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ABSTRACT. A gentle introduction to stratified Morse theory and Kasdias conormal cycle.
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1. EULER CHARACTERISTIC AND CLASSICALMORSE THEORY

SupposeM < FE is an embedding of a compact, connected, smooth orientedimensional
manifold M in the finite dimensional vector spaée

Every linear functior € E* = Homg(E, R) defines by restriction a smooth functigf, on M.
The level setsVi_; = gj‘vjl(t) can be visualized as the intersection\éfwith the hyperplang = ¢. A
pointz € M is critical for &), if the hyperplang = ¢(x) is tangent taV/ atz, i.e. T, M C £-1(0).

For generict the restrictiont;, is a Morse function on/, i.e. all its critical points are nondegen-
erate. Recall that the critical poipt of a smooth functiory is called nondegenerate if we can find
local coordinate$zy, - - - , x,,) on M nearp, such that

zi(po) =0, f(x1,-- ,mm) = flpo) —af — -+ —a} + 234+ + 20,

The integer\ is independent of the above choices of coordinates. It isd#heMorse index off at
po and it is denoted by (pg) = A(f, po)-
Denote byCy C M the critical set of,;. ThenC is finite and we denote by

D¢ =¢(Ce) CR
the set of critical valuesDy is a finite subset oR so thatR \ D is a finite union of open intervals.
Mo ={xeM; ¢ <t} x(t):=x(Mzu)

Consider for example the situation depicted in Figiurd he critical seCs and the discriminant set
D, are marked in red.

The first theorem of classical Morse theory implies that timecfion x(¢) is constant on each
connected component &\ D, i.e.

xX(M<,) = x(M<p) ifthe interval[a, b] does not intersect the discriminabt.
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FIGURE 1. The height function on a genus two surface.

Thus for everyt € R the limits x_(¢) = lim,_,,— x(s) and x4+ (t) = lim,_,;+ x(s) are well defined
and

5(t) = x+(t) = x—(t) =0, VtE€R\ Dx.
We deduce that
X(M) = x(00) = x(~00) = > 4(r).
TED;
Observe that for € D, we have

o) =x(T+e)—x(T—¢), W0<exk1,
ie.
5(7') = X(Mr—i-a) - X(M<T—€) = X(H.(M<T+€7 M<T—€) )

Let C¢(1) = Ce N {&u = 7} denote the set of critical points ¢f, with critical valuer. In Figurel
We see thaC¢(4) consists of three critical points.

By choosinge > 0 sufficiently small we can covef’(7) by finitely many disjoint open balls
B(x), x € C¢(7) such that

Bx)C{r—e<éu<éu+el, B_(z):=B@)n{éy <t—¢/2} #0, V.
The second fundamental theorem of classical Morse theatgsst

H*(Merie, Moy )= @ H*(B(x),B-(v)),
x€C¢(T)

where each paifB(z), B_(x) ) deformation retracts to the paiD*(*), 9DA®) ), Here)(x) denotes
the Morse index of the critical point and D* denotes the closed-dimensional ball.
We deduce that

S(r)= > x(DX? D) = 3" \(D®) —x(dDA) = N (—1)A),
x€C¢(T) x€C¢(T) z€C¢(T)

Hence we deduce

N(M) = 3 (~1,

CCEC,E
Let us rephrase the above equality. Denote by

(e,0) : E X E* - R
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the natural pairing between a vector space and its dual. i@@Emthe cotangent bundlE*FE of F.
Recall that we have a natural pairing
(0,0) . TEXT'E —=Rp:=RxE, ((y,2),(&2))=((v,6),2).
This induces a pairing
TE’M XT*E’M—> KM
Define theconormal bundlef the embedding/ — X as the subbundI€;, E of 7 E | ; defined by
the condition
(& z) e TyE = (v,€) =0, Yve T, M.
We regardl’;, E as a submanifold of *E. Observe thatlim 7}, £ = dim E = 1 dimT*E. The
total space of the cotangent bundléE caries a natural symplectic form
wo = da.

If we choose linear coordinatés!, - -- , z"V) on £ and we denote by, --- ,&y) the dual coordi-
nates onk* then ‘ ‘
o= Zéidxl, wo = Zd&- A dxt.
7 7

We orient the total space of** E using the volume form

(_1)N(N—1)/2
N!

ThenT}, E is a lagrangian submanifold af*E, i.e. wy restricts to the trivial form oy, E. An

orientation onk induces a natural orientation drf, &/ defined as follows. Lep € M and choose

Q:i=d&y A ANdéy Ndzt A -+ NdaN = Wi

local coordinates:!, - -- , 2 on E nearp such that

2(p)=0, Vi, M={a! =... =2VN"™ =0}
and the orientation of? is defined bydz! A --- A dz™V. We obtain coordinate&y, - -- ,&y) in the
fiber 7); £. Then (zb, - 2™ &y, -, En) define local coordinates dfiy, £ and we orient this

manifold using the volume form
dEi A~ NdEn—m AdzN TN A daY.

Suppos&® ¢ E*. We view¢? as a smooth function of. Its differential is a section df™* £ and its
graph
Teo = {(d¢” |s,2) € E* x E=T"E }.
is a Lagrangian submanifold @f* £. It carries a natural orientation induced by the orientatd E.
Observe thap, € M is a critical point of¢” |5, if and only if P := (¢, po) € T'eo N T}, E.
We want to prove that iby is nondegenerate as a critical point of indethenI'o intersectsl’y, £
transversally in P,. Set for simplicityA = Ty E andl’ = I'wo. Sincepg is a nondegenerate critical

point of £ we can find local coordinateg!, - - - , =) in E nearp, such that:’(pg) = 0, Vi, such
that if we set

1 wN—m)

_ N—m+1
xp = (z,-, T

) ‘TOZ( 7'”7xN)

thenM = {z;, =0}

0(x) = o) + (a+, L) + %(el(acN_m“)2 +od o F e (2M)?)
2N Y () -+ 2N () 4 q(zh) + O(3),

IThis differs from the two different orientation conventsoin [5] and [L0).
2The converse is also true



