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Abstract

We introduce the right derived functors of the global section functor and describe
its’ main properties. We will present the basic methods of computing sheaf cohomology
and the relations with other cohomology theories such as Cech and singular cohomology.
Proofs (more or less detailed) of various important results e.g. Cech-de Rham and
Dolbeault theorems should form the core of this presentation. The main reference is
Voisin[2002](ch. 4)
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1 The global section functor

Let X be a topological space. Denote by ShX the category of sheaves of abelian groups
defined on X and by Abgr the category of abelian groups. ShX is an abelian category and
has enough injectives since every sheaf F P ShX can be mapped

F ãÑ
¹
xPX

Fx ãÑ
¹
xPX

Ix p�q

where the second map is the direct product of stalkwise injections Fx ãÑ Ix into injective
abelian groups, for which the sheaf of discontinuous sections

±
xPX Ix is easily seen to be

injective. Examples :

Recall that for a left exact functor F : A Ñ B between two abelian categories with A
having the extra property of possessing enough injectives we can construct the right de-
rived functors RiF : A Ñ B which takes an object a P A to the i-th cohomology object of
the complex obtained after applying F to an injective resolution of a. We will be concerned
exclusively with the global section functor

Γ : ShX Ñ Abgr

ΓpFq :� ΓpX,Fq :� FpXq
for which the derived functors have the classical notation:

H ipX,Fq :� RiΓpFq
Properties:

a) H0pX,Fq � ΓpX,Fq
b) HnpX,Fq � 0 @n   0
c) HnpX,Fq � 0 @i ¡ 0 & F injective pacyclicq
d) every short exact sequence

0Ñ F1 Ñ F Ñ F2 Ñ 0

gives rise to a long exact sequence:

Ñ H ipX,F2q Ñ H i�1pX,F1q Ñ H i�1pX,Fq Ñ H i�1pX,F2q Ñ
We recall the following basic property of the right derived functors of which we will

make extensive use:

Proposition 1.1. The right derived functors of a left exact functor F : A Ñ B can be
computed from any acyclic resolution, i.e. if

0Ñ a Ñ a0 Ñ a1 Ñ a2 Ñ
is a resolution of a P A such that RiF pajq � 0, @j,@i ¥ 1 then

RiF paq � H ipF pa
qq @i ¥ 1

2



The reason for which such a property is useful is that, in practice, it is pretty hard to
come up with concrete injective resolutions so one will try to use some other kind of acyclic
objects. In fact this idea can be very nicely formalized as follows. For a left exact functor
F as above we call a subcategory C � A, F -injective if it satisfies the following properties:
i) @a P A, D c P C and i : a ãÑ c monomorphism
ii) every exact sequence

0Ñ cÑ aÑ a1 Ñ 0

such that c P C induces an exact sequence

0Ñ F pcq Ñ F paq Ñ F pa1q Ñ 0

iii) for every exact sequence
0Ñ c1 Ñ c2 Ñ c3 Ñ 0

such that c1, c2 P C implies c3 P C

Every F -injective object is acyclic and the full subcategory of injective objects is F -injective
for any left exact functor F . Hence the whole construction of right derived functors can be
carried over with suitable chosen F -injective subcategories. (details in [Kashiwara 1990]).
It is indeed the case for the global section functor and the Γ-injective subcategory we’ll be
concerned in what follows is the category of flabby sheaves.

Definition 1.2. F P ShX is called flabby if for @V � U inclusions of open sets the restric-
tion FpUq³ FpV q is surjective.

Remark 1) It’s enough to ask that FpXq Ñ FpV q be surjective.
2) The sheaf of discontinuous sections

±
xPX Fx is flabby.

Proposition 1.3. A flabby sheaf is acyclic.

