REGULARIZATION OF CERTAIN DIVERGENT SERIES OF POLYNOMIALS

LIVIU I. NICOLAESCU

ABSTRACT. We investigate the generalized convergence and sums of series of the form ) . a,T" P(x),
where P € Rz], an € R,Vn > 0, and T : R[z] — R[z] is a linear operator that commutes with the
differentiation - : R[z] — R[x].
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1. THE MAIN RESULT

We consider series of the form

> a,T"P(x), (1)
n>0
where P € R[z], and T' : R[z] — R[x] is a linear operator such that
TD = DT, (%)
where D is the differentiation operator D = %. The condition (x) is equivalent with the translation
invariance of T', i.e.,
TU" = U"T, Vh eR, D

where U" : R[z] — R[z] is the translation operator
R[z] 5 p(z) — p(z + h) € R[z].
For simplicity we set U := U". Clearly U" € O so a special case of the series (1) is the series
Z an UM P(z) = Z anP(z+nh), heR, ()
n>0 n>0

which is typically divergent.
We denote by O the R-algebra of translation invariant operators. We have a natural map

t" c
Q:R[[t]] = 0O, R[t] > chﬁ — Z ﬁD".
n>0 n>0
It is known (see [ 1, Prop. 3.47]) that this map is an isomorphism of rings. We denote by o the inverse
of Q
o:0—-R[t], 05T — or < R[]
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For T € O we will refer to the formal power series o as the symbol of the operator T'. More
explicitely
or(t) =) @tn, cn(T) = (Ta™)|s—0 € R.
50 n!
We denote by N the set of nonnegative integers, and by Seq the vector space of real sequences, i.e.,

maps a : N — R. Let Seq® the vector subspace of Seq consisting of all convergent sequences.
A generalized notion of convergence' or regularization method is a pair j = (* lim, Seqﬂ), where

e Seq,, is a vector subspace of Seq containing Seq‘ and,
e *lim is a linear map

#lim : Seq, — R, Seq,, > a— "lima(n) € R
n
such that for any a € Seq“ we have

#lima = lim a(n).
n—oo

The sequences in Seq,, are called u-convergent and #lim is called the p-limit. To any sequence
a € Seq we associate the sequence S|a] of partial sums

Sla](n) = op_ya(k). (1.1)
A series ) -, - a(n) is said to by u-convergent if the sequence Sla] is yi-convergent. We set
p AT
Z a(n) = hTan Slal(n).
n>0

We say that # >~ a(n) is the p-sum of the series. The regularization method is said to be shift
invariant if it satisfies the additional condition

"y a(n) =a(0) + ") a(n). (1.2)
n>0 n>1

We refer to the classic [3] for a large collection of regularization methods.
For x € Rand k € N we set

IS @—d), k=1 (2\ _ [t
]k = , = .
1, E=0, \k k!
We can now state the main result of this paper.

Theorem 1.1. Let ;1 be a regularization method, T € O and f(t) = }_, ~qant"™ € RJ[t]]. Set
¢:=c¢o(T) = T1. Suppose that f is p-regular att = ¢, i.e.,

n—k

for every k € N the series Y, < an[n]i "% is p-convergent. ()

We denote by ) (€)p its pu-sum
f8 (), =+ Z ann]p .

Then for every P € R[z] the series ), ~q an(T"P)(z) is i-convergent and its i-sum is
By an(T"P)(z) = f(T).P (x),

lHardy refers to such a notion of convergence as convergence in some ‘Pickwickian’ sense.
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where f(T),, € O is the operator

(k) (¢
@)=Y S )“(T— o). (1.3)

Proof. Set R :=T — cand let P € R[z|. Then

cn(T
R=) 7(1!)

n>1
so that
R"P =0, Vn > deg P. (1.4)
In particular this shows that f(T"),, is well defined. We have
"o degP
a,T"P = ap(c+ R)"P = a, kzo (k) MERFP = kzo (kz) M kEREP

At the last step we used (1.4) and the fact that

(Z):o, if k> n.