4 LIVIU I. NICOLAESCU

wheree; = £1,

#{J; € =-1}=A,
& € E*\ 0 vanishes alond},, M, ¢; are linear functions in the variables , ¢(z, ) is quadratic in
the same variables. Then ndaythe graph ofi¢® admits the parametrization

O dq
0 N—m+ J
fk—ck‘f‘E z j—aw +—5k+0(2)’ k=1,--- ,N—m

j=1
EN-mij = e T 4 (2T +0(2), j=1,--,m
zt =2t Vi.
An oriented basis df i, I'co is given by the vectors
— % -

oxJ

dén
U=|91 |, j=1-,n

| 55 |
An oriented basis df'p, A is given by the vectors
agj if ] < N—m
Oy if j>N-—-m ~

V; =

We want to comput& (Uy,--- ,Un, V1, -+, VN ). Denote bysS,, the diagonaln x m matrix with
entriese;. We deduce

* * IN—m 0
* Sm 0 0
Q(Ul,"',UN,Vl,”’,VN):det
IN—m 0 0 0
L O Im @ 0 I |
| * * IN—m ]
’ * : S
= det « LS 0 = (_1)N(N—m) det
| Inom 2 0 0

= (—)NW=m4mN=m) qet 5, = (=1)N """ det S, = (=1)N "™ (=1)*,

Let us perform a few cosmetic changes. Observe thetif?, p) denotes the index of as a critical
point of (—&£Y) then\(—£%,p) = m — (€9, p) so that

() = (N,
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If we consider the antipodal mép: T*E — T*E, (§,z) — (=&, z) we deduce that
#(T_eo N Apy, P§) = (—1)NHAER)
and sincelimI' = dim A = N we conclude
#(Ay NT_go, P) = (~1)M€70).
We obtain the following equality
X(M) = #(Ay NI'_¢), forany generic linear mag : £ — R. (1.2)

2. WEYL TUBE FORMULA

SupposeV! — E'is as before but we assume additionally théatis equipped with an Euclidean
metric go. go induces a metrig on M. We setc = N — m = the codimension of\f in E. The
normal bundle of the embedding — FE is the quotient bundle

TyE = (TE)|y /TM.

SinceT'E is equipped with a metric we can identifyy, £ with the bundleN(A/) — M, the orthog-
onal complement of' M in (T'E) |5;. The metric onE' defines a function

p:TE =R, p(Y,z)=Y|g.
We set
Dy(N) :={p e N(M); p(p) <r}, Sy(N):=0D,(N)={peNM); plp)=r},
SHTE)={pcTE; plp)=r}.
We have an exponential map
exp: TE — E, exp(y,x) =z +y.
Define the tube of radius > 0 aroundM to be the closed set
T, (M) := {z € E; dist(z, M) <r}.
Forr > 0 sufficiently small we have a diffeomorphism
exp : D (N)—T,.(M). (2.1)

Let Vas(r) = Vol(T,(M)). We would like to understand the behaviorlgf; () asr “\, 0. Denote
by dvg the volume form onE. Using the identification4.1) we deduce

VM(T):/( )dvE:/ ( )exp*dvE.
r(M (N

In more down-to-Earth terms, we are using normal (Fermiydioates neai/ to compute the vol-
ume of the tube.
Let us first understand th&-form

Qp = exp*dVp € QV(TE).

Choose oriented, orthonormal coordinates- (z!,--- ,z"V) on E. They induce oriented orthonor-
mal coordinatey” = (Y'1,--. ,Y'V) in each tangent space. Then
N

dog =dz' A ANdz, Qp = exp* dog = /\(dacj + dY7).
j=1
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Denote byo, the radial vector field along the fibers B
1 .
P
Thend, 1 dp = 1 and we set
op = 0,10
so that
Qp=dpNopg.

VM(T):/ QE:/ dt/ oE
D, (N) St(N)

Consider the radial projectian : S1(TE) — S(F) and sev g, := v; (0 |s,(rr)) We conclude

VM(T):/DT(N) QE_/ dt/31 (2.2)

S = 1Y:(sl,--- ,s™).

Then

Set

Observe thad), 1 dY"* = s* so that

N
/\ (da? + dY7)

:Z(_ L k/\ (da? + dY7) :Z 1)k 1sk/\(d:cj+pdsj+sjdp)

k J7#k k J7#k

N-1
OFt = Z(—l)k_lsk /\ (dl‘j + tdsj) = Z tjnN_l_j,

k j#k j=0
wheren;, € Q"~1(S1(TE)) is a form independent dfof degreek in the variablesiz and of degree
N — k — 1in the variablesl/s. We denote by, the volume of the unit-dimensional ball and by
the "area” of its boundary. More explicitly

Hence

/2
YT T2+ 1)
where for every positive integgrwe computd’(j/2) inductively using the formulee

N(1) =1, I(1/2) =72, D(z+1) = 2l(x).

o4 = dwy,

We normalize

. 1 1
We deduce
N-1 .,
Vir(r) = / (/ V-1 ]>t3dt ZAk wy_ptVF
iZoJo NSt
where
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Observe that

/ =0, if k>m
S1(N)

so that

Vi (r) = Z Ap(M)ENF = ZAm_j(M)wc+jtc+j, ¢ =N —m = codim M.
k=0 7=0

Example 2.1.(a) Supposé’ = R? with Euclidean coordinates:, y). In each fiber of E we choose
polar coordinate$r, #) so that

exp(r,0;xz,y) = (x +rcosb,y + rsinf), exp*dvg = d(x + rcos@) A d(y + rsinf)
Or Jexp® dvg = (cos Ody — sinOdz) + pdb,
so that ) )
= i(cos Ody — sinfdx), 1y = Ed@.
O

The integrals of the formg, over S;(N) can be expressed in terms of the second fundamental
form of M — FE. This is also known as th&hape operatoand it is a bilinear map

