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ABSTRACT. We investigate the generalized convergence and sums of series of the form
P

n≥0 anT nP (x),
where P ∈ R[x], an ∈ R, ∀n ≥ 0, and T : R[x] → R[x] is a linear operator that commutes with the
differentiation d

dx
: R[x]→ R[x].
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1. THE MAIN RESULT

We consider series of the form ∑
n≥0

anT
nP (x), (†)

where P ∈ R[x], and T : R[x]→ R[x] is a linear operator such that

TD = DT , (∗)
where D is the differentiation operator D = d

dx . The condition (∗) is equivalent with the translation
invariance of T , i.e.,

TUh = UhT , ∀h ∈ R, (I)
where Uh : R[x]→ R[x] is the translation operator

R[x] 3 p(x) 7→ p(x+ h) ∈ R[x].

For simplicity we set U := U1. Clearly Uh ∈ O so a special case of the series (†) is the series∑
n≥0

anU
nhP (x) =

∑
n≥0

anP (x+ nh), h ∈ R, (‡h)

which is typically divergent.
We denote by O the R-algebra of translation invariant operators. We have a natural map

Q : R[[t]]→ O, R[[t] 3
∑
n≥0

cn
tn

n!
7→
∑
n≥0

cn
n!
Dn.

It is known (see [1, Prop. 3.47]) that this map is an isomorphism of rings. We denote by σ the inverse
of Q

σ : O→ R[[t]], O 3 T 7→ σT ∈ R[[t]].
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For T ∈ O we will refer to the formal power series σT as the symbol of the operator T . More
explicitely

σT (t) =
∑
n≥0

cn(T )
n!

tn, cn(T ) = (Txn)|x=0 ∈ R.

We denote by N the set of nonnegative integers, and by Seq the vector space of real sequences, i.e.,
maps a : N→ R. Let Seqc the vector subspace of Seq consisting of all convergent sequences.

A generalized notion of convergence1 or regularization method is a pair µ = (µ lim,Seqµ), where
• Seqµ is a vector subspace of Seq containing Seqc and,
• µ lim is a linear map

µ lim : Seqµ → R, Seqµ 3 a 7→ µ lim
n
a(n) ∈ R

such that for any a ∈ Seqc we have
µ lim a = lim

n→∞
a(n).

The sequences in Seqµ are called µ-convergent and µ lim is called the µ-limit. To any sequence
a ∈ Seq we associate the sequence S[a] of partial sums

S[a](n) = σnk=0a(k). (1.1)

A series
∑

n≥0 a(n) is said to by µ-convergent if the sequence S[a] is µ-convergent. We set

µ
∑
n≥0

a(n) := µ lim
n
S[a](n).

We say that µ
∑

n≥0 a(n) is the µ-sum of the series. The regularization method is said to be shift
invariant if it satisfies the additional condition

µ
∑
n≥0

a(n) = a(0) + µ
∑
n≥1

a(n). (1.2)

We refer to the classic [3] for a large collection of regularization methods.
For x ∈ R and k ∈ N we set

[x]k :=

{∏k−1
i=0 (x− i), k ≥ 1

1, k = 0,
,

(
x

k

)
:=

[x]k
k!

.

We can now state the main result of this paper.

Theorem 1.1. Let µ be a regularization method, T ∈ O and f(t) =
∑

n≥0 ant
n ∈ R[[t]]. Set

c := c0(T ) = T 1. Suppose that f is µ-regular at t = c, i.e.,

for every k ∈ N the series
∑

n≥0 an[n]k cn−k is µ-convergent. (µ)

We denote by f (k)(c)µ its µ-sum

f (k)(c)µ := µ
∑
n≥0

an[n]k cn−k.

Then for every P ∈ R[x] the series
∑

n≥0 an(T nP )(x) is µ-convergent and its µ-sum is

µ
∑

an(T nP )(x) = f(T )µP (x),

1Hardy refers to such a notion of convergence as convergence in some ‘Pickwickian’ sense.
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where f(T )µ ∈ O is the operator

f(T )µ :=
∑
n≥0

f (k)(c)µ
k!

(T − c)k. (1.3)

Proof. SetR := T − c and let P ∈ R[x]. Then

R =
∑
n≥1

cn(T )
n!

