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Abstract. We describe the Abelian categories of sheaves over topological spaces, natural
functors between them, and several remarkable resolutions of sheaves.
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1. Presheaves

A presheaf on X is a correspondence S which associates to each nonempty open subset
U ⊂ X a nonempty set S(U) and to every inclusion U ↪→ V a map

rU
V = r(S)U

V : S(V ) → S(U)

such that rU
U = 1S(U) and for any U ↪→ V ↪→ W we have a commutative diagram

S(W ) S(V )

S(U)

wrV
W

[
[
[
[[]rU

W

u

rU
V ⇐⇒ rU

W = rU
V ◦ rV

W .

rU
V is called the restriction map. For simplicity we will often denote it by |U . The set S0(U)

is referred to as the space of sections of S0 over U and it is often denoted by Γ(U, S0).
A morphism of pre-sheaves S0 and S1 is a collection of maps

φ =
{
φU : S0(U) → S1(U); U open subset of X

}
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2 LIVIU I. NICOLAESCU

such that for any inclusion U ⊂ V we have a commutative diagram

S0(V ) S1(V )

S0(U) S1(U)
u

rU
V

wφV

u

rU
V

w
φU

⇐⇒ rU
V φV = φUrU

V . (1.1)

We obtain in this fashion a category pSh(X), of presheaves on X. If C is a subcategory of
Set then a pre-sheaf of C-objects is a presheaf such that every set S(U) is an object in C

and the restriction maps are morphisms in C. A morphism of presheaves of C-objects is a
morphisms of presheaves of sets φ such that for any open set U the map φU is a morphism
in C. We denote by pShC(X) the resulting subcategory of presheaves of C-objects over X.

If R is a commutative ring with 1, we denote by RMod the category of R-modules and we
set pShR(X) = pSh

RMod. We set

Γ(∅,F) = 0, ∀F ∈ pShR(X).

Note that for any two presheaves of R-modules S0, S1 the space of morphisms HompShR
(S0, S1)

is naturally an R-module. We denote by R = XR the constant presheaf on X determined by
the requirement that Γ(U,R) consists of the continuous maps U → R, where R is equipped
with the discrete topology. Equivalently, the sections in Γ(U, XR) are the locally constant
maps U → R.

For any morphism φ ∈ HompShR
(S0, S1), any inclusion of open sets U ↪→ V and any

s ∈ S0(V ) we deduce from the commutative diagram (1.1) that

φV (s) = 0 =⇒ φU (s |U ) = 0.

Thus the restriction maps of S0 induce morphisms

|U : ker
(
S0(V )

φV−→ S1(V )
) → ker

(
S0(U)

φU−→ S1(U)
)
.

Hence the correspondence

U 7−→ (kerφ)(U) := ker
(
S0(U)

φU−→ S1(U)
) ⊂ S0(U)

defines a presheaf on X called the kernel of φ and denoted by kerφ.
Arguing in a similar fashion we deduce that the correspondence

U 7−→ (imφ)(U) := im
(
S0(Y )

φU−→ S1(U)
) ⊂ S1(U).

is a presheaf called the image of φ and denoted by imφ. Similarly we obtain presheaves

cokerφ = S1/ im φ, Γ(U, cokerφ) = S1(U)/φU ( S0(U) ),

coimφ = S1/ kerφ, Γ(U, coimφ) = S0(U)/ kerφU .

Note that we have a natural isomorphism of presheaves

coimφ → imφ.

This shows that pShR is naturally an Abelian category1.

1Recall that a category is called additive if HomC(X, Y ) has a natural structure of Abelian group, there
exists a zero object (i.e. simultaneously initial and terminal) and there exist finite direct sums. A category is
called Abelian if it is additive, every morphism φ has a kernel and cokernel, and the canonical map coim φ →
im φ is an isomorphism. For more details we refer to [1, 4, 5].
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Example 1.1. (a) Suppose X is a smooth manifold. For every open set U ⊂ X we denote by
A

p
X(U) (or Ap(U) if there is no confusion concerning X) the space of degree p, complex valued,

smooth, differential forms on U . In local coordinates (x1, · · · , xn) on U such a differential
form has the description

ω =
∑
α

ωαdxα, (1.2)

where the coefficients ωα are smooth, complex valued functions, the summation is carried
over all the ordered multi-indices α = (α1, · · · , αp) and

dxα = dxα1 ∧ · · · ∧ dxαp .

