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Introduction

My task which I am trying to achieve is by the power of
the written word, to make you hear, to make you feel - it
is, before all, to make you see. That - and no more, and
it 1s everything.

Joseph Conrad

Almost two decades ago, a young mathematician by the name of Si-
mon Donaldson took the mathematical world by surprise when he discov-
ered some “pathological” phenomena concerning smooth 4-manifolds. These
pathologies were caused by certain behaviours of instantons, solutions of the
Yang-Mills equations arising in the physical theory of gauge fields.

Shortly after, he convinced all the skeptics that these phenomena rep-
resented only the tip of the iceberg. He showed that the moduli spaces
of instantons often carry nontrivial and surprising information about the
background manifold. Very rapidly, many myths were shattered.

A flurry of work soon followed, devoted to extracting more and more
information out of these moduli spaces. This is a highly nontrivial job,
requiring ideas from many branches of mathematics. Gauge theory was
born and it is here to stay.

In the fall of 1994, the physicists N. Seiberg and E. Witten introduced
to the world a new set of equations which according to physical theories had
to contain the same topological information as the Yang-Mills equations.

From an analytical point of view these new equations, now known as
the Seiberg-Witten equations, are easier to deal with than the Yang-Mills
equations. In a matter of months many of the results obtained by studying
instantons were re-proved much faster using the new theory. (To be perfectly
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xiv Introduction

honest, the old theory made these new proofs possible since it created the
right mindset to think about the new equations.) The new theory goes
one step further, since it captures in a more visible fashion the interaction
geometry-topology.

The goal of these notes is to help the potential reader share some of
the excitement afforded by this new world of gauge theory and eventually
become a player him/herself.

There are many difficulties to overcome. To set up the theory one needs
a substantial volume of information. More importantly, all this volume of
information is processed in a nontraditional way which may make the first
steps in this new world a bit hesitant. Moreover, the large and fast-growing
literature on gauge theory, relying on a nonnegligible amount of “folklore”?,

may look discouraging to a beginner.

To address these issues within a reasonable space we chose to present a
few, indispensable, key techniques and as many relevant examples as pos-
sible. That is why these notes are far from exhaustive and many notable
contributions were left out. We believe we have provided enough back-
ground and intuition for the interested reader to be able to continue the
Seiberg-Witten journey on his/her own.

It is always difficult to resolve the conflict clarity vs. rigor and even
much more so when presenting an eclectic subject such as gauge theory. The
compromises one has to make are always biased and thus may not satisfy
all tastes and backgrounds. We could not escape this bias, but whenever a
proof would have sent us far astray we tried to present all the main concepts
and ideas in as clear a light as possible and make up for the missing details
by providing generous references. Many technical results were left to the
reader as exercises but we made sure that all the main ingredients can be
found in these notes.

Here is a description of the content. The first chapter contains prelim-
inary material. It is clearly incomplete and cannot serve as a substitute
for a more thorough background study. We have included it to present in
the nontraditional light of gauge theory many classical objects which may
already be familiar to the reader.

The study of the Seiberg-Witten equations begins in earnest in Chapter
2. In the first section we introduce the main characters: the monopoles,
i.e. the solutions of the Seiberg-Witten equations and the group of gauge
transformations, an infinite dimensional Abelian group acting on the set of
monopoles. The Seiberg-Witten moduli space and its structure are described
in Section 2.2 while the Seiberg-Witten invariants are presented in Section

I That is, basic facts and examples every expert knows and thus are only briefly or not at all
explained in a formal setting. They are usually transmitted through personal interactions.
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2.3. We have painstakingly included all the details concerning orientations
because this is one of the most confusing aspects of the theory. We conclude
this chapter with two topological applications: the proof by P. Kronheimer
and T. Mrowka of the Thom conjecture for CP? and the new proof based
on monopoles of Donaldson’s first theorem, which started this new field of
gauge theory.

In Chapter 3 we concentrate on a special, yet very rich, class of smooth
4-manifolds, namely the algebraic surfaces. It was observed from the very be-
ginning by E. Witten that the monopoles on algebraic surfaces can be given
an explicit algebraic-geometric description, thus opening the possibility of
carrying out many concrete computations. The first section of this chapter
is a brief and informal survey of the geometry and topology of complex sur-
faces together with a large list of examples. In Section 3.2 we study in great
detail the Seiberg-Witten equations on Kéahler surfaces and, in particular,
we prove Witten’s result stating the equivalence between the Seiberg-Witten
moduli spaces and certain moduli spaces of divisors. The third section is
devoted entirely to applications. We first prove the nontriviality of the
Seiberg-Witten invariants of a K&hler surface and establish the invariance
under diffeomorphisms of the canonical class of an algebraic surface of gen-
eral type. We next concentrate on simply connected elliptic surfaces. We
compute all their Seiberg-Witten invariants following an idea of O. Biquard
based on the factorization method of E. Witten. This computation allows
us to provide the complete smooth classification of simply connected elliptic
surfaces. In §3.3.3, we use the computation of the Seiberg-Witten invariants
of K 3-surfaces to show that the smooth h-cobordism theorem fails in four di-
mensions. We conclude this section and the chapter with a discussion of the
Seiberg-Witten invariants of symplectic 4-manifolds and we prove Taubes’
theorem on the nontriviality of these invariants in the symplectic world.