Proof: Let F be the flabby sheaf into consideration and let F ãÑ I be an inclusion into a
flabby injective sheaf (see �). We have a corresponding short exact sequence:

0Ñ F Ñ I Ñ G Ñ 0

Claim: IpUq Ñ GpUq is surjective for every open set U.
Consequences: i) G is flabby;
ii) H1pX,Fq � 0 since in the induced long exact sequence we have H1pX, Iq � 0 (in fact
H ipX, Iq � 0, @i ¥ 1) and ΓpX, Iq Ñ ΓpX,Gq surjective;
iii) from i) and ii) conclude that H1pX,Gq � 0 and use induction in the long exact sequence

Ñ H i�1pX, Iq Ñ H i�1pX,Gq Ñ H ipX,Fq Ñ H ipX, Iq Ñ

to infer that HkpX,Fq � Hk�1pX,Gq � 0 @k ¥ 1.
For the proof of the claim one uses a Zorn lemma argument (which won’t be given in
full detail) in the following way. Let α P GpUq be a section and let Aα � tpβ, V q | β P
IpV q, V � U and α|V � β via IpV q Ñ GpV qu. Then Aα is endowed with the obvious
order and one shows that a maximal element of Aα is indeed a pair pβ, Uq using the fact
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that @pβ1, V1q, pβ2, V2q P Aα, Dpβ3, V1YV2q P Aα such that β3|Vi � βi, i � 1, 2. ¥

The ”canonical” flabby resolution is usually called the Godement resolution and is de-
fined as follows:

0Ñ F ϕãÑ
¹
xPX

Fx
ψãÑ

¹
xPX
p Coker ϕxq ãÑ

¹
xPX
p Coker ψxq ãÑ

2 Sheaf cohomology and integral cohomology

For certain ”nice” spaces sheaf cohomology is really a natural generalization of the singular
cohomology. Let ZX denote the sheaf associated to the constant presheaf U Ñ Z (the
sheaf of locally constant functions) on the topological space X and H i

singpX,Zq the singular
cohomology groups with integer coefficients. Recall that a locally contractible topological
space X has the property that each point x P X has a basis consisting of contractible
neighborhoods. This section is dedicated to proving the following:

Proposition 2.1. If X is locally contractible then

H i
singpX,Zq � H ipX,ZXq

Proof: Let Cq be the sheaf associated to the presheaf of q-th singular cochains U Ñ
Cq

singpU,Zq.
Step 1 We prove first that:

0Ñ ZX Ñ C0 Ñ C1 Ñ
is a flabby resolution of ZX . The exactness in degree ¡ 0 is straightforward if we think that
for U contractible the following sequence is exact:

Cq�1
singpU,Zq BÑ Cq

singpU,Zq BÑ Cq�1
singpU,Zq

hence the same is true for the sequence of stalks:

Cq�1
sing, x

BxÑ Cq
sing, x

BxÑ Cq�1
sing, x

because X is locally contractible and so we can take the direct limit with respect to a basis
of contractible neighborhoods. In conclusion, the corresponding sequence for Cq is exact.
KerpC0 Ñ C1q � ZX follows again from the fact that X is locally contractible since for
every cocycle ϕ P C0

singpU,Zq with U contractible and for every two points x, y P U which
can be connected by a path α we get

0 � Bϕpαq � ϕpBαq � ϕpyq � ϕpxq
Therefore ϕ is locally constant and hence the same is true for every cocycle φ P C0, Bϕ � 0
for which we know that locally is a ϕ as above. The fact that Cq is flabby follows from the
fact that Cq

sing is flabby @q.
Step 2 There exists a natural (with respect to the restriction morphisms) isomorphism

Cq
singpV,Zq

Cq
singpV,Zq0

�ÝÑ CqpV,Zq
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where Cq
singpV,Zq0 :� tϕ P Cq

singpV,Zq| D V � pViqiPI open covering of V such that
ϕ|CqpVi,Zq � 0u
To see this consider the natural morphism:

ϕ P Cq
singpV,Zq �Ñ CqpV,Zq Q ϕ�

Then ϕ� � 0ô ϕ|Vi � 0 for some open covering pViqiPI of V ,ô ϕ|CqpVi,Zq � 0. So the kernel
of the map is just Cq

singpV,Zq0. To see surjectivity take β P CqpV,Zq and let β̃i P Cq
singpVi,Zq

such that β|Vi � β̃i, for some open covering pViqiPI of V . Define β̃ : CqpV,Zq Ñ Z by

β̃pαq �
"

β̃ipαq if Im α � Ui for some Ui;
0 otherwise.