Dn

so that
RnP = 0, ∀n > degP. (1.4)

In particular this shows that f(T )µ is well defined. We have

anT
nP = an(c+R)nP = an

n∑
k=0

(
n

k

)
cn−kRkP =

degP∑
k=0

(
n

k

)
cn−kRkP.

At the last step we used (1.4) and the fact that(
n

k

)
= 0, if k > n.

This shows that the formal series
∑

n≥0 an(T nP )(x) can be written as a finite linear combination of
formal series ∑

n≥0

an(T nP )(x) =
degP∑
k=0

RkP (x)
k!

∑
n≥0

an[n]k cn−k

 .

From the linearity of the µ-summation operator we deduce

µ
∑
n≥0

an(T nP )(x) =
degP∑
k=0

RkP (x)
k!

 µ
∑
n≥0

an[n]k cn−k


=

(
degP∑
k=0

f (k)(c)µ
k!

Rk

)
P (x) = f(T )µP (x)

ut

2. SOME APPLICATIONS

To describe some consequences of Theorem 1.1 we need to first describe some classical facts about
regularization methods.

For any sequence a ∈ Seq we denote byGa(t) ∈ R[[t]] its generating series. We regard the partial
sum construction S in (1.1) as a linear operator S : Seq→ Seq. Observe that

GS[a](t) =
1

1− t
Ga(t).

We say that a regularization method µ1 = (µ1 lim,Seqµ1
) is stronger than the regularization method

µ0 = (µ1 lim,Seqµ0
), and we write this µ0 ≺ µ1, if

Seqµ0
⊂ Seqµ1

and µ1 lim
n
a(n) = µ0 lim

n
a(n), ∀a ∈ Seqµ0

.
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The Abel regularization method2 A is defined as follows. We say that a sequence a is A convergent if
• the radius of convergence of the series

∑
n≥0 ant

n is at least 1 and
• the function t 7→ (1− t)

∑
n≥0 ant

n has a finite limit as t→ 1−.
Hence

A lim a(n) = lim
t→1−

(1− t)
∑
n≥0

ant
n,

and SeqA consists of sequence for which the above limit exists and it is finite. Using (2) we deduce
that a series

∑
n≥0 a(n) is A-convergent if and only if the limit

lim
t→1−

∑
n≥0

ant
n

exists and it is finite. We have the following immediate result.

Proposition 2.1. Suppose that f(z) is a holomorphic function defined in an open neighborhood of
the set {1} ∪ {|z|} ⊂ C. If

∑
n≥0 anz

n is the Taylor series expansion of f at z = 0 then the
corresponding formal power series [f ] =

∑
n≥0 ant

n is A-regular at t = 1,

[f ](k)(1)A = fk(1),

and the series

[f ](r)A =
∑
k

[f ](k)(1)A
k!

rk

coincides with the Taylor expansion of f at z = 1, and it converges to f(1 + r).

Corollary 2.2. Suppose that f(z) is a holomorphic function defined in an open neighborhood of the
set {1} ∪ {|z|} ⊂ C and

∑
n≥0 anz

n is the Taylor series expansion of f at z = 0. Then for every T
in O such that c0(T ) = 1, any P ∈ R[x], and any x ∈ R we have

A
∑
n

anT
nP (x) =

∑
k≥0

fk(1)
k!

(T − 1)kP (x). ut

Let k ∈ N. A sequence a ∈ Seq is said to be Ck-convergent (or Cesàro convergent of order k) if
the limit

lim
n→∞

Sk[a](n)(
n+k
k

)
exists and it is finite. We denote this limit by Ck lim a(n). A series

∑
n≥0 a(n) is said to be Ck-

convergent if the sequence of partial sums S[a] is Ck convergent. Thus the Ck-sum of this series
is

Ck
∑
n≥0

a(n) = lim
n→∞

Sk+1[a](n)(
n+k
k

) .