The fourth and last chapter is by far the most technically demanding
one. We present in great detail the cut-and-paste technique for comput-
ing Seiberg-Witten invariants. This is a very useful yet difficult technique
but the existing written accounts of this method can be unbalanced as re-
gards their details. In this chapter we propose a new approach to this
technique which in our view has several conceptual advantages and can be
easily adapted to other problems as well. Since the volume of technicalities
can often obscure the main ideas we chose to work in a special yet suffi-
ciently general case when the moduli spaces of monopoles on the separating
3-manifold are, roughly speaking, Bott nondegenerate.

Section 4.1 contains preliminary material mostly about elliptic equa-
tions on manifolds with cylindrical ends. Most objects on closed manifolds
have cylindrical counterparts which often encode very subtle features. We



xvi Introduction

discovered that a consistent use of cylindrical notions is not only aesthet-
ically desirable, but also technically very useful. The cylindrical context
highlights and coherently organizes many important and not so obvious as-
pects of the whole gluing problem. An important result in this section is
the Cappell-Lee-Miller gluing theorem. We adapt the asymptotic language
of [110], which is extremely convenient in gluing problems. This section
ends with the long subsection §4.1.6 containing many useful and revealing
examples. These are frequently used in gauge theory and we could not find
any satisfactory reference for them.

In Section 4.2 we study the finite energy monopoles on cylindrical man-
ifolds. The results are very similar to the ones in Yang-Mills equations and
that is why this section was greatly inspired by [96, 133].

Section 4.3 is devoted to the local study of the moduli spaces of finite
energy monopoles. The local structure is formally very similar to that in
Yang-Mills theory with a notable exception, the computation of the virtual
dimensions, which is part of the folklore. We present in detail this com-
putation since it is often relevant. Moreover, we describe some new exact
sequences relating the various intervening deformation complexes to objects
covered by the Cappell-Lee-Miller gluing theorem. These exact sequences
represent a departure from the mainstream point of view and play a key role
in our local gluing theorem.

Section 4.4 is devoted to the study of global properties of the moduli
spaces of finite energy monopoles: generic smoothness, compactness (or lack
thereof) and orientability. The orientability is no longer an elementary issue
in the noncompact case and we chose to present a proof of this fact only in
some simpler situations we need for applications.

Section 4.5 contains the main results of this chapter dealing with the pro-
cess of reconstructing the space of monopoles on a 4-manifold decomposed
into several parts by a hypersurface. This manifold decomposition can be
analytically simulated by a neck stretching process. During this process,
the Seiberg-Witten equations are deformed and their solutions converge to
a singular limit. The key issue to be resolved is whether this process can
be reversed: given a singular limit can we produce monopoles converging to
this singular limit?

In his dissertation [99], T. Mrowka proved a very general gluing theo-
rem which provides a satisfactory answer to the above question in the related
context of Yang-Mills equations. In §4.5.2, we prove a local gluing theorem,
very similar in spirit to Mrowka’s theorem but in an entirely new context.
The main advantage of the new approach is that all the spectral estimates
needed in the proof follow immediately from the Cappell-Lee-Miller gluing
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theorem. Moreover, the Mayer-Vietoris type local model is just a reformu-
lation of the Cappell-Lee-Miller theorem. The asymptotic language of [110]
has allowed us to provide intuitive, natural and explicit descriptions of the
various morphisms entering into the definition of this Mayer-Vietoris model.

The local gluing theorem we prove produces monopoles converging to a
singular limit at a certain rate. If all monopoles degenerated to the singular
limit set at this rate then we could conclude that the entire moduli space on
a manifold with a sufficiently long neck can be reconstructed from the local
gluing constructions. This issue of the surjectivity of the gluing construction
is conspicuously missing in the literature and it is quite nontrivial in non-
generic situations. We deal with it in §4.5.3 by relying on Lojasewicz’s
inequality in real algebraic geometry.

In §4.5.4 we prove two global gluing theorems, one in a generic situation
and the other one in a special, obstructed setting.

Section 4.6 contains some simple topological applications of the gluing
technique. We prove the connected sum theorem and the blow-up formula.
Moreover, we present a new and very short proof of a vanishing theorem of
Fintushel and Stern.

These notes were written with a graduate student in mind but there are
many new points of view to make it interesting for experts as well (especially
our new approach to the gluing theorem). The minimal background needed
to go through these notes is a knowledge of basic differential geometry,
algebraic topology and some familiarity with fundamental facts concerning
elliptic partial differential equations. The list of contents for Chapter 1 can
serve as background studying guide.

