class of δcr−1 in Er doesn’t depend on the

choice of cr−1 up to the restriction: [δβ] = [δcr−1] for any β such that dβ = δcr−2. We’ll use
this fact at the end.

4 The Double Complex for H∗(V )

To use the spectral sequence above in the situation of a variety with normal crossings we
need to split up V :

Recall the that for any non-empty index set I = {i1, . . . , ik} we defined VI above as a
certain k-fold intersection of the Vi. Analogous to the Mayer-Vietoris construction we’ll look
at differential forms on the disjoin union of these intersections:

V (q) := t|I|=q+1VI

These varieties are smooth, compact, and have canonical Kähler structures, hence canon-
ical pure Hodge structures on their cohomologies.

Example 4.1. In the initial example, V (0) = V1 t V2, and V (1) = t9
i=1{pi}

Let Ap,q be the sheaf of differential p-forms on V (q). This sheaf of bi-graded vector spaces
has two natural differentials: d : Ap,q → Ap+1,q which is just exterior differentiation, and δ
the “combinatorial differential”. For an open set U and s ∈ Ap,q(U) let sI be the value of s
on VI . Then:

δ(s){i1,...,iq+1} =

q+1∑

l=1

(−1)ls{i1,...,îl,...,iq+1}
|Vi1,...,iq+1

Taking Ap,q := Ap,q(U) and the differentials above we get a double complex. The fact that
d2 = 0, δ2 = 0, and dδ + δd = 0 follows from the same arguments used in the Čech-deRham
double complex construction [4] (Example 14.16).

5 deRham’s theorem for varieties with normal cross-

ings

The first main step in producing a functorial mixed Hodge structure is to show that the
cohomology of V can be obtained from the total complex of the double complex described
above where U = V i.e. the one for global sections.

Let Ak = ⊕p+q=kiq∗A
p,q where iq : V (q) → V is the “gluing” map and D = d + δ. This is

a complex of sheaves and there is an obvious sequence:

0 → CV → A0 → A1 → · · ·
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where the first map CV → A0,0 = i0∗ (C∞(V1) ⊕ · · · ⊕ C∞(VN)) is the obvious sum of
inclusions and the rest are given by D.

The first goal is to show that this is a fine (and hence Γ-acyclic) resolution of the constant
sheaf on V .

Theorem 5.1. The sequence above is a resolution of CV by fine sheaves.

Proof. The fact that the sheaves are fine follows from the ordinary Poincaré lemma since the
sheaves are just sums of sheaves of differential forms on smooth manifolds.

Exactness is a little bit more tricky. We’ll follow [1] and use the spectral sequence to
prove that the cohomology of this complex vanishes when we look locally. So for the moment
let Ap,q := Ap,q(U) where U is an open set where V is diffeomorphic to the intersection of k
hyperplanes near the origin of C

n+1. Thus we have a bounded spectral sequence converging
to the cohomology of the total complex which is exactly our sequence above evaluated at U .

On the E1 page of the spectral sequence we take cohomology with respect to d, the
exterior derivative. The Poincaré lemma says that Ep,q

1
∼= 0 when p > 0. So on the E2

page we just need to take cohomology of the first column with respect to the combinatorial
differential δ, i.e. E0,q

2 = Hq((E0,•
1 , δ)). Now the formula for δ and the complex are exactly

what one uses to compute the cohomology of a (k − 1)-simplex. Hence the only non-zero
term is A0,0(U) ∼= E0,0

2
∼= C. So it is clear that the sequence is exact after taking into account

the image of the CV (U) term.

Now the homological machinery tells us that:

Corollary 5.2. (Normal crossing deRham theorem) H∗(V, CV ) ∼= H∗(A•(V ), D)

6 Mixed Hodge Structure on H∗(A•(V ), D)

The second main step is to put a functorial mixed Hodge structure on the cohomology of
the total complex (TA = ⊕kA

k(V ), D) above.
So let Ap,q := Ap,q(V ) be the initial data for our spectral sequence. Recall that we’re

taking E•,•
1 = H∗

d(A•,•), and E•,•
2 = H∗

δ (H∗
d(A•,•)). So on any column of the E1 page (p is

fixed) we have p-th d-cohomology groups of the varieties V (q) for various q. Thus column p
can be equipped with the classical pure Hodge structure of weight p, the filtration for which
we’ll denote by F k. There is also the filtration W̃ of the double complex which induces the
important filtration W of Hm(TA, D):

W̃ r = ⊕i≥rA
∗,i

F r = ⊕i,jF
rAi,j

The key observation is that to go from the E1 page, which we know has some kind of Hodge
structure on its columns, to E2 we need to take cohomology with respect to the combinatorial
differential. This differential consists of linear combinations of the pull-back maps coming
from inclusions of closed subvarieties. Thus it is a morphism of pure Hodge structure of
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weight 0! Hence all kernels and cokernels along a fixed column have induced pure Hodge
structure of the same weight as the column number, and hence the cohomology groups do
as well.

Here is the final step in the construction:

Theorem 6.1. ([1] Lemma 4.8)

1. The spectral sequence under consideration collapses at the E2 term.

2. The filtrations W•, F
• induce a functorial mixed Hodge structure on Hm(TA, D).

Proof. We have to show that dr = 0 for r ≥ 2. The argument for d2 is given in [1] but it is
no harder to give a general one.

Recall from the spectral sequence that if a ∈ Ap,q lives to Ep,q
r then there is a zig-zag

of elements ci such that dr([a]) = [δcr−1] where the class is taken in the appropriate group.
The goal is to represent this element by forms of different (p, q) type, since the purity of the
Hodge structure along each column will then imply that the cohomology class of δcr−1 is
zero.