This shows that the formal series ) <, a,(T" P)(x) can be written as a finite linear combination of
formal series

deg P
> an(TP) () = Y = RkP > anln
n>0 k=0 n>0

From the linearity of the p-summation operator we deduce

deg P RkP
DINCLCIEED SR 7 yPis
n>0 k=0 n>0

degP
(Z “Rk> P(z) = f(T),P (x)

2. SOME APPLICATIONS

To describe some consequences of Theorem 1.1 we need to first describe some classical facts about
regularization methods.

For any sequence a € Seq we denote by G, (t) € R[[t]] its generating series. We regard the partial
sum construction S in (1.1) as a linear operator S : Seq — Seq. Observe that

1
G t) = ——
We say that a regularization method 1 = (#* lim, Seqm) is stronger than the regularization method
po = (#lim, Seq,,, ), and we write this 9 < p1, if

Ga(t).

Seq,,, C Seq,,, and " li7rln a(n) ="*° li7rln a(n), Va € Seq,, .
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The Abel regularization method” A is defined as follows. We say that a sequence a is A convergent if

e the radius of convergence of the series ) _, - ant" is at least 1 and
e the function t — (1 —1) >, 5 ant™ has a finite limitas ¢ — 1~
Hence

Anqs . n
| =1 1-—
ima(n) t_l)I{lﬁ( t) g ant”,
n>0

and Seq 4 consists of sequence for which the above limit exists and it is finite. Using (2) we deduce
that a series ) - a(n) is A-convergent if and only if the limit

lim g ant”
t—1 >0

exists and it is finite. We have the following immediate result.

Proposition 2.1. Suppose that f(z) is a holomorphic function defined in an open neighborhood of
the set {1} U {|z|} C C. If >, <o an2" is the Taylor series expansion of f at z = 0 then the
corresponding formal power series [f] = - ant™ is A-regular att = 1,

18 (1) 4 = fR(1),

and the series

(k)
r)a = 30 DA
k

coincides with the Taylor expansion of f at z = 1, and it converges to f(1 + r).

Corollary 2.2. Suppose that f(z) is a holomorphic function defined in an open neighborhood of the
set {1} U{|z|} C Cand 3 , 54 an2" is the Taylor series expansion of f at z = 0. Then for every T
in O such that co(T) = 1, any P € R[z], and any x € R we have

k
AN anTPla) =) ! k(!l) (T — 1)*P(x). O

k>0

Let £ € N. A sequence a € Seq is said to be Cy-convergent (or Cesaro convergent of order k) if
the limit

L S*al(n)
e ()

exists and it is finite. We denote this limit by ©* lima(n). A series 3, <, a(n) is said to be Cj-
convergent if the sequence of partial sums S|a] is C}, convergent. Thus the Cy-sum of this series
is

k1al(n
C’“Za(n): lim 75 lal( )

= e ()

More explicitly, we have (see [3, Eq.(5.4.5)])

S atn) = i ok (3 (7t )

n>0 k v=0

2This was apparently known and used by Euler.
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Hence

k
Ci Z a(n)<== 8" a](n) ~ A<n ;: k) ~ A%,
n>0 ’

where

a ~ b<= lim a(n) =1,
nse B(n)

if a(n),b(n) # 0, for n > 0.

The Cy convergence is equivalent with the classical convergence and it is known (see [3, Thm. 43,

55]) that

Cp,<Cy <A, Vk< K.
Given this fact, we define a sequence to be C-convergent (Cesaro convergent) if it is Cx-convergent
for some k£ € N. Note that C' < A. Both the C' and A methods are shift invariant, i.e., they satisfy the
condition (1.2).

We want to comment a bit about possible methods of establishing C-convergence. To formulate a
general strategy we need to introduce a classical notation. More precisely, if f(t) = > <, ant" isa
formal power series we let [t”] f(t) denote the coefficient of ¢” in this power series, i.e. [t"]f(t) = a,.

Let f(t) = > _,~0 @nt". Then the series ) , -, ant™ C-converges to A if and only if there exists a
nonnegative real number o such that -

(=075 ) ~ Ay

where I is Euler’s Gamma function. For a proof we refer to [3, Thm. 43].

o

Definition 2.3. We say that a power series f(t) = ) .~ ant™ is Cesaro convenient (or C-convenient)
at 1 if the following hold. B

(1) The radius of convergences of the series is > 1
(i1) The function f is regular at z = 1 and has finitely many singularities (i, ...,{, # 1 on the
unit circle {|z| =1} .
(iii) There existe > 0 and 6 € (0, §) such that f admits a continuation to the dimpled disk

ANgg = {ZE(C; |z| < 1+e, arg(?—l) >0, ijl,...,y}.
J
(iv) For every singular point (; there exists a positive integer 1m,; such that
f(2)=0((z=¢)™™) asz— (j,z € A
d

The results in [2, Chap. VI] implies that the collection R¢ of C-convenient power series is a ring

satisfying
daf
fe RC(:)E € Re.