More explicitly, we have (see [3, Eq.(5.4.5)])

Ck
∑
n≥0

a(n) = lim
n→∞

1(
n+k
k

)( n∑
ν=0

(
ν + k

k

)
a(n− ν)

)

2This was apparently known and used by Euler.
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Hence
Ck
∑
n≥0

a(n)⇐⇒Sk+1[a](n) ∼ A
(
n+ k

k

)
∼ An

k

k!
,

where

a ∼ b⇐⇒ lim
n→∞

a(n)
b(n)

= 1,

if a(n), b(n) 6= 0, for n� 0.
The C0 convergence is equivalent with the classical convergence and it is known (see [3, Thm. 43,

55]) that
Ck ≺ Ck′ ≺ A, ∀k < k′.

Given this fact, we define a sequence to be C-convergent (Cesàro convergent) if it is Ck-convergent
for some k ∈ N. Note that C ≺ A. Both the C and A methods are shift invariant, i.e., they satisfy the
condition (1.2).

We want to comment a bit about possible methods of establishing C-convergence. To formulate a
general strategy we need to introduce a classical notation. More precisely, if f(t) =

∑
n≥0 ant

n is a
formal power series we let [tn]f(t) denote the coefficient of tn in this power series, i.e. [tn]f(t) = an.

Let f(t) =
∑

n≥0 ant
n. Then the series

∑
n≥0 ant

n C-converges to A if and only if there exists a
nonnegative real number α such that

[tn]
(

(1− t)−(α+1)f(t)
)
∼ A nα

Γ(α+ 1)
,

where Γ is Euler’s Gamma function. For a proof we refer to [3, Thm. 43].

Definition 2.3. We say that a power series f(t) =
∑

n≥0 ant
n is Cesàro convenient (orC-convenient)

at 1 if the following hold.
(i) The radius of convergences of the series is ≥ 1

(ii) The function f is regular at z = 1 and has finitely many singularities ζ1, . . . , ζν 6= 1 on the
unit circle {|z| = 1} .

(iii) There exist ε > 0 and θ ∈ (0, π2 ) such that f admits a continuation to the dimpled disk

∆ε,θ :=

{
z ∈ C; |z| < 1 + ε, arg

( z

ζj
− 1

)
> θ, ∀j = 1, . . . , ν

}
.

(iv) For every singular point ζj there exists a positive integer mj such that

f(z) = O
(

(z − ζj)−mj
)

as z → ζj , z ∈ ∆.

ut

The results in [2, Chap. VI] implies that the collection RC of C-convenient power series is a ring
satisfying

f ∈ RC⇐⇒
df

dt
∈ RC .

Invoking [2, Thm VI.5] we deduce the following useful consequence.

Corollary 2.4. Let f ∈ R[[t]] be a power series C-convenient at 1. Then f is C-regular at 1 and

fk(1)C = f (k)(1)A = f (k)(1). ut

Using [2, VII.7] we obtain the following useful result.
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Corollary 2.5. (a) The power series

(1 + t)−m =
∑
n≥0

(
n+m− 1

n

)
(−t)n, m ≥ 1, log(1 + t) =

∑
n≥1

(−1)n+1 t
n

n

are C-regular at 1.
(b) If f(z) is an algebraic function defined on the unit disk |z| < 1 and regular at z = 1 then the
Taylor series of f at z = 0 is C-regular at 1.

Recall that the Cauchy product of two sequences a, b ∈ Seq is the sequence a ∗ b,

a ∗ b(n) =
n∑
i=0

a(n− i)b(i), ∀n ∈ N.

A regularization method is said to be multiplicative if

µ
∑
n

a ∗ b(n) =

(
µ
∑
n

a(n)

)(
µ
∑
n

b(n)

)
,

for any µ-convergent series
∑

n≥0 a(n) and
∑

n≥0 b(n). The results of [3, Chap.X] show that the C
and A methods are multiplicative.

For any regularization method µ and c ∈ R we denote by R[[t]]µ the set of series that are µ-regular
at t = 1.

Proposition 2.6. Let µ be a multiplicative regularization method. Then R[[t]]µ is a commutative ring
with one and we have the product rule

(f · g)(n)(1)µ =
n∑
k=0

(
n

k

)
f (k)(1)µ · g(n−k)(1)µ.

Moreover, if T ∈ O is such that c0(T ) = 1 then the map

R[[t]]µ 3 f 7→ f(T )µ ∈ O

is a ring morphism.