S:TMxTM — N
defined as follows. Given vector field§ Y tangent tal/ we denote bW%}Y the Euclidean covariant
derivative ofY” along X
V3o Y70, = (X'0,Y7)0;.
We have an orthogonal decomposition%fY into a tangential and a normal part
VEY = (VEY)™ + (VEY).
Then
S(X,Y) = (VEY)”.
The shape operator enjoys several nice properties {s€4.p.4]).
Proposition 2.2. (a) S is symmetric in its arguments, i.e.
S(X,Y)=5(Y,X), VX,Y € Vect(M).
(b) Forall N € C*°(Nys) and X, Y € Vect(M) we have
9o(S(X,Y),N) = go(VEN,Y).
The shape operator is related to the Gauss mgp: M — Gr,,(E) = the Grassmanian of
m-~dimensional subspaces i
M > p—T,M € Gry,(E).
For am-dimensional vector spadé C E the tangent space of the Grassmaniall & described by
Ty Gr,,(E) = Hom(V, V4).
The differential app € M of the Gauss map can therefore be viewed as a map
DT : TyM — Ty Grp(E) = Hom (T, M, N,).
One can show that for every,Y € T, M the linear mapDI',(X) € Hom(7,M,N,) is given by
Y — Sp(X,Y).
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Theorema Egregiumshows that the shape operator determines the Riemann tr(3dr ¢) via the
formula
Rijie = g(S(i,0r), S(05,00) ) — g(S(0i,0r), S(0;,0k))
For any local coordinate systefn®) on M.
The formsn, can be explicitly expressed in terms of the shape operatorerecisely, for every
unit normal vectot’ € N, we obtain a symmetric bilinear form &, M

Sz X,Y) =go( S(X,Y),D).
Using an orthonormal basis df,A/ we can identify it with a symmetric matrix. We denote by
P, (t) = det( 11,a + tSy) its characteristic polynomial. Then
Qp = exp*dvg|n= Pl,(p)pc_ldpdﬁdVM,

wheredv denotes the volume form on the unit sphéig¢)N,). We obtain (see the beautiful original
source [L2] for details)

Va(r) = / Qp = ch+2k7"c+2k Pr(R)dVr,
Dy (N) k>0 M
ZAQk(M)

whereP;(R) is auniversaldegreek-polynomial in the curvature tensOR;;x,). Hencep, (M) is an
intrinsic invariant of the Riemann manifold/, g). We have an equality

1
(M, g) = / Mim—2k-
Oc+2k J S, (N)

Note that the quantity, (/) is measured imeters™ 2, For this reason we introduce the notation
:U‘m—Zk(Mv g) = /\Zk(M7 g)

We can then rewrite

VM(T) = Z ,U'm—Zk(M7 g) - vol (BC+2k(T) )7
k>0

where B?(r) denotes the-dimensional Euclidean ball of radius
There are some old acquaintances amongst the quantjti@s, g). For example

(M, g) = vol (M, g).
If m is even,m = 2mg then®,,,,dVy € Q™(M) is the Euler form determined by the metric and the
Gauss-Bonnet theorem implies
po(M, g) = x(M).
In general we have

1
m— Ma = - av; )
pm—2(M, g) i /MS M

wheres : M — R denotes the scalar curvature(df, g).

The quantitiesu;, are related by the so calledproducing formulee Denote byGraff°(E) the
Grassmanian ddffinesubspaces i of codimensiorn:. More precisely we have the following result
(see [])

Nk(M) = A(N,m,c,k)~/ Nk—c(MmP)‘dPL
Graff¢(E)
where|dP| is aO(E)- invariant measure oGraff’(E). If we setc = k we deduce

M) i= AN,y [ (M P)laP.
Graff®(E)
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We can interpreu; (M) as an average of the Euler characteristics of the intecsexctf M/ with
codimensiork affine planes. If we také = dim M we deduce

Vol(M,g):A(N,m)/ x(M N P)|dP|.
Graff™(E)

The intersection ofl/ with a generic codimensiom affine subspacé’ is a finite set so that
xX(MNP)=|MnP|.
The last formula can be rewritten as

vol (M, g) = A(N,m)/ MO P|[dP|.
Graff™(E)
This generalizes the classical Crofton formula for curveR3.
As explained in ], we can normalize the invariant measuresiraff™ (E) in a very clever way
so thatA(N,m) = 1.

3. SNGULAR MORSE THEORY

To understand how to extend the previous facts to more saangiiuations we need to produce
more flexible definitions of the notions of critical pointsdeeritical values.

We will begin by defining the notion of regular value. This lwéquire the notion ofocal coho-
mology

SupposeX is a locally compact metric space, afids a closed subset. To eliminate many patho-
logical phenomenave will assume thaX and S are locally contractible i.e. every point admits a
basis of contractible neighborhoods. This condition iegplior example thak and S are EN R’s
(Euclidean Neighborhood Retract). We denoteibyS — X andj : X \ S — X the natural
inclusions We define the local conomology.¥falong.S (with real coefficients) to be

HY(X) := H*(X,X \ S;R).

For every topological space we denote byH*(Y') its (éech) cohomology with real coefficients.
A cohomology clasg € H*(X \ S) is said topropagate across if it belongs to the image of the
morphism

JPiH*(X)— H*(X\S).
Observe that we have a long exact sequence (calleadjo@ction sequenge

o HEX) D mE X\ ) - HEY(X) - (3.1)

We see that a cohomology classs H*(X \ S) propagates acros$ if and only if 5(¢) = 0 €
H;“(X). We can the regard the local cohomologyXflong.sS as collecting the obstructions to the
propagation acrosS of the cohomology classes in the complement off the inclusion; induces an
isomorphism in cohomology thel g (X') = 0. This is the case if for exampl& \ S is a deformation
retract ofX.

Observe that il is an open neighborhood 6fin X thenX \ V is a closed subset iX \ S and
we obtain an excision isomorphism

H§(X) = H*(X, X\ §) = H* (X \ (X \V),(X\ S\ (X\V)) = H*(V,V\S) = H5(V).