The exterior differential induces a natural morphism of presheaves

d : A
p
X → A

p+1
X .

If ω is as in (1.2) then

dω =
n∑

k=1

dxk ∧
(∑

α

∂ωα

∂xk
dxα

)
.

We obtain in this fashion a complex of presheaves

(A•
X , d) : A0

X
d→ · · · → A

p
X

d−→ A
p+1
X → · · ·

called the DeRham complex. As the case X = S1 shows this complex may not be acyclic. Note
that we can identify the constant presheaf C with the kernel of the morphism d : A0

X → A1
X .

(b) Suppose X is a complex manifold. For every open set U ⊂ X we denote by A
p,q
X (U) the

vector space of complex valued, smooth forms of bi-degree (p, q) on U . If we use holomorphic
coordinates (z1, · · · , zn) on U then ω ∈ A

p,q
X (U) has the local description

ω =
∑

α,β

ωαβdzα ∧ dz̄β, (1.3)

where the summation is carried over all ordered multi-indices α = (α1, · · · , αp), β = (β1, · · · , βq)
and

dzα = dzα1 ∧ · · · ∧ dzαp , dz̄β = dz̄α1 ∧ · · · ∧ dz̄βq .

We have natural morphisms of sheaves

∂ : A
p,q
X → A

p+1,q
X , ∂̄ : A

p,q
X → A

p,q+1
X .

If ω is as in (1.3) then

∂ω =
∑

x

dzk ∧
(∑

α,β

∂ωαβ

∂zk
dzα ∧ dz̄β

)

∂̄ω =
∑

x

dz̄k ∧
(∑

α,β

∂ωαβ

∂z̄k
dzα ∧ dz̄β

)

Note that
Am

X =
⊕

p+q=m

A
p,q
X and d = ∂ + ∂̄.
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From the equalities d2 = ∂2 = ∂̄2 = 0 we deduce that we can form a double complex

...
...

· · · Ap,q+1 Ap+1,q+1 · · ·

· · · Ap,q
Ap+1,q · · ·

...
...

w∂ w∂

u
∂̄

u
∂̄

w∂

w∂

u
∂̄

w∂

u
∂̄

w∂

u
∂̄

u
∂̄

(A•,•, ∂, ∂̄))

The rows and the columns of this complex are simple complexes called the Dolbeault com-
plexes. The total complex of this double complex is precisely the DeRham complex.

We denote by Ωp,q
X the kernel of ∂̄ : Ap,q → Ap,q+1. Ωp,q

X is called the (pre)sheaf of
holomorphic (p, q)-forms on X. Note that the sections of Ω0,0 are precisely the (locally
defined) holomorphic functions on X. This (pre)sheaf is usually denoted by OX and it is
called the structural (pre)sheaf of the complex manifold X. Note that the sequence

Ω0,0
X

∂→ Ω1,0
X → · · · → Ωp,0

X
∂→ Ωp+1,0

X → · · ·
is a complex of (pre)sheaves called the holomorphic DeRham complex. Note that on Ωm

X we
have d = ∂.

ut

2. Sheaves

Suppose that S ∈ pShR(X). Given any family U =
(
Ui

)
i∈I

of open subsets of X we set

|U| :=
⋃

i∈I

Ui, Uij = Ui ∩ Uj , Γ(U, S) =
{

(si)i∈I ∈
∏

i∈I

S(Ui); ∀i, j : si |Uij= sj |Uij

}
.

Note that we have a natural map

|U: Γ(|U|, S) → Γ(U, S), s 7−→ (
s |Ui

)
i∈Ui

.

In general this map is neither injective, nor surjective. A presheaf S is called a sheaf if for
any family U of open subsets of X the map |U is a bijection.

Example 2.1. Suppose X is a set equipped with the discrete topology (i.e. every subset is
open). For example X could be the set of integers equipped with the topology induced from
the Euclidean topology of the real axis. We consider the presheaves F and F̂ of C-vector
spaces on X defined by

Γ(S, F) =
⊕

s∈S

C, Γ(S, F̂) =
∏

s∈S

C.