Proof. The product formula follows from the iterated application of the equalities

Dt(fg) = (Dtf)g + f(Dtg), (fg)(1)µ = f(1)µ · g(1)µ, f ′(1)µ = (Dtf)(1)µ,

where Dt : R[[t]]→ R[[t]] is the formal differentiation operator d
dt . The last statement is an immedi-

ate application of the above product rule. ut

Remark 2.7. The inclusion R[[t]]C ⊂ R[[t]]A is strict. For example, the power series

f(z) = e1/(1+z)

satisfies the assumption of Proposition 2.1 so that the associated formal power series [f ] is A-regular
at 1. On the other hand, the arguments in [3, §5.12] show that [f ] is not C-regular at 1. ut

Consider the translation operator Uh ∈ O. From Taylor’s formula

p(x+ h) =
∑
n≥0

hn

n!
Dnp(x)

we deduce that
σUh(t) = eth.

Set ∆h := Uh − 1. Using Corollary 2.5 and Theorem 1.1 we deduce the following result.
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Corollary 2.8. For any P ∈ R[x] we have

C
∑
n≥0

(−1)nP (x+ nh) =
1
2

∑
n≥0

(−1)n

2n
∆n
h

P (x). (2.1)

Observe that (
1 +

1
2

∆h

)∑
n≥0

(−1)n

2n
∆n
h

 = 1

so that 1
2

∑
n≥0

(−1)n

2n ∆n
h is the inverse of the operator 2 + ∆h. We thus have

C
∑
n≥0

(−1)nP (x+ nh) = (2 + ∆h)−1P (x) = (1 +Uh)−1P (x). (2.2)

Remark 2.9. Here is a heuristic explanation of the equality (2.2) assuming the Cesàro convergence
of the series

∑
n≥0(−1)nP (x+ nh). Denote by S(x) the Cesàro sum of this series. Then

S(x+ h) = C
∑
n≥0

(−1)nP
(
x+ (n+ 1)h

)
(1.2)
= − C

∑
n≥0

(−1)nP (x+ h) + P (x) = −S(x) + P (x).

Hence
S(x+ h) + S(x) = P (x), ∀x ∈ R.

If we knew that S(x) is a polynomial we would then deduce

S(x) = (1 +Uh)−1P (x). ut

The inverse of 1 + Uh can be explicitly expressed using Euler numbers and polynomials, [4, Eq.
(14), p.134]. The Euler numbers Ek are defined by the Taylor expansion

1
cosh t

=
2

et + e−t
=
∑
k≥0

Ek
k!
tk.

Since cosh t is an even function we deduce thatEk = 0 for odd k. They satisfy the recurrence relation

En +
(
n

2

)
En−2 +

(
n

4

)
En−4 + · · · = 0, n ≥ 2. (2.3)

Here are the first few Euler numbers.
n 0 2 4 6 8 10 12 14 16

En 1 −1 5 −61 1, 385 −50, 521 2, 702, 765 −199, 360, 981 19, 391, 512, 145

Then

1
1 +Uh

=
U−

h
2

U
h
2 +U−

h
2

=
U−

1
2

e
D
2 + e−

D
2

=
1
2
U−

h
2

1
cosh hD

2

=
1
2
U−

h
2

∑
k≥0

Ekh
k

2kk!
Dk.

Hence
C
∑
n≥0

(−1)nP (x+ nh) =
1
2

∑
k≥0

Ekh
k

2kk!
P (k)

(
x− h

2

)
. (2.4)



8 LIVIU I. NICOLAESCU

When P (x) = xm, h = 1, we have

C
∑
n≥0

(−1)n(x+ n)m =
1
2

∑
k≥0

(
m

k

)
Ek
2k

(
x− 1

2

)m−k
. (2.5)

Setting x = 0 and using the equality E2j+1 = 0, ∀j we conclude that

C
∑
n≥0

(−1)nnm =
1

2m+1

∑
k≥0

(−1)m−kEk

(
m

k

)
=

(−1)m

2m+1

∑
k≥0

E2k

(
m

2k

)
. (2.6)

Using (2.3) we deduce that when m is even, m = 2m′, m′ > 0 we have
C
∑
n≥0

(−1)nn2m′ = 0. (2.7)

For example

1− 1 + 1− 1 + · · · C= 1
2
, (†0)

−1 + 2− 3 + 4− · · · C= −1
4
, (†1)

−1 + 23 − 33 + 43 − · · · C= 1
8
, (†3)

−15 + 25 − 35 + 45 − · · · C= −1
4
. (†5)

When P (x) =
(
x
m

)
, x = 0, h = 1 then it is more convenient to use (2.1) because

∆
(
x

k

)
=
(

x

k − 1

)
, ∀k, x.