This shows that the local cohomology reflects the local biehaf X nearS and it is blind to what
is happening further away froisi.
We can now define thecal cohomology sheavésy to be the sheaves associated to the presheaves

Ur— Hy(U).
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If + € X andU, (x) denotes the open ball of raditign. centered at: then for everym < n we have
morphisms

Hg‘mUm(Um) - Hg”mUn(Un)
and then the stalk df(, at is the inductive limit
I (2) = lim Hiny, (U,)
Observe that sincé is locally contractible we have
Hg(x) = 0forevery z € (X \ S) Uint (S5). (3.2)
We set

xs(X) =Y (~DFdim H§(X), xs(z) =) (~1)" dim ().
k k>0

Example 3.1. AssumeX is the planar three arm star depicted in FigRiend P, is the center of the
star. Assumes = {Fy}. In this case we have

H3(Po) = Hpy (X) = Ho(X, X \ y)”
and we deduce
HE(Py) =0, Hy(Ry) 2R?, xs(Py) = x(X, X\ By) = x(X) — x(X \ Py) = —2.

FIGURE 2. A planar star.
O

An iterated application of the Mayer-Vietoris sequencevshthat the local cohomology sheaves
determine the local cohomology alo®g More precisely we have a Grothendieck spectral sequence
converging toH g(X) whoseE, term is

ESY = HP(X, HY).
If it happens that the local cohomology sheaves are supbbytdinite sets then
HPUX, HE) =0, Vp>0,
so that the spectral sequence degenerates &itherms. In this case we have

HY(X) = HO(X, 3%) = @) Hi(w). (3.3)
zeX
In particular
Xs(X) =" xs(a). (3.4)

zeX
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Observe that if the local cohomology sheaves are trivial #weis the local cohomology. The converse
need not be trué.

Before we proceed with our search for a new definition for alle@gvalue let us mention that if
V = @,ezV,, 1s a graded vector space we denotdfy] the shift by

Vipln = Vatu
We will identify R with the graded vector spadé defined by
V=0, Vn#0, V=R
Then
R[—pln =0, Vn# pu, Rl—pl, =R

SupposeV! is a smooth manifold and : M — R is a smooth function. For everye R we set
Ms. = {f > ¢}, M=<¢:= {f < c} etc. Ifcis aregular value of then the level seff = c} is a
smooth hypersurface. Moreover, every paintn this level surface admits a fundamental system of
neighborhood#/,,(x) such that the sét,, N {AM<¢} = U,, \ M>. is a deformation retract @f,,. This
implies

H[.]7L0MZC(UTL) = 0

These non-obstructions to local propagation are patctgether in the next result.

Theorem 3.2 (Kashiwara’'s Lemma) Supposei’ L, R is a continuous function on the compact
spacekK. If for everyp € K we have

Hics pipy (P) =0
then for every € R the inclusion induced morphisi®(K) — H*(K<!) is an isomorphism.

For a proof of this result we refer t@[§2.7]. The above result shows that if the inter{@lb]
contains no critical value of the for everya < s < t < b the inclusion induced morphism

H*(M<") — H*(M~*)
is an isomorphism. Thus we obtain a fact we knew already timrvwgoing through regular values

the sublevel sets do not undergo changes detectable haicallpg
Suppose now that the level set contains a critical poiotindex A. Denote bylV,” the unstable

manifold ofp. for a small coordinate ball aroundb we havel/ N W~ = D* = open)-dimensional
disk centered gt and we have an isomorphism

HYy_ (U) = H*(U,US) = H*(D*,D*\ p) = H},,(D") = R[-A].
The critical pointp distinguishes itself from other points on the level §¢t= f(p)} by the condition
j_CR/IZf(p) (p) 7 0.
We will use this as our criticality test.

Definition 3.3. SupposelM is a compact connected (subanalytic) subset in an Euclisigace and
f M — Ris smooth function. A poinp € M is said to becritical for f if

Hor ., (P) # 0.
We set
6(f,p) = x(Hir. ;,, (P))-

Scan you find and example?
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Observe that any relative minimum ¢fis necessarily a critical point. Suppo3£is as above and
f : M — R is a smooth function with finitely many critical points, - - - , p,, with critical values
c1 < --- <¢,. Forthe simplicity of the exposition we assume that thecaitvalues are distinct, i.e.
there is at most one critical point on each level set.

Observe that any relative minimum ¢fis necessarily a critical pointc; must be the absolute
minimum of f so thatd/ <! = (). From Kashiwara’s lemma we deduce

X(M) = x(M=7F¢)
and we deduce
X(M) = x (M=) 4x(MS2) = x (M) -+ x (M=) = x (M) 4 x (M <F) — x (M=)

=0
::X(JJO(A4<C27A4<01))4_...+.X(]{0(A4<CV7A4<CV71))_+ X(A4cy+s7A4<cu))
= ZX(M<Ck+€7M<Ck )

k=1

Due to Kashiwara’s Lemma we have
KO M) = o (i, (M)

Since

() M=t = M=c
e>0

we deduce

Hiy (M=) =lim HY (M) = Hy  (MS4F9), V0 <& < et — ¢
Now observe that the restriction &€, on M <ck js supported exactly at the poipt so that
¢k

L C (3'3) (]

Hence
X(M<Ck+€’ M<Ck ) — XMZ% (pk)
and

X(M) = X, (pe) = Y 6(f,p).
k=1 k=1
If M is a compact smooth manifold aid is a Morse function then

Xfze(pi) = (1),
where)\; denotes the Morse index pf.

Example 3.4. SupposeC’ C FE is a simplicial complex linearly embedded in the Euclidepace
E. We denote by (C) the set of vertices of'. Suppose€ : £ — R is a linear function in general
position with respect t@’, i.e. its restriction to the set of vertices is one-to-onéei the set of
critical points of¢ is contained in the set of vertices, and in fact there is attimos critical point in
each level set.

For eachp € FE we denote b)ng the half space

HS,={veE: (v,§) <} ={<&p)}
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Denote byB.(p) the open ball of radius centered ap. Then for every vertex of C we have
Hesep)(p) = H*(B:(p) N C, B:(p)) NCNHS,), V0<e< L

Denote bySt(p), the star ap which is the union of all simplices 6" which havep as a vertex. The
setB.(p) N C = B.(p) N St(p) deformation retracts tp and we deduce

Xezep) = X(Be(p) N C) = x(B:(p) NC N HE,) =1—x(St(p) N HE, ).