The restriction maps are given by the natural projections. F̂ is a sheaf, while F is not.
ut
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To any presheaf S ∈ pShR(X) we can associate a sheaf F+ in the following canonical way.
First, for x ∈ X define the stalk of S in x to be the R-module

Sx = lim−→U3x
Γ(U, S),

By definition, for any open neighborhood U of x we have a map

[−]x : Γ(U, S) → Sx, s 7→ [s]x.

[s]x is called the germ of s at x. We now define Γ(U, S+) to be the subset of
∏

u∈U Su consisting
of families of germs (su)u∈U such that every u ∈ U there exist an open neighborhood V in U
and a section s̃ ∈ Γ(V, S) such that

[s̃]v = sv, ∀v ∈ V.

It is not hard to check that F+ is indeed a sheaf. It is also called the sheafification2 of F.
Note that by construction

Γ(U,F) ⊂ Γ(U,F+).

In Example 2.1 F̂ is the sheafification of F.
We can organize the collection of sheaves as a category ShR(X). The correspondence

F → F+ is a functor pShR(X) → ShR(X). Note that ShR(X) is by definition a full
subcategory of pShR(X) and thus we have an inclusion functor i : ShR(X) → pShR(X).

For any F ∈ pShR(X), G ∈ ShR(X) and φ ∈ HompShR
(F, G) there exists an induced

morphism φ+ ∈ HomShR
(F+, G). One can show that resulting map

HompShR
(F, G)−→HomShR

(F+,G)

is an isomorphism of R-module. We can write this as

HomShR
(F+,G) ∼=n HompShR

(
F, i(G)

)
, ∀F ∈ pShR(X), G ∈ ShR(X),

where ∼=n means the isomorphism in natural with respect to the ”variables” F and G. In
modern terms it says that + is the left adjoint of i.

Given F, G ∈ ShR and φ ∈ HomShR
(F,G) we can define kerφ, cokerφ, imφ, coimφ ∈

ShR(X) by sheafifying the corresponding constructions for presheaves. One can show that
ShR(X) is an Abelian category.

Any φ ∈ HomShR
(F,G) induces morphisms between stalks

φx ∈ HomR(Fx,Gx), ∀x ∈ X.

A short sequence F
φ→ G

ψ→ H of sheaves and morphism of sheaves is exact in ShR(X) if and
only if for every x ∈ X the sequence

Fx
φx−→ Gx

ψx−→ Hx

is exact in RMod. More explicitly this means that for every x ∈ X, any neighborhood U
of x and any section G ∈ Γ(U,G) such that ψU (g) = 0 there exists a neighborhood V ⊂ U
containing x and a section f ∈ Γ(V, F) such that

φV (f) = g |V .

If R is a sheaf of rings on X then we can define in an obvious fashion the category ShR(X)
of sheaves of R-modules.

2We refer to [1, II.4.12] or [7] for a more conceptual construction of the sheafification.
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For any sheaf S ∈ ShR(X), any open set U and any s ∈ Γ(U, S) we define the support of
s to be

supp s = {u ∈ U ; [s]0 6= 0}.
Note that supp s is closed in U with respect to the subspace topology on U .

Example 2.2. All the presheaves defined in Example 1.1 are sheaves of complex vector
spaces. If We denote by A = A0 the sheaf smooth complex valued functions on X then A is
naturally a sheaf of C algebras and Am is a sheaf of A-modules. ut

Theorem 2.3. (a) (Smooth Poincaré Lemma) Suppose X is a smooth manifold. Then
the smooth DeRham sequence

A0
X → · · · → Am

X
d−→ Am+1

X → · · ·
is exact ShC(X).
(b) (Dolbeault Lemma) Suppose X is a complex manifold. Then the Dolbeault sequences

A
•,0
X → · · · → A

•,q
X

∂̄→ A
•,q+1
X → · · ·

and
A

0,•
X → · · · → A

p,•
X

∂→ A
p+1,•
X → · · ·

are exact.
(c) (Holomorphic Poincaré Lemma) Suppose X is a complex manifold. Then the holo-
morphic DeRham complex

Ω0
X

∂→ · · · → Ωm
X

∂→ Ωm+1
X → · · ·

is exact.
ut

For a proof of this theorem we refer to [3].
Let us rephrase the above facts in the language of homological algebra. Suppose A is an

Abelian category and
(A•, d) := · · ·An d→ An+1 → · · · , n ∈ Z

is a co-chain complex. We denote its homology objects by H•(A, dA). We denote by Com(A)
the additive category of complexes of A objects. Then a morphism of cochain complexes
φ : (A•, dA) → (B•, dB) is called a quasi-isomorphism, or a resolution if it induces an isomor-
phism in homology. Every object A ∈ A defines a complex [A]

[A]n =
{

A if n = 0
0 if n 6= 0.