We deduce
C
∑
n≥0

(−1)n
(
n

m

)
=

1
2

m∑
k=1

(−1)k

2k

(
0

m− k

)
=

(−1)m

2m+1
. (2.8)

Example 2.10. Consider the translation invariant operator

T : R[x]→ R[x], P (x) 7→
∫ ∞

0
e−sP (x+ s)dx.

Set R = T − 1. As explained in [1, II.3.B], the operators T and R are intimately related to the
Laguerre polynomials. We haveR = DT = TD and3

σT (t) =
1

1− t
σR(t) =

1
1− t

− 1 =
t

1− t
.

If P ∈ R[x] is a polynomial of degree m then

T kP (x)x=0 = (1 +D + · · ·+Dm)P (x)x=0

=
∫

Rk
≥0

e−(s1+s2+···+sk)P (s1 + · · ·+ sk)ds1 · · · dsk.

For t ≥ 0 we denote by ∆k(t) the (k − 1) simplex

∆k−1(t) :=
{

(s1, . . . , sk) ∈ Rk
≥0; s1 + · · ·+ sk = t

}
.,

3We can write formally T =
R∞
0
e−sUsds =

R∞
0
e−s(1−D)ds = (1 +D)−1, so that σT (t) = 1

1−t
.
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and by dVk−1(t) the Euclidean volume element on ∆k−1(t). Integrating along the fibers of the
function f : Rk

≥0 → [0,∞), f(s1, . . . , sk) = s1 + · · ·+ sk we deduce∫
Rk
≥0

e−(s1+s2+···+sk)P (s1 + · · ·+ sk)ds1 · · · dsk =
∫ ∞

0

(∫
∆k−1(t)

1
|∇f |

dVk−1(t)

)
e−tP (t)dt

=
vk−1√
k

∫ ∞
0

e−ssk−1P (s)ds,

where vk−1 is the (k − 1)-dimensional volume of the (k − 1)-simplex ∆k−1 = ∆k−1(t)t=1.
To compute the volume vk−1 we view ∆k is a regular k-simplex with distinguished base ∆k, and

distinguished vertex (0, . . . , 0, 1) ∈ Rk+1. The distance dk from the vertex to the base is the distance
from the vertex to the center of the base. We have

d2
k = 1 +

1
k
, dk =

√
k + 1
k

, vk =
1
k
dkvk−1 =

(
k + 1
k3

)1/2

vk−1.

Since v0 = 1 we deduce

vk =
(k + 1)1/2

k!
, T kP (x)x=0 =

1
(k − 1)!

∫ ∞
0

e−ssk−1P (s)ds,

and
RkP (x)x=0 =

1
(k − 1)!

∫ ∞
0

e−ssk−1P (k)(s)ds.

Using Theorem 1.1 and Corollary 2.4 with the C-convenient series f(t) = (1 + t)−1 we deduce

C
∑
n≥0

(−1)nT nP (x)x=0 = C
∑
n≥0

(−1)n
1

(n− 1)!

∫ ∞
0

e−ssn−1P (s)ds

=
∫ ∞

0

(
degP∑
k=0

(−1)k

2k+1(k − 1)!
sk−1P (k)(s)

)
ds.

If we let P (s) = sm we deduce∫ ∞
0

e−ssn−1P (s)ds = (m+ n− 1)!,
∫ ∞

0
e−ssk−1P (k)(s)ds = [m]k(m− 1)! = [m− 1]k−1m!,

and
C
∑
n≥0

(−1)n
(
m+ n− 1

m

)
=

m∑
k=0

(−1)k

2k+1

(
m− 1
k − 1

)
. (2.9)

Let us point out that (2.9) can be obtained from (2.8) using the shift-invariance of the Cesàro regular-
ization method. ut
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