For every simplex in St(p) we denote by/_ (o) the collection of vertices of o such that(v) <
¢(p). We denote by, (o) the collection of vertices # p of o such thatt(v) > &(p). Projecting
from the face[V, ()] of o spanned by, (o) onto the face spanned hyand V_(o) we obtain a
deformation retraction (see FiguBg

D, : 0 — [p,V_(0)] = the face ofr spanned by{p} UV_(0)
This induces a linear deformation retraction
DU:UHHSP [,V]ﬂng

FIGURE 3. The local homotopic structure of critical sublevel sets.

If we denote bySt~ (p) the union of all simplices of’ contained |nH WhICh havep as a vertex.
If o is a simplex inSt~(p) andv # p is a vertex therg(v) < &(p) smceg was chosen in general

position.
Hence we obtain a deformation retract$f(p) N H§<p onto St~ (p) \ p. Denote byLk™(p) =

Lkg(p) the descending link op defined as the simplicial subcomplex 8t~ (p) spanned by the
verticesv # p. ThenSt~(p) — p deformation retracts tak~ (p) and we deduce

X(St(p) N He,) = x(LE™ (p)).
Observe thal.k~ (p) consists of the simpliceld_ (o)], whereo is a simplex inSt~(p), other tharp.

Hence _ _
XIE ()= Y (pImel=— R (aytime
oeSt~ (p\[p] o€St= (p)\[p]
so that . .
Xezep) = L+ Z (—ndme = Z (—1)dme —. q(¢,p).
o€St=(p)\[p] €St (p)
We deduce
X = Y al&p)= Y (1-x(Lk(p)).
peV(C) peV(C)

The first equality was proved by T. Banchoff i using a direct elementary method.
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For example, consider the simplicial complex depicted iguké 2 where the horizontal dotted
lines depict the level sets containing the vertices. TheiEcharacteristic of the star &s— 3 = 1.
Upon inspecting the figure we deduce

Lk~ (P1) = Lk~ (P,) = 0, Lk~ (Pp) = {P1, P2}, Lk (P3) ={Fo}

so that

G(Po) == G(Pl) == 1, G(Po) == —1, a(Pg) =0
so that

a(Py) +a(P1) + a(P2) + a(Ps) = 1 = x(C).
Observe thatP; is an absolute maximum of the height function yet it is notitical point in our
sense. In fact it” is a convex simplex then a generic linear functfowill have exactly one critical
point onC, the absolute minimum. The hyperplafie- £(p) passing through the absolute minimum

p will be a supporting hyperplane @éf. In particular, a point could be critical fgf but it may not be
critical for — f. O

4. THE CHARACTERISTIC VARIETY AND THE CONORMAL CYCLE OF A SIMPLCIAL COMPLEX

SupposeX is a compact simplicial complex inside the Euclidean vespaceF.
The characteristic variety of is the closed subset of the cotangent buidié’ = R* x FE of £
which is the closure of the set
{(¢,p) € E* x E; pisacritical point of(—¢) | x }.
The last condition signifies thatadmits a fundamental system of neighborhobgsn X such that

H*(Upn, Uy, N{§>&(p)} #0, Yn.

Loosely speaking this means that the regionn {¢ > £(p)} is structurally different front,,. We
set
Chy(X) :=ChMX)NT,E.

Example 4.1. SupposeE = R? equipped with the standard Euclidean metric so we will idgnt
E* = E. AssumeX is a horizontal line segment. Denote By(X) the tube of radius aroundX

T (X) :={z € E; dist(z,X) <r}.
For eachy € 0T, (c) there exists a unique point¢) € X such that

dist (¢, w(p) ) = r.

Denote byR, the ray which starts at(q) and goes through (see Figured). We can regard it as a
ray in TR = T \R?. Then
chx)= |J R,
qedT,(X)
We see thaC'h(X) is homeomorphic to the "aurdht (T,) O

Motivated by this example we introduce the subbundl¢T E*) — E of T E* of radiusr closed
disks and we set
Ch,(X)=Ch(X)N D, (TE").
If X is as in the above example théth, (X) = T, (X).
We have the following elementary facts.
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FIGURE 4. The "aura” of a straight line segment in the plane

Proposition 4.2. (a) (0,p) € Ch(X), Vp € X.
(b) If (¢,p) € Ch(X) then(t&,p) € Ch(X), Vt > 0. (We say thatUh(X) is a conic subset of the
cotangent bundle.)

(c) If o is a simplex ofX, p is an interior point ofoc and (£,p) € Ch(X) then the simplex is
contained in the hyperplang = £(p). Equivalently this means thét, p) belongs to the conormal
bundleTy;,  E.

O

Given a pointp € X there exists a unique simplexsuch thap € Int 0. Suppose the simplex
is a face of the simplex (written o < 7). We set

Ao-(p) :={ & € E*; the hyperplang = &(p) containsr }

=~ {the set of lines through perpendicular to- },

A(p) = Ao(p) :== Ao (p),
Chy(X, 1) := Chyp(X) N Ay~ (p).
Observe thal, (p) can be identified with the fiber atof the conormal bundlé;:, _E, or equivalently
with the set of lines trough perpendicular te. In Figure4 if we takec = p andr = the segmenk’

thenCh, (X, 7) is the vertical line througlp since any line througl and perpendicular to that line
will contain the segmenk’. Observe that

codim( Chy(X, 1) — Chy(X)) = codim(c — 7) = dim7 — dimo.

Note that
0T 2Ty = Aa,ﬁ 2 AO’,TQ'

The star ofo in X, denoted bySt(c), is the subcomplex determined by all the simplieeshich
admito as a face

St(o) == J .

TrO

We get a collection (arrangement) of subspaces,i(p)

Ao(p) = { s ()i 7 € St(0)}.