A complex (C•, d) is called a resolution of the object A if it is quasi-isomorphic to [A].
Suppose X is a smooth manifold. The smooth Poincaré lemma is equivalent to the state-

ment that the natural inclusion of XC in the DeRham complex (A•
X , d) is a resolution. If X

is a smooth manifold then the Dolbeault lemma shows that the inclusion

Ωp
X → (Ap,•

X , ∂̄)

is a resolution. Similarly, the holomorphic Poincaré lemma shows that the inclusion

XC ↪→ (Ω•X , ∂)

is a resolution.
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These resolutions of the constant sheaf use special features of the topology of X, such as
a smooth structure or a complex structure. We describe below a construction of a resolution
of an arbitrary sheaf on an arbitrary space.

Example 2.4 (The Godement resolution). Let X be a topological space. For every sheaf
F ∈ ShR(X) we denote by D(F) the sheaf defined by

Γ(U,D(F)) =
∏

u∈U

Fu.

In other words, the sections of D(f) are possibly discontinuous sections of F. Note that we
have an inclusion F → D(F). We can now describe inductively the Godement resolution
(F•, d). We set Fn = 0 for n < 0, F0 = D(f). Suppose we have already constructed
dn−1 : Fn−1 → Fn. Then we set

dn : Fn → coker dn−1 ↪→ D(coker dn−1) =: Fn+1.

ut

3. Direct and inverse images of sheaves

Suppose f : X → Y is a continuous map. We want to construct covariant functors

f∗ : ShR(X) → ShR(Y ), f−1 : ShR(Y ) → ShR(X),

called respectively the direct and inverse image functors. Given F ∈ ShR(X) we observe
that the presheaf f∗F given by

Y ⊃ V 7−→ Γ(V, f∗F) = Γ(f−1V, F)

is already a sheaf. Next, for g ∈ ShR(Y ) and any open set U ⊂ X we set

Γ(U, f−1G) = lim−→V⊃f(U)
Γ(V,G),

where in the above limit V ranges over the open neighborhoods of f(U) in Y . Then we define
f−1G to be the sheaf associated to the presheaf

X ⊃ U 7−→ Γ(U, f−1G).

Note that
(f−1G)x

∼= Gx, Γ(V, f∗f−1G) = Γ(f−1V, f−1G).
From the definition

Γ(f−1V, f−1G) = lim−→W⊃f(f−1V )
Γ(W,G)

we deduce the existence of a natural morphism

Γ(V,G) → Γ(f−1V, f−1G) = Γ(V, f∗f−1G)

This defines a natural morphism of sheaves α : G → f∗f−1G called the adjunction morphism.
Given a sheaf F ∈ ShR(X) and a morphism φ ∈ HomShR(X)(f−1G, f) we obtain a morphism
φv ∈ HomShR(Y )(G, f∗F) as the composition

G f∗f−1G

f∗F

[
[
[
[[]φv

wα

u

f∗(φ)
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Proposition 3.1. The correspondence φ 7−→ φv defines a natural isomorphism

HomShR(X)(f
−1G, F) ∼=n HomShR(Y )(G, f∗F), ∀F,G. (3.1)

ut

For a proof see [4, Thm. 4.8]. The above proposition states that f∗ is the right adjoint of
f−1. The next result follows easily from the definition.

Proposition 3.2. (a) f−1 is an exact functor while f∗ is only left exact, i.e. for every exact
sequence 0 → S′ → S → S′′ → 0 in ShR(X) the sequence

0 → f∗S′ → f∗S → f∗S′′

is exact in ShR(Y ).