Invoking [2, Thm VI.5] we deduce the following useful consequence.

Corollary 2.4. Let f € R[[t]] be a power series C-convenient at 1. Then f is C-regular at 1 and

FFe =P )a=fH(). O

Using [2, VII.7] we obtain the following useful result.
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Corollary 2.5. (a) The power series

a+t™=>" <n e 1> (—6)", m>1, log(1+1) =3 (-1 E

n n
n>0 n>1
are C-regular at 1.

(b) If f(2) is an algebraic function defined on the unit disk |z| < 1 and regular at z = 1 then the
Taylor series of f at z = 0 is C-regular at 1.

Recall that the Cauchy product of two sequences a, b € Seq is the sequence a * b,
n
ax*b(n) = Z a(n —14)b(i), ¥Yn e N.
i=0
A regularization method is said to be multiplicative if

“Za*b(n) = (“Za(n)) (“Zb(n)) ,

for any p-convergent series ), - a(n) and >, -, b(n). The results of [3, Chap.X] show that the C
and A methods are multiplicative. B

For any regularization method 1. and ¢ € R we denote by R[[t]],, the set of series that are yi-regular
att = 1.

Proposition 2.6. Let pu be a multiplicative regularization method. Then R[[t]],, is a commutative ring
with one and we have the product rule

n

701 = 3 (1) 00, g (),

k=0
Moreover, if T € O is such that co(T') = 1 then the map
Rl f— f(T), €0
is a ring morphism.
Proof. The product formula follows from the iterated application of the equalities

Di(fg) = (Dif)g + f(Drg), (fg)(l)u = f(l)u : g(l)#, f/(l)u = (th)(l)ﬂa

where Dy : R[[t]] — R[[¢]] is the formal differentiation operator 2. The last statement is an immedi-
ate application of the above product rule. g

Remark 2.7. The inclusion R[[t]]c C R[[t]] 4 is strict. For example, the power series
f(2) = e!/+)

satisfies the assumption of Proposition 2.1 so that the associated formal power series [f] is A-regular
at 1. On the other hand, the arguments in [3, §5.12] show that [f] is not C-regular at 1. O

Consider the translation operator U" € O. From Taylor’s formula
h"
ple+h) =Y L D"(a)
n>0

we deduce that

oyn(t) = et

Set Aj, := U" — 1. Using Corollary 2.5 and Theorem 1.1 we deduce the following result.
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Corollary 2.8. For any P € R[z] we have

N (-1)"P(z + nh) = ; Z(;L)HAZ’ P(z). (2.1)

n>0 n>0

Observe that

<1+ ;Ah> > (;}l)HAz =1

n>0

so that % > >0 ( 2n) A7} is the inverse of the operator 2 + Aj,. We thus have

C;) D"P(z+nh) = (2+ Ap) " tP(x) = 1+ UM 1P(2). (2.2)

Remark 2.9. Here is a heuristic explanation of the equality (2.2) assuming the Cesaro convergence
of the series ), ~,(—1)"P(x + nh). Denote by S(z) the Cesaro sum of this series. Then

S+h) =Y (-1)"P(x+ (n+1)h)
n>0

2 oS (1) P+ ) + Pa) = —S(@) + Pla).
n>0
Hence
S(z+h)+ S(z) = P(x), VreR.
If we knew that S(x) is a polynomial we would then deduce
S(z) = (1+UM™P(x). O

The inverse of 1 + U" can be explicitly expressed using Euler numbers and polynomials, [4, Eq.
(14), p.134]. The Euler numbers E;, are defined by the Taylor expansion

cosht et 4et k!
k>0

Since cosh ¢ is an even function we deduce that £, = 0 for odd k. They satisfy the recurrence relation