The zig-zag implied that δcr−2 = dcr−1 and so δcr−2 is an exact form. Now we can assume
without loss of generality that cr−2 is a form of type (k, l) where k + l = p − (r − 1). Use
the ∂∂-lemma ([5] Prop. 6.17 or [1] Lemma 2.13) to write δcr−2 in two ways:

δcr−2 = dβ = dβ ′

where β has type (k − 1, l) and β ′ has type (k, l − 1). But now the classes of δβ and δβ ′

and δcr−1 are all the same in E
p−(r−1),q+r
r (see section 3) and their cohomology classes have

to be zero there since this space has a pure Hodge structure, δ preserves (p, q) type, and
β, β ′ have different types.

Thus the pure Hodge structure of weight p survives to Ep,q
∞ . We know that Ep,q

∞
∼=

grW
p Hp+q(TA, D) so the following corrolary is clear:

Corollary 6.2. The filtration induced by F • is a pure Hodge structure of weight p on
grW

p Hp+q(TA, D).

There are two further remarks to make:

Remark 6.3. The weight filtration we’ve constructed on Hm(V ) has the form:

{0} ⊂ W0 ⊂ · · · ⊂ Wm−1 ⊂ Wm = Hm(V )

Remark 6.4. Functoriality of this construction follows from the fact that a map between
varieties with normal crossings must map irreducible components to irreducible components,
and hence intersections of such to intersections of such, so there are induced morphism of
spectral sequences.
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7 Example computations

We can carry out this construction now without much trouble in low dimensions (here for
curves in P

2). We’ll see that the weight filtration and Hodge filtration it produces really
coincide with what the Mayer-Vietoris sequence gives in the initial example of section 1.

Example 7.1. V = V1 ∪ V2 where Vi
∼= S1 × S1. V (0) = V1 t V2 and V (1) = {p1, . . . , p9}.

Here are the spectral sequence pages: (places not shown are zero, recall that columns are
indexed by p, rows by q)

E•,•
0

0 0 0
Ω0(pt)⊕9 Ω1(pt)⊕9 Ω2(pt)⊕9

Ω0(V1) ⊕ Ω0(V2) Ω1(V1) ⊕ Ω1(V2) Ω2(V1) ⊕ Ω2(V2)

E•,•
1

0 0 0
H0(pt)⊕9 0 0

H0(V1) ⊕ H0(V2) H1(V1) ⊕ H1(V2) H2(V1) ⊕ H2(V2)

E•,•
2

0 0 0

C
9 / C∆

∼= C
8 0 0

C−∆
∼= C H1(V1) ⊕ H1(V2) H2(V1) ⊕ H2(V2)

Now, to find Hm(V, CV ) we just sum along the appropriate diagonal. For instance
H1(V, CV ) ∼= (C9 / C∆)⊕ (H1(V1)⊕H1(V2)). To find the induced filtration Wr we just take

W̃ r (everything on E2 above and including the r-th row), re-index based on what group Hm

we’re looking at, and intersect with the m-th diagonal. For instance W0H
1(V ) ∼= C

9 / C∆
∼=

C
8 which is a quotient of H0(pt)⊕9 and has the induced pure Hodge structure of weight 0.

Also, W1H
1(V ) = H1(V ) so the associated graded piece is: grW

1 H1(V ) ∼= H1(V1) ⊕ H1(V2)
which has the pure Hodge structure of weight 1.

Thus the weight filtration here is just the one coming from the Mayer-Vietoris long exact
sequence.

Example 7.2. The second example is that of three lines (P1’s) which intersect in a triangle
pattern in P

2.

1

3

2
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Here we have V = V1 ∪ V2 ∪ V3, Vi
∼= P

1. Also, V (0) = V1 t V2 t V3, V (1) = {p1, p2, p3},
and V (r) = φ for r ≥ 2.

E•,•
0

0 0 0
Ω0(pt)⊕3 Ω1(pt)⊕3 Ω2(pt)⊕3

Ω0(V1) ⊕ Ω0(V2) ⊕ Ω0(V3) Ω1(V1) ⊕ Ω1(V2) ⊕ Ω1(V3) Ω2(V1) ⊕ Ω2(V2) ⊕ Ω2(V3)

E•,•
1

0 0 0

C
3 0 0

C
3 0 C

3
Here we’ve used H1(P1) ∼= 0, and H i(P1) ∼= C for i = 0, 2

The only non-zero combinatorial differential at this point is δ : C
3 → C

3 in the 0-
th column. These two spaces and the differential between them is exactly the simplicial
complex of the 1 skeleton of a 2-simplex. Hence ker δ ∼= C and coker δ ∼= C.

E•,•
2

0 0 0
C 0 0

C 0 C
3

Summing along the diagonals of the E2 page we see that

H i(V ) ∼=





C i = 0
C i = 1
C

3 i = 2

It is immediately clear that H1(V ) could not have a pure Hodge structure of weight 1
because its dimension is odd. We see that the weight filtration on H1(V ) has the form:
{0} ⊂ W0 = W1 = H1(V ) meaning it does have a pure Hodge structure but of weight 0!
These 1-cocycles of weight 0 are essentially combinatorial since they come from the “nerve”
of the intersection lattice of the lines Vi.

The last statement in example 2 is true in general about the cocycles which live in
W0H

m(V ) where V is a variety with normal crossings: Let Γ(V ) be the nerve of the in-
tersection lattice of the irreducible components of V (i.e. it is a simplicial complex where
0-simplicies correspond to the Vi, 1-simplicies correspond to non-empty 2-fold intersections,
etc..). Then

W0H
m(V ) ∼= Hm(Γ(V ))

One can find this statement and many other interesting corrolaries in [6] chapter 4, section
2.8.
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