(b) If X
f→ Y

g→ Z are continuous maps then we have equivalences of functors

(g ◦ f)∗ ∼= g∗ ◦ f∗, (g ◦ f)−1 ∼= f−1 ◦ g−1.

ut

Example 3.3. (a) Suppose c = cX → {pt} is the collapse map. Note that ShR(pt) = RMod
so the direct image gives a functor c∗ : ShR(X) → RMod. This is precisely the global
sections functor

ShR(X) 3 F 7−→ Γ(X, F).
Note that

c−1R ∼= XR, c∗c−1R = c∗(R) = Γ(X,R) ∈ RMod .

The adjunction morphism α : R → Γ(X,R) associates to each r ∈ R the constant section of
R equal to r.
(b) Consider the unit circle S1 = {z ∈ C; |z| = 1} and the double cover

p : S1 → S1, z 7→ z2.

We would like to understand p∗C. Note that for any connected subset U  S1 the preimage
p−1(U) consists of two connected components V± and thus

Γ(U, p∗C) ∼= Γ(p−1(U),C) ∼= Γ(V−,C)⊕ Γ(V+,C) ∼= C2.

On the other hand p−1(S1) = S1 and we deduce

Γ(S1, p∗C) = Γ(S1,C) ∼= C.

The sheaf p∗C is only locally constant. Its stalks are all isomorphic to C2 and for this reason
we say it is locally constant sheaf of complex vector spaces of rank 2. For the classification
of locally constant sheaves of vector spaces we refer to [4, §IV.9].
(c) Suppose x ∈ X and jx denotes the inclusion {x} ↪→ X. Then j−1

x F = Fx, ∀F ∈ ShR(X).
More generally, suppose S ⊂ X is a closed subset and j : S ↪→ X denotes the natural
embedding. For any sheaf F on X we set

FS := j∗j−1F ∈ ShR(X).

Note that for every open set V ⊂ X we have

Γ(V, FS) = Γ(V ∩ S, j−1F) = lim−→W⊃V ∩S
Γ(W,F).

Hence we conclude that

(FS)x
∼=

{
Fx if x ∈ S
0 if x 6∈ S

.
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The adjunction morphism α : F → j∗j−1F is called in this case the attachment map. We will
denoted it by aS . The induced morphism aS

x : Fx → (FS)x satisfies

aS
x =

{
1Fx if x ∈ S

0 if x 6∈ S
. (3.2)

We set U = X \ S, FU := kerα ∈ ShR(X). Note that

(FU )x
∼=

{
Fx if x ∈ U
0 if x 6∈ U

.

We have a fundamental exact sequence of sheaves

0 → FX\S → F → FS → 0. (3.3)

Note that if Z ⊂ X is either closed, or open, and F is a sheaf on X we have defined a
sheaf FZ whose stalks are trivial outside Z, and coincide with the stalks of F on Z. The
correspondence F → FZ is an exact covariant functor ShR(X) → ShR(X).

In general if X is a topological space and Z a subset of X then the following are equivalent.
(i) The subset Z is locally closed, i.e. it is the intersection of a closed set in X with an open
subset of X.
(ii) For every sheaf F on X there exists a sheaf FZ on X such that

(FZ)x =
{

0 if x ∈ X \ Z
Fx if x ∈ Z.

For a proof of this fact we refer to [2, II.2.9]. For example, the set

{z ∈ C; Im z > 0} ∪ {0}
is not locally closed.
(d) Suppose U ⊂ X is an open set and i : U ↪→ X denotes the natural inclusion. For any
sheaf F ∈ ShR(X) the inverse image i−1F is the restriction of F to U and it is often denoted
by F |U . We set

ΓUF := i∗i−1F ∈ ShR(X).
For any open set V ⊂ X we have

Γ
(
V,ΓUF

)
= Γ(V ∩ U,F).

This implies

(ΓUF)x
∼=

{
Fx if x ∈ U
0 if x ∈ X \ Ū

If x ∈ Ū \ U then it is possible that (ΓUF)x 6= 0. Take for example

X = R2, U = {(x, y); xy 6= 0}, x = (0, 0), F = AR2 . (3.4)

The function 1
xy is a section of ΓUA on R2 but it is not equal to a section of A in any

neighborhood of zero.
If U ′ is an open subset of U then we have a natural morphism ΓUF → ΓU ′F defined by

Γ(V, ΓUF) = Γ(U ∩ V,F) 3 f 7→ f |U ′∩V ∈ Γ(U ′ ∩ V,F) = Γ(V,Γ′UF).