It is well defined since β̃ipαq � β̃jpαq if Im pαq � Vi X Vj . Moreover β � β̃�.
Step 3 The complexes C�singpX,Zq and C�singpX,Zq{C�singpX,Zq0 are quasi-isomorphic. This
is essentially the theorem of small chains. Let us fix one covering V � pViqiPI of X. If
we denote by CV� pX,Zq the chain complex which has as generators singular p-simplexes
σ : 4p Ñ X with the image contained in some Vi P V then a well known result (see for
example Spanier[1966], pag 178) says that the inclusion CV� pX,Zq Ñ C�pX,Zq is a chain
equivalence (i.e. equivalence in the homotopy category). Hence the same is true about
the dual map πV : C�singpX,Zq Ñ CV �

singpX,Zq. Now Ker πV � CV �
singpX,Zq0 is the set of

cochains which are zero when restricted to C�pVi,Zq for every i P I. The chain equivalence
says that the complex Ker πV is acyclic. We can now take the direct limit after V in the
exact sequence:

0Ñ Ker πV ÝÑ C�singpX,Zq πVÝÑ CV �
singpX,Zq Ñ 0

and use the fact that Ker π � C�singpXq0 is still acyclic (π � limÝÑ πV) to finish the proof.
Step 4

HqpX,ZXq � HqpC�pXqq � HqpC�singpX,Zq{C�singpX,Zq0q � HqpC�singpX,Zqq � Hq
singpX,Zq¥

The same theorem is valid for any constant coefficients.

3 Soft and fine sheaves

Until now we have worked in full generality. In this section we restrict our attention to
paracompact topological spaces. We make this restriction because in our applications the
space X will always be paracompact.

Definition 3.1. A sheaf F on a paracompact topological space X is called soft if FpXq Ñ
FpKq is surjective for every closed set K, where FpKq � ΓpK,F |Kq.

A sheaf F is called fine if the sheaf HompF ,Fq is soft.

We make some important remarks. The first is that every fine sheaf is soft. If A is a soft
sheaf of rings with unit (we’ll take here as a definition for the unit to be a global section
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which restricted to any open subset is also a unit) and F is a sheaf of A-modules then F is
fine. Moreover we have the following equivalent definitions:
soft: for every K closed and for every s P F and every locally finite covering pUαqα of K in
X there exists sα P FpXq with supp sα � Uα such that s � °

sα|K
fine: in the case A is a sheaf of rings with unit: there exists a partition of unity subordinate
to any locally finite covering pUαqα of X, i.e. there exists sα P ApXq with supp sα � Uα

such that
°

sα � 1. In what follows F will always be supposed to be a sheaf of A-modules.

Details can be found in (Bredon [1967])

Proposition 3.2. If F is fine sheaf then H ipX,Fq � 0, i.e. F is acyclic.

Proof: We take the Godement resolution of F , complex which we denote by I
. We have :

H ipX,Fq � Ker pΓpX, Iiq Ñ ΓpX, Ii�1qq{Im pΓpX, Ii�1q Ñ ΓpX, Iiqq
We want to show that if α P ΓpX, Iiq is an i-cocycle then it is also a coboundary. To begin
with, we note that, for some local covering pUjqjPJ , α can be written

α|Uj � dαj

where αj P Ii�1pUjq. This is just the exactness of the resolution I
 . Now we can suppose
without loss of generality that pUjqjPJ is locally finite. Take a partition of unity pfjqjPJ
subordinate to this covering with fj P ApXq and denote by

α̃ :�
¸

fjαj

where by fjαj we mean a global section which equals 0 outside Uj and αjfj |Uj on Uj (stalk-
wise, of course). It’s easy to check that writing α � °

fjα|Uj we get dα̃ � α. ¥

Examples:
1) The sheaf of continuous functions on a paracompact space is soft. This follows from the
fact that every paracompact space is normal and from Tietze’s extension theorem.
2) Let X be a smooth manifold. Then the sheaves of smooth differential forms Ωp, p � 0, 1...
are fine since they are sheaves of modules over Ωp :� C8 which has a partition of unity
property.
3) Let X be a complex manifold, E a holomorphic vector bundle and Ap,qpEq :� Ap,q b E :
the sheaves of pp, qq differential forms with values in E. All these are fine sheaves.

We have two important corollaries of what has been just said.