We denote by\? (p) the complement of this arrangement of planes. Its connexigthonents are
open polyhedral cones. We will refer to them @smambers We denote byC, ,, the collection of
chambers of\,, (p). The covectors in\? are callechondegenerate covectoffor X atp). We set

Chy(X)° = Chy(X) N AL (p).
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The covectors iC'h, (X )° are callechondegenerate characteristic vectdfsr X atp). Observe that
if p,q € Int o then
Ag(p) = Ag(a), Cop = Coyg,
soAY(p) is really an invariant of the embedditigt o — X. Since every point belongs to the interior
of a single simplex so we can safely drppr o from the notations\, (p), €.
For every(&, p) € T*E we set

(&0 X) = X(Hyzeon () = T x(Br(p) 0 X ) = X(Br(p) 01 Xogy))-
We will refer tom(§, p, X) as the multiplicity of the generic covect@r, p). Note that ifp € X \ F
m(z,p, X) = 0forany{ € A, = T, E. On the other hand
m(&,p, X) =m(§,q,X), Vp,q € Into,

so we can use the notation, (£, X) for m(&, p, X), p € Int 0. To provide a combinatorial descrip-
tion of these integers we need to introduce some terminology

Given two simplicesr < 7 we denote byLk(co, 7) the maximal face of which is disjoint from
o. In other wordsLk(o, 7) is the face ofr "opposite” too. Observe that

dimo + dim Lk(o,7) = dim 7 + 1.
Given a simplicial compleX< ando a simplex in define thénk of o in K to be the subcomplex
Lk(0,K) == | J Lk(o, 7). (4.1)
O'éT

Fix a pointp € X and denote by the unique simplex in X such thap € Int(o). For{ € A, we
define

St (p) = Stf (o) = {r € St(0); &(x) > &(p), Yo et} ={reSt(o); TC{£>£E0D)} ],
Lk} (p) = Lk (0) = Lk} (p, X) = Lk(0, St} (0))
Proposition 4.3. Suppose € Int o and¢ € AY is a nondegenerate vector. Then
m(&p) =1—x(Lkf (p)) = (~1)7 Y (=1,
Tr¢o
wherer - ¢ signifies that > o andT C {£ > £(p)}
Proof Forr > 0 sufficiently smallB, (p) N X is a deformation retract &f¢(o) so that
X(Br(p) N X) = x(5t(0)) = 1.
Arguing exactly as in Exampl8.4 one proves thaB,.(p) N Xies¢(p)y is @ deformation retract of

St(0)(e>¢(p)y @nd then thabt (o) (¢~¢(,)y deformation retracts onto the complementah Stg(a).
Finally this complement deformation retracts omb;(a). Hence

X(Br(p) N Xiesepyy ) = X(LES (0))-
Next, observe that
X(Lk;(p)) _ Z (_1)dimLk(U,7') _ Z (_1)dim7+l—dim0 — _(_1)dima Z (_1)dim7"
¢ o T¢Oo Treo
Hence
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O

We see that the multiplicity of a generic covector as defirtsala coincides with the multiplicity
defined in P]. The above result has an important consequence.

Corollary 4.4. Suppose the generic covectd€s, p), i = 0, 1 belong to the same chambeér € C,.
Then

m(£07p7 X) = m(£17p7 X)
Proof Sincexy and¢; belong to the same chamber we deduce

Lk (0) = Lk{ (o)

whence the equality of the two multiplicities.
0

The multiplicity function we have just constructed asstasao each chamber atce X an integer
and thus can be viewed as a functiap : C,, — Z. Againm, = m, forallp,q € Int 0.

Example 4.5. Consider again the planar star in FigareNe denote it byX and we denote by its
center. In Figuré this simplicial complex is described with dotted lines. Weuld like to describe
the chamber structure &,. Assume for simplicity thatP, is the origin. We identify7*R? with
TR2?. The linear functionals containing an arm of the start irvallset can be identified with the line
orthogonal to that arm ag,. We get three such lines are depicted as continuous lineigunds.

-1 0 9 -1

G g

’¢' ~“~~ q C
.° /\ ~ 0 /CN 0

FIGURE 5. The chambers at the vertex of a three-armed star

They divide the plane into six cones denotedlyy- - - , Cs. The multiplicities of the correspond-
ing chamber are indicated in the right-hand-side of Figurglore precisely

—1+ (=1)k {0 if kiseven

m(Po,Ck)Zf: —1 if kisodd

O

Proposition 4.6. SupposeX;, X, C are two simplicial complexes such th&i N X; is a subcomplex
of both. Then for everyr, p) € T E we have

m(gvval U X2) = m(ac,p, Xl) + m(gvvaQ) - m(£>p7 Xl N X2)

Proof Forr > 0 sufficiently small and” = X7 U X5, X1, X5 or X1 N X5 we have the equality

m(&§,p,Y) =x(Br NY) = X(Br N Yiesep)y):
The proposition now follows from the inclusion-exclusioroperty of the Euler characteristic.
0



18 LIVIU I. NICOLAESCU

To define the characteristic cycle we need a brief detourantibory of currents. For more details
we refer to {1].

Supposé’ is a connected, oriented smooth manifold of dimensiowe denote by2* (1) the vec-
tor space of smooth-dimensional forms and bgcht( ) the space of smooth, compactly supported
k-dimensional forms. They have natural structure of locafiyvex topological vector spaces with
the topology given by the uniform convergence on compaclﬂse)forms and their partial derivatives.

For everyk > 0 we denote by, (V') the topological dual oﬂcpt(V), I.e. the space of continuous

linear functionals2%,, (V) — R. Similarly we defineQ” (V') to be the topological dual &@*(V').
ForC € Q4(V) we denote its action on € Q% (V) by (C, 7).

Observe that we have an embedding
D Qn_k(v) — Qk(V), wr— D, Qcpt(v) — R, <Dw>77> = / wAn, Vne Qcpt( )
M

We will refer to D as thePoincar€ duality map We have a boundary operator
8Qk(v) - Qk’—l(v)7 (60, 77> = <Cv d77> V77 € Qcpt (V)

We obtain in this fashion of chain complé,(1'),0). Its homology is called th&orel-Moore
homologyof V, or the homology ofi” with closed supports. It will be denoted W5 (V). The
Poincaré duality map induces an isomorphism

H*(V) — H; (V).