We will denote this morphism as a restriction map, |UU ′ or |U ′ .
We set S = X \U and we denote by ΓSF ∈ ShS(X) the kernel of the adjunction morphism

α : F → i∗i−1F. The example (3.4) shows that α need not be onto. Since the functor i∗ is left
exact and i−1 is exact we deduce that for any open set U the functor ΓU : ShR(X) → ShR(X)
is left exact.
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The sheaf ΓSF can be alternatively characterized by

Γ(U,ΓSF) =
{
f ∈ Γ(U,F); supp f ⊂ S

}
.

We leave it as an exercise to prove that the functor ΓS : ShR(X) → ShR(X) is left exact.
The functors ΓS , ΓU : ShR(X) → ShR(X) defined above play an important role in local

cohomology.
ut

4. The Čech resolutions

Given a family (Fj)j∈J of sheaves of R-modules we denote by
∏

j∈J Fj the sheaf defined
by

Γ(U,
∏

j∈J

Fj) :=
∏

j∈J

Γ(U,FJ).

We want to point out that the natural morphism
(∏

j∈J Fj

)
x
→ ∏

j∈J(Fj)x need not be an
isomorphism.

Suppose U = (Ui)i∈I is an open cover of the topological space X. We fix a total order3 on
I. For every subset α ∈ I we define

Uα =
⋂

i∈α

Ui.

The nerve of the cover is the collection of all finite subset α ⊂ I such that Uα 6= ∅. For
α = {α0, · · · , αp} ∈ N(U) we set dimα := p. We will refer to such a set as a p-simplex. The
0-simplices are called vertices. We will write α = (α0, · · · , αp) when we want to indicate that
the vertices of α are arranged in increasing order. We set

Np(U) =
{
α ∈ N(U); dimα = p

}
.

The nerve is a simplicial complex in the sense that if β ∈ N(U) and α ⊂ β then α ∈ N(U).
For every α = (α0, · · · , αp) ∈ Np(U) and 0 ≤ i ≤ p we define its i-th face, or the face opposite
to the vertex αi to be the (p− 1)-simplex

Fiα = α \ {αi} ∈ Np−1(U).

Now define4

Cp(U,F) =
∏

α∈Np(U)

ΓUαF ∈ ShR(X).

and
δ : Cp(U, F) → Cp+1(U, F), δ =

∏

β∈Np+1(U)

δβ

where

δβ =
p+1∑

i=0

(−1)iδFiβ
β ,

3We can even choose a well ordering on a set, that is a total order such that every nonempty subset has
minimal element. The existence of such orderings on an arbitrary subset is equivalent to the axiom of choice.

4Our definition differs from that in [8, vol. I, §4.1.3]. That definition is incorrect since it uses direct sums
as opposed to direct products.
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and δFiβ
β is the composition

∏

α∈Np(U)

ΓUαF ΓUFiβ
F

ΓUβ
F

wπFiβ

(
(
(
(()

δ
Fiβ

β u

|Uβ
UFiβ

.

If V is an open subset of X then

Γ
(
V,Cp(U, F)

)
=

∏

α∈Np(U)

Γ(V ∩ Uα, F).

We can represent s ∈ Γ
(
V, Cp(U,F)

)
as a collection

{
s(α); α ∈ Np(U), s(α) ∈ Γ(V ∩ Uα,F)

}
.

Then we can represent δs as a collection { δs (β); β ∈ Np+1(U) } where

δs (β) =
p+1∑

i=0

(−1)is (Fiβ) |Uβ
=

p+1∑

i=0

(−1)is (β0, · · · , β̂i, · · · , βp+1) |U∩Uβ
∈ Γ(V ∩ Uβ, F).

Using the total ordering < on I we define for any vertex v ∈ β the integers

ν(v, β) = #
{

j ∈ β; j < v
}
, ε(v, β) = (−1)ν(v,β).

The integer ν(v, β) describes the position of the vertex v in the set β arranged in increasing
order. The definition of δ can be rewritten

δs (β) =
∑

v∈β

ε(v, β) · s (Fvβ) |Uβ
.

Note that we have a natural morphism of complexes

r : [F] → C•(U,F), Γ(V, F) 7→ (
f |V ∩Ui)i∈I ∈ C0(U, F).

Example 4.1. Suppose U = {U0, U1}. Then

C0(U, F) = ΓU0F × ΓU1F, C1(U, F) = ΓU01F.

For any open set V ⊂ X we have

Γ
(
V, C0(U, F)

)
= Γ(V ∩ U0, F)× Γ(V ∩ U1, F), Γ

(
V, C1(U, F)

)
= Γ(V ∩ U01, F)

and δ : Γ
(
V,C0(U, F)

) → Γ
(
V, C1(U,F)

)
is given by δ(s0, s1) = s0 |V ∩U01 −s1 |V ∩U01 . ut

Theorem 4.2. Suppose U is an open cover of the topological space X. F ∈ ShR(X) then
the natural morphism of complexes [F] → C•(U,F) is a resolution called the Čech resolution
determined by the open cover U. In other words the long sequence

0 → F
r−→ C0(U,F) → · · · → Cp(U, F) δ−→ Cp+1(U, F) → · · ·

is exact in ShR(X).
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Proof The exactness at F and C0 follows from the properties of a sheaf, namely that for
any open set the map

Γ(V, F) → Γ(V ∩ U, F)
is bijective. Let us prove the exactness at Cp, p ≥ 1.

It suffices to show that for every x ∈ X the sequence

Cp−1(U, F)x
δp−1−→ Cp(U, F)x

δp−→ Cp+1(U, F)x

is exact.
Let x ∈ X and sx ∈ Cp(U, F)x such that δpsx = 0. We can represent the germ sx by a

section s ∈ Γ(V,Cp(U, F), ), where V is an open neighborhood of x. By shrinking V if needed
we can assume that V is contained in some open set U` ∈ U. Set

St(x,U) :=
{
α ∈ N(U); V ∩ Uα 6= ∅}.

St(x,U) is a simplicial subcomplex of N(U). Note also that

α ∈ St(x,U) =⇒ U` ∩ Uα 6= ∅ =⇒ {`} ∪ α ∈ N(U).

This subcomplex is the star of the vertex ` in N(U) and in particular it is contractible. This
is essentially the reason for the acyclicity of the Čech complex.

We denote by Stm(x,U) the set of m-simplices in St(x,U) and by Stm(x,U)′ the set of
m-simplices which do not contain ` as a vertex. Note that we have a natural map

Stp−1(x,U)′ 3 α 7−→ ` ∗ α := {`} ∪ α ∈ Stp(x,U).

Geometrically, `∗α is the cone on α with vertex `. The germ sx is represented by a collection
of sections

s (α) ∈ Γ(V ∩ Uα, F), α ∈ Stp(X, U).
The condition δpsx = 0 is equivalent to

p+1∑

i=1

(−1)is (Fiβ) |V ∩Uβ
= 0, ∀β ∈ St(x,U)p+1.

Now define
σ ∈

∏

β∈Stp−1(x,U)

Γ(V, ΓUβ
F) =

∏

β∈Stp−1(x,U)

Γ(V ∩ Uβ,F)

σ (β) =
{

0 if ` ∈ β
ε(`, ` ∗ β) · s (` ∗ β) if ` 6∈ β

We want to prove that
δσ (α) = s (α), ∀α ∈ St(x,U).

We distinguish two cases.
• ` ∈ α so that α = {`, β1, · · · , βp} = ` ∗ β. Then

δσ (α) = ε(`, α)σ (β) = s (` ∗ β) = s (α).

• ` 6∈ α = (α0, · · · , αp). Then

δσ (α) =
p∑

j∈α

ε(j, α)σ (Fjα) |V ∩Uα=
p∑

i=0

ε(j, α) · ε(`, ` ∗ Fiα) · s (` ∗ Fiα) |V ∩Uα

= s (α)− δs (` ∗ α) = s (α).
Consider for example the situation depicted in Figure 1 where p = 2, the simplex α is
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1

2 3

0

Figure 1. A three-dimensional simplex.

(α0, α1, α2) = (0, 2, 3) (marked in green), and the vertex ` is ` = 1 (marked in red). The
condition that s is a cocycle translates into

0 = δs (0, 1, 2, 3) = s, (1, 2, 3)− s (0, 2, 3) + s (0, 1, 3)− s (0, 1, 2).