E, + <’;> En_s+ <Z> Epg+-=0, n>2 2.3)

Here are the first few Euler numbers.
n |0l 2 |4 6 8 10 12 14 16

E,|1|-1|5]—-61]1,385| —50,521 |2,702,765 | —199, 360,981 | 19,391,512,145
Then

L _ U U g 1 gy 5 B
1+U" U4+U> e3+e 2 2 cosh 22 2 e 2Fk!
Hence i
1 <~ Eih h
c ) : KV ey (1
Z V'P(z 4+ nh) = 22 o D (m 2). (2.4)
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When P(z) = 2™, h = 1, we have
1 m\ E I
c k
S 1) ) 22<k)2k<x_2> | 25)
n>0 k>0
Setting x = 0 and using the equality E5;,1 = 0, Vj we conclude that
1 _ m (=)™ m
C _ k _
S = s e () = G () e
n>0 k>0 k>0

Using (2.3) we deduce that when m is even, m = 2m’, m’ > 0 we have

I (=Mt =0, 2.7)
n>0
For example
1

1—1+1—1+---g§, (fo)

1
“142-344- S (t)

1
14923 3% 143 gg, (f3)

1
f15+25f35+45—---g—1. (t5)

When P(z) = (2), z = 0, h = 1 then it is more convenient to use (2.1) because

() (2 e

()RR e

n>0 =1

We deduce

Example 2.10. Consider the translation invariant operator
T :R[z] — — / P(z + s)dz.

Set R = T — 1. As explained in [], II1.3.B], the operators T' and R are intimately related to the
Laguerre polynomials. We have R = DT = T'D and’

1 t

1
or(t) = —;or(t) = 7 1—¢

If P € R[z] is a polynomial of degree m then
T*P(a)s=0 = (1 + D + -+ D™)P(2)s=0

_ /k 67(81+32+"'+Sk)P(81 4ot 8k;)d81 .. ClSk.
R

For ¢ > 0 we denote by Ak(tj the (k — 1) simplex
AVERT( —{ S1y.+-y8k) ER>0, 51+~--+sk:t}.,

3We can write formally T' = [ e Usds = [°e (" Plds = (14 D) ', sothat oz () = 4.
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and by dVj_1(t) the Euclidean volume element on Aj_;(¢). Integrating along the fibers of the

function f : R’;O — [0,00), f(s1,...,5k) = s1+ -+ s, we deduce
e}
/ 6_(31+32+-..+3k)P(81 + . _|_ Sk,‘)d‘sl e dsk — / / de 1( ) _tp(t)dt
RE 0 N \Vf|

— Ykl - e *sF 1 P(s)ds
VE Jo ’
where vj_1 is the (k — 1)-dimensional volume of the (k — 1)-simplex Ap_1 = Ag_1(t)1=1
To compute the volume vg_1 we view Ay is a regular k-simplex with distinguished base Ag, and
distinguished vertex (0,...,0,1) € RF+1. The distance dj, from the vertex to the base is the distance
from the vertex to the center of the base. We have

1 [k+1 1 E+1\Y?2
d%=1+%, dy = o Uk::kdkvkz—1:< 3 > Vg—1.

Since vy = 1 we deduce

(k—|—1)1/2 & 1 /:: s k1
S N () 10 ) P — ssk=1p(s)ds,
Vg x , () z=0 =) e s (s)ds
and .
k —s k=1 p(k)
RP(x)g—0 = ho1) 1)!/0 e " P (s)ds.

Using Theorem 1.1 and Corollary 2.4 with the C-convenient series f(t) = (1 +t)~! we deduce

¢ Z H"T"P(x =C Z T /000 e 55" 1P(s)ds

n>0 n>0
oo [degP k
/ (-1 k—1 p(k) )
- S P | ds,
A1 1>
0 <k02+(k 1)!

If we let P(s) = s™ we deduce

/ e 5" 1P(s)ds = (m +n— 1)\, / e*sF P ($)ds = [m]p(m — 1)! = [m — 1p_1m!,
0 0

and . i
c m+n—1 (=) (m—1
(") = (). 29
n>0 k=0
Let us point out that (2.9) can be obtained from (2.8) using the shift-invariance of the Cesaro regular-
ization method. O
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