Example 4.7. Supposé/ is an oriented real vector space aRds a polyhedral region, i.e. a finite
intersection of half-spaces (closed or open). ket dim P. In other word is the dimension of the
affine subspacepan (P) spanned byP.

Any orientationor onspan (P) determines a-current[P] = [P, or] defined by

(P, 7) = /P 0, Ve Qb (V).

We will say that| P, or] is theintegration currentdefined byP and the orientationr.

Denote byF(P) the collection of(p — 1)-dimensional faces aP. For every facel’ € F(P) the
orientationor on P induces an orientatiem on £’ determined by theuter-normal-firstconvention.
For example, in Figuré where we depicted a-dimensional polyhedron ii®? equipped with the
orientation induced from the canonical orientatiorR3f The classical Stokes formula implies

/[Por Z /F fls V1] € Qgptl(V).

FeF(P orF]

Hence

O[P, or| = Z [F,orp].
FeF(P)

Note that if we remove fron® a finite collection of polyhedral regions of dimensiong and we
integrate on the remaining region, the integration curtien$ obtained is equal tB.
O

For each simplex € X and each chambet’ € C, we consider the open polyhedral subset
Ch(o,C)° := C x Int o of the conormal bundle dfnt . The characteristic varietyof X is the
closed set

Ch(X)= |J Ch(sC).
ceX, CeCy
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FIGURE 6. A polyhedron inR? and its boundary.

The smooth part of the characteristic variety, denote€hy X )°, is filled-up by the nondegenerate
characteristic vectors
Ch(X)’= |J Ch(s0)".
ceX, CeC,

It is a finite disjoint union of oriented polyhedral regio@ (o, C')° of dimensionV. Each defines a
N-dimensional curren€C(a, C')° and we define

cex) =Y ( 3" ma(C)CClo, O)) € On (T E).
ceX CeC,
We say thatCC(X) is theconormal chairof X.
For any two setsl, B C T F we use the notatiod ~ B to signify that
AUS=BUR,

where S, R are unions of polyhedral sets of dimensian/N. This is an equivalence relation and
we denote by A] the equivalence class @fl]. Note that if A, B are two orientedV-dimensional
polyhedral sets and ~ B then A and B define the same integration current which we denote by
[A]. We regard the multiplicity functiom x as a function defined on a setT*E. Its level sets carry

a natural orientation and for evekyc Z we denote bymx = k| the current defined by the class

of the level sein ' (k). We see that we can define the conormal cycle by the formula

CC(X) =) klmx = k]
keZ

Proposition 4.8. SupposeX, X5 are finite simplicial complexes in the oriented vector spacgich
that X; N X5 is a subcomplex of both. Then we have the following equali®ni (7 F).

CC(Xl U Xg) = CC(Xl) + CC(XQ) — CC(Xl N XQ).
Proof Using Propositiont.6 we deduce
{mx,ux, =00~ || {mx, =i} n{mx, = j} n{mxnx, = —k}.
i+j+k=¢
We deduce the following equality of currents.
CC(X1UX,) =Y lmx,ux, =€) =Y (i+j+k)[mx, =i,mx, = j,mx,nx, = —k]
‘ 0,5,k

- E Z[le = iasz :j7 mx,nx, = _k] + E ][le = iasz = j7 mx,nx, = _k]
i3,k .5,k
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+Zk[mX1 = ivaz = j7 mx,nx, = _k]
0,5,k
= ilmx, =i+ Y [mx, =41 — > _ klmx,nx, = Kl
i J k
— CC(X;) + CC(Xy) — CC(X; N Xa).
O

For any compact simplicial compleX C E we denote byl x its characteristic function. 1K, X»
are simplicial complexes then we can subdivide each of themhat X; N X5 is a subcomplex of
both. Moreover

Ix,ux, = 1x; +1x, — Ixynxy = 1x, + 1x, — 1x; 1x,. (4.2)
We can rewrite the last equality as

I=1xux, = (1- IlX1)(1 - 1X2)'
For every simplicial compleX” we denote by (X) the Abelian subgroup of the group Bfvalued
functions onE spanned by the characteristic functions of subcomplexes.off GG is an Abelian
group, then aG-valued measure ofX is a function which associates to each subcompiexan
elementn(K) € G such that the inclusion-exclusion principle is satisfied
m(K1 U Kg) = m(Kl) + m(KQ) - m(K1 N KQ).
A G-valuationon X is a morphism of Abelian grougs(X) — G.

Remarkd.9. The equality 4.2) shows that everg-valuationy on X defines az-valued measure via
the equality

m(K) = p(lx).
We obtain a map
Uy ¢ : Hom(F(X),G) — Measg(X) := G-valued measures ok

Observe also that the correspondefice— 1 is aF(X)-valued measure oX. We want to prove
thatV x ¢ is a bijection.
0

Proposition 4.10. F(X) is a free Abelian group generated by the characteristic fioms of the
(closed) simplices iX.

Proof We first prove that the family of functionk, is Z-linearly independent. Suppose we have an

equality of the form
a:= Z asly, = Z bsl, =: b, (4.3)

ceX ceX
wherea,, b, € Z>¢. Let

A={oeX; a, #0}, B={o€ X; b, #0}.
We have to prove that
A=B, a, =b,, Vo€ A. (4.4)

Let « be an element idl maximal with respect to the order relatior”™. Let p be a point inlnt |«|.
Then

0 < aq =a(p) =b(p)
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and from the equality4.3) we deduce that the set
By, :={c€eB; a<o}
is nonempty. Lefi be a maximal element iB,,. We claim that3 = « If ¢ € Int |3| then
0<bg=0b(q) =alq).
Hence there must exists an elementia A such thaty - 3 > «. Sincea is maximal we deduce
a=p=7v aq=bg.
We deduce thamhax A, the set of maximal elements i, is contained inB and
e = by, VYo € max A.
If we set4; = A\ max A, B; = B\ max A we deduce an equality
S aelo =Y bol, [Ai| <A, [Bi| < |B]
ocA1 oeBy

Iterating this procedure we deduck4).
Now let us prove that the famil\ﬁlg; o € X} spans¥(X). Let K be a subcomplex oK. We
want to prove that we can write

g = Z vi(o)l,, vi(o) € Z.
ceK
We definevk (o) by descending induction

vic(o) = 1= vi(7) (4.5)

T=0

O

From Propositiort.10we deduce that a valuatignis uniquely determined by the quantities
n(0) == n(Ly).