Note that for j > 1
σ, (0, j) = −s (0, 1, j),

while for j > i > 1 we have
σ (i, j) = s (1, i, j).

Then
δσ (0, 2, 3)〉 = σ (2, 3)− σ (0, 3) + σ (0, 2)

= s (1, 2, 3) + s (0, 1, 3)− s (0, 1, 2).
In view of the cocycle condition the last expression is equal to s (1, 2, 3).

ut

Remark 4.3. As explained in [5, §2.8], the Čech complex of sheaves associated to an open
cover and a sheaf is locally the cone complex of a morphisms between complexes. This
explains its acyclicity. ut

Suppose now S = (Si)i∈I is a locally finite closed cover of X. This means that the sets Si

are closed, their union is X and any point x ∈ X has a neighborhood which intersects only
finitely many of the sets Si. Fix a total order on I. The nerve N(S) of this cover is defined
as before. For every simplex α ∈ N(S) we set as before

Sα =
⋂
v∈α

Sv.

Note that if α ⊂ β ∈ N(S) then Sα ⊃ Sβ and we have a natural isomorphism FSβ
∼= (FSα)Sβ

.
In particular we have a natural attachment map aβ

α : FSα → FSβ
. Now define

Cp(S, F) :=
∏

α∈Np(S)

FSα and δp : Cp(S,F) → Cp+1(S,F), δ =
∏

β∈Np+1(S)

δβ,

where
δβ =

∑

v∈β

ε(v, β)aβ
Fvβ.

Note that we have a natural attachment map

aS : F → C0(S, F), aS =
∏

S∈S

aS .
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Theorem 4.4. Suppose X is a T3-space.5 If S = (Si)i∈I is a locally finite closed cover of X
then the long exact sequence of sheaves

0 → F
aS−→ C0(S,F) δ0−→ · · · δp−1−→ Cp(S, F) δp−→ · · ·

is exact. In other words, the morphism of complexes aS : [F] → C•(S, F) is a resolution of F

called the Čech resolution determined by the closed cover S.

Proof The injectivity of aS follows from the injectivity of the explicit description (3.2)
of the attachment maps. The fact that imaS = ker δ0 follows from the surjectivity of the
attaching maps aS . We need to check the exactness of

Cp−1(S, F)x
δ−→ Cp(S, F)x

δ−→ Cp+1(S, F)x,

for any x ∈ X. Let sx ∈ Cp(S, F)x such that δsx = 0. We can represent sx as the germ of
a section s ∈ Γ

(
U,Cp(S, F)

)
, where U is a very small neighborhood of x which intersects

finitely many Si’s. Since X is a T3 we can choose U small enough so that the set Si intersects
U if and only if it contains the point x. We let

Ix :=
{
i ∈ I; x ∈ Si}, Sx = (Si)i∈Ix , ` = min Ix.

Note that the simplicial complex N(Sx) is an elementary simplex. In particular it is con-
tractible. The section s is described by a family

s(α) ∈ Γ(U,FSα), α ∈ Np(Sx).

Now define
σ ∈

∏

β∈Np−1(Sx)

Γ(U,FSβ
) ⊂ Γ(U,Cp−1(S, F))

by setting

σ(β) =
{

0 if ` ∈ β
s(` ∗ β) if ` 6∈ β

A computation identical to the one in the proof of Theorem 4.2 shows that δσ = s.
ut

Suppose U is an open cover of the topological space X. The Čech resolution construction
associates to each sheaf F ∈ ShR(X) a complex C•(U, F) ∈ Com(ShR(X) ). This construc-
tion is functorial in the sense that any morphism of sheaves Φ : F0 → F1 induces a morphism
of complexes of sheaves

ΦU : C•(U, F0) → C•(U, F1)

satisfying all the functorial requirements. In particular, to every complex (F•, d) we can
associate a double complex

(
C•(U, F•), dI , dII

)
, dp

I = δp : Cp(U, F•) → Cp+1(U, F•)

dq
II = (−1)pd : Cp(U,Fq) → Cp(U, Fq+1).

5We use the conventions in [6, Chap. 4] so X is T3 if it is Hausdorff and for every point x and any closed
set S not containing x there exist disjoint neighborhoods of x and C in X. For example, all paracompact
spaces ar regular.
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