X 3k %

Personal note. 1 have spent an exciting time of my life thinking and
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Chapter 1

Preliminaries

The last thing one knows in constructing a work is what
to put first.

Blaise Pascal, Pensées

The first chapter contains a fast and unavoidable biased survey of some
basic facts needed in understanding Seiberg-Witten theory. The choices in
this minimal review reflect the author’s background and taste and may not
answer everyone’s needs. We hope the generous list of references will more
than make up for the various omissions.

This introductory chapter has only one goal, namely to familiarize the
reader with the basic terms and points of view in the Seiberg-Witten world
and cannot serve as a substitute for a solid background.

1.1. Bundles, connections and characteristic
classes

1.1.1. Vector bundles and connections. Smooth vector bundles for-
malize the notion of “smooth family of vector spaces”. For example, given
a smooth manifold M and a vector space F' we can think of the Cartesian
product

F=Fy=FxM

1
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as a smooth family (F,),ens of vector spaces. This trivial example is not
surprisingly called the trivial vector bundle with fiber F' and base M.

We can obtain more interesting examples by gluing these simple ones
using gluing data. These consist of

A. an open cover (U,) of a smooth manifold M,

B. a gluing cocycle, i.e. a collection of smooth maps
9pa - Uaﬂ — Aut (F)
(where U,g = Uy N Up), such that

Gaa(®) =1p, gya = g48() - gga(z) Vo € Uppy = U NUz N U, # 0.
The open cover U, is also known as a trivializing cover. We will also say it
is the support of the gg,.

The map gg, describes the “transition from F, := Fy; to F3” in the
sense that for every x € U,g the element (v,z) € F, is identified with the
element (ggq(7)v, z) € F 3. Pasting together the trivial bundles I, following
the instructions given by the gluing cocycle we obtain a smooth manifold
E (called the total space), a smooth map 7w : E — M (called the canonical
projection) and diffeomorphisms

Q/)a : W_l(UOé) - Ea
(called local trivializations) such that for all x € Uy, v € V
¢ﬂ © ¢;1(Ua :E) = (gﬂa(x)va l‘)

E 5 M as above is called a vector bundle over M. The rank of E is by
definition the dimension of the standard fiber F' (over its field of scalars).
Rank-one bundles are also known as line bundles.

Example 1.1.1. Consider the projective space CP" defined as the set of
one-dimensional complex subspaces of C"*!. There is a natural projection
7 :C"\ {0} — CP"
where 7(x) := the one-dimensional subspace spanned by x. The fibers

7 '(p), p€CP",

are vector subspaces of C"*!. The family 7=!(p) is indeed a smooth family
of vector spaces in the sense described above. It is called the tautological
(or universal) line bundle over the projective space and is denoted by U,,.

Exercise 1.1.1. Describe a gluing cocycle for U,.
Suppose that X ERN Y is a smooth map and E — Y is a smooth vector

bundle given by a gluing cocycle gg, supported by an open cover (U,) of
Y. Then f induces a vector bundle on X called the pullback of E by f and
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denoted by f*E. It is given by the open cover (V, = f~!(U,)) and gluing
cocycle hgo = gga © f.

The following exercise describes a very general procedure of constructing
smooth vector bundles.

Exercise 1.1.2. Consider a smooth map P from a compact, connected,
smooth manifold X to the space End (V) of endomorphisms of a vector
space V such that P?(z) = P(z) Vx € X, i.e. P(z) is a smooth family of
projectors of V.

(a) Show that dimker P(z) is independent of x € X. Denote by k this
common dimension.

(b) Show that the assignment z — ker P(z) defines a rank-k smooth vector
bundle over X.

(c) Provide a projector description of the tautological line bundle over CP".

(d) Show that any map X — V*\ {0} defines in a canonical way a vector
bundle over X of rank dim V' — 1.

Remark 1.1.2. Denote by G (V') the Grassmannian of k-dimensional sub-
spaces of an n-dimensional vector space V. Assume V is equipped with an
inner product. For each k-dimensional subspace U C V denote by Py the
orthogonal projection onto U+. The smooth family

Gr,(V)sUw— Py

defines according to the previous exercise a rank-k vector bundle over G (V)
called the universal vector bundle and denoted by Uj,,. When k£ = 1 this is
precisely the tautological line bundle over RP*~! or CP"~!.

Exercise 1.1.3. Suppose that z — P(X) is a smooth family of projectors
of a vector space V parameterized by a connected smooth manifold X. Set
k = dimker P(z) and n = dim V' and denote by f the map

f:X — Gg(V), z+ ker P(z) € Gi(V).

Show that f is smooth and that the pullback of Uy, by f coincides with
the vector bundle defined by the family of projections P(x).

A smooth map s from a smooth manifold X to a vector space F' is a
smooth selection of an element s(x) in each fiber F' x x of F. In other words,
it is a smooth map s : X — Fy such that mos =1x where 7 : F'y — X
is the natural projection. Replacing F'y with any smooth vector bundle
E 5 X we get the notion of smooth section of E. The space of smooth
sections of E