Remarkd.11 SupposeX is a finite simplicial complex and thad is a commutative ring with. We
consider the spacE K') of K x K-matricesA with entries inR such that

Alo,7) #0 =0 = T.
The(-functionof K is the incidence matrix of the face relation
1 if o<1

CK(”’T):{ 0 if oA7

Observe thaf (K) is a R-algebra with respect to the addition and the usual mutpion if matrices.
Note that(x € I(K). (x is an invertible element of (K) and, following the terminology of1[1,
Chap.3], we denote hyx its inverse. Itis known as thdobius function of<. The matrices il (K)
act in the usual olR”. We denote byX € RX the vector

XK(U) = 1, Vo.

We regard the correspondenee— v in the proof of Propositiont.10 as a vector inR. The
equality @.5) can be rewritten as

(k vk = Xg = vk = uk - Xg. (4.6)
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We can be more specific about Observe that i is an upper triangular matrix witlh's along the
diagonal. In particular we deduce thigt — 1 is a nilpotent matrix so that

p =G = (14 (G- 1)) = 0" -1
n>0

Now observe that

Gk -D'or)= Y 1

0<01 < =on =T
= the number of increasing chains of lengtfromoctor: o0 <01 < <o, =T.
We denote this number hy, (o, 7) = ¢, (o, 7; K). Hence
pi (o) = Z(—l)"cn(a, 7).
n>0

This alternating sum can be computed direéttywe can invoke ]1, Ex. 3.8.3] to conclude that

,UK(O') _ (_1)dim T—dimo'

Hence
I/K(O') _ Z(_l)dimr—dima -1 Z(_l)dimfr—dima—l'
T=Oo THO
The last sum is precisely the Euler characteristic of tHedifo in K as defined in4.1). Hence
vi(o) =1—x(Lk (0, K)) 4.7)
If we denote byH 3 (K) the local cohomology of< alongo then we have
vic(0) = X0 (K) == x(H3(K)). (4.8)

The numbery,(K) can be computed as follows. Consider the pldhef codimension= dim o
perpendicular tar at its barycenteb,. Consider a spherf(e, o) of radiuse in P centered ab,.
Then

Xo(K)=1—1lim x(S(e,0) N K). (4.9)
e\.0
We deduce that if. is a valuation onX we have
p(lx) =D Xo(X)p(Ls). (4.10)
ceX
O

Proposition 4.12. Supposen is a G-valued measure oX. Denote by\ the valuation determined
by

AM1,) = m(o).
Then for every subcompléx of X we have
’I’)’L(K) = /\(]lK).

4Let S, , denote the number df-chains) C 7y C --- C T}, = {1,-+-,n}. ThenS, , = "

. 3>0 (j)Sn*j,kfl- If we
seten = 3, (—1)" Sy, we deduce that, = — 32, () ca—;. The last equality implies inductively thag = (—1)".

3>0
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Proof Consider again the quantity, defined inductively in4.5). The Mobius inversion formula
[11, Prop. 3.7.1] implies

m(K) =Y vi(o)m(o) = >\< 3 VK(J)L,) = A(1g).
ceK ceK
d

Remark4.13 Observe that ifn is aG valued measure and: G — H is a morphism of groups we
obtain a new measure

pm(K) := p(m(K)).
We denote byl the F(X)-valued measur& — 1. The results established so far show that for any
G-valued measure: on X there exists a uniqgue morphism: F(X) — G such that

m = @, 1.
O

Example 4.14.Suppose\ is an-dimensional simplex aneh is a measure oA. We want to compute
m(0A). Using @.10 we deduce

m(0A) = Y xo(0A)m(o).
dimo<n

0A is a topological manifold and using.©) we deduce
XO'(aA) — (_1)n—1—dim0

Hence
m(aA) — (_1)dim8A Z (_1)dimom(0,).
oc€0A
g

Given a simplicial complexX in the N-dimensional oriented real vector spaEendo € X we
denote byCC(o) the conormal chain af. The correspondence— CC(o) is a2y (7™ E)-valued
measure and as such it extends to a valuation

CC: F(X) — Qn(T*E).

Now observe that for every simplexwe haved CC(o) = 0 so thatCC(o) is a Lagrangian cycle.
We deduce tha€C(X) = CC(1lx) is a cycle as well. We denote By (T*E) C Qn(T*E) the
subgroup ofiV-cycles. Note that we have an equality

CC(X) = ) xo(X)CC(0). (4.11)
ogeX

SupposeX is a finite simplicial complex in the oriented-dimensional vector spadeé and X’ is
a simplicial subdivision ofX. We write thisX < X’. The subcomplexes of are subcomplexes of
X'’ and thus we have a natural map

IX’X : ?(X)—>3'(X/)
The conormal cycle construction defines group morphisms
CCyx : F(X) - ZN(T*E), CCx/: F(X) — ZN(T*E)
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such that the diagram below is commutative.

F(X')
\\\Six
Iy ZN(T*E) . (4.12)

We denote by X | the topological space subjacent to the compteand we set

. H /

The groupF (| X|) is the subgroup of.-valued functions onX| corresponding to (linearly) triangu-
lable subsets. We obtain in this fashion a morphism
CCix|: F(IX]) — 2ZNn(TTE).

Finally, we denote byl (E) the collection of compact, triangulable subsetstbf For anyA, B €
T(F) we have a morphism

F(X)

F(A) — F(B)
and a commutative diagram similar #.12). We set
FE) = hL}nA F(A)
and we deduce in a similar fashion the existence of a groupnigm
CCpg:F(E) - ZN(T*E).

CCyp, associates to each triangulable compact4sés conormal cycle inE, CCg(A). WhenE is
obvious from the context we will drop it from the notation.
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