Theorem 3.3. (de Rham) Let X be a smooth manifold. Then

Ker d : ΩkpXq Ñ Ωk�1pXq
Im d : Ωk�1pXq Ñ ΩkpXq � HkpX,Rq � Hk

singpX,Rq

Theorem 3.4. Let X be a complex manifold and E a holomorphic vector bundle. Then

HqpX, Eq � Ker B̄ : A0,q Ñ A0,q�1

Im B̄A0,q�1 Ñ A0,q
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We state separately the particular case when E ��p T �X, T �X being the holomorphic
cotangent bundle :

Theorem 3.5. (Dolbeault)
HqpX, Ωpq � Hp,q

B̄ pXq

4 C̆ech cohomology

The subject of this section is what was first called sheaf cohomology. It is still the way that
some authors prefer to introduce the topic rather than via the derived functors approach.
The connection between the two is given in the Leray theorem. We’ll see in a moment what
it says.

Let X be a topological space and F P ShX . Let U � pUiqiPI be a covering with open
sets of X such that the index set I is well ordered. For every J � I subset with q � 1
elements we denote by UJ :� �

iPJ Ui and by FUJ
the sheaves on X:

FUJ
pV q :� FpUJ X V q, @V � �

V� X

These sheaves can alternatively be defined by taking the pull-back followed by the direct
image of F under the inclusion UJ ãÑ X Consider the sequence:

0Ñ F Ñ
¹
iP I

FUi Ñ
¹
|J |�2

FUJ
Ñ

where the boundary maps are defined as follows. Denote by Fq the sheaf
±
|J |�q�1FUJ

. Let
σ � pσJqpσJq P FpV XUJq for some J � I with |J | � q�1. Then define pBσqJ̃ P FpV XUJ̃q,
where J̃ � tj0, ..., jq�1u, j0   ...   jq�1 :

pBσqJ̃ �
i̧

p�1qiσJ̃�tjiu|VXUJ̃

It’s not hard to see, although a bit messy, that the above sequence is a resolution of the
sheaf F . It is called the C̆ech resolution with respect to the covering U . The groups:

Ȟq
U pX,Fq :� HqpF�pXqq

are called the C̆ech cohomology groups relative to the covering U (no surprise about that).

We have the following:

Theorem 4.1. If the covering U has the property that HqpUJ ,Fq � 0 for every q ¥ 1 and
for every UJ � XiPJUi, J finite, then

HqpX,Fq � Ȟq
U pX,Fq, @q ¥ 0
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Proof: We look at the following double complex:

0 Ñ I1 Ñ I1,0 Ñ I1,1

Ò Ò Ò
0 Ñ I0 Ñ I0,0 Ñ I0,1

Ò Ò Ò
0 Ñ F Ñ F0 Ñ F1

Ò Ò Ò
0 0 0

where on the first column we have a flabby resolution of F and each row represents the
Cech resolution of the sheaf Iq with respect to the covering U . The up-going arrows are
obtained from the functoriality of the Cech resolution. Let Kq � `p�l�q Ip,l be the simple
complex associated to I
,
. The first thing to notice is that K is a flabby resolution of
F . On one side, we get that the property of being flabby is preserved under the following
operations with sheaves: sum, product, restriction(pull-back) to an open set, direct image
with respect to a continuous function. Hence we infer that each Ip,l is flabby and therefore
each Kq is flabby. On the other side the complex has exact rows and a well-known fact
about double complexes says that in this situation the cohomology of the first column is
the cohomology of the simple complex. The first column is a resolution of F so the same
must be true about the simple complex. It follows that we can compute the cohomology of
F from this resolution.

HqpX,Fq � HqpK
pXqq
In order to achieve that we look at the double complex of global sections:

0 Ñ I1pXq Ñ I1,0pXq Ñ I1,1pXq
Ò Ò Ò

0 Ñ I0pXq Ñ I0,0pXq Ñ I0,1pXq
Ò Ò Ò

0 Ñ FpXq Ñ F0pXq Ñ F1pXq
Ò Ò Ò
0 0 0

We notice that the columns are exact. This is a consequence of the fact that the cohomology
groups of each ”column complex” is a product of groups of the type HqpUJ ,Fq, which are
assumed to be zero for our covering U . Hence the cohomology of the first row equals the
cohomology of the simple complex. In our case this means:

Ȟq
U pX,Fq � HqpK
pXqq

Together with what has been just said we get the desired isomorphism. ¥

We state without proof the following proposition:

Proposition 4.2. If X is Hausdorff then

limÝÑ Ȟq
U pX,Fq � HqpX,Fq.

the direct limit being taken ”in” the set of all coverings U which can be seen as a directed
set with respect to the operation of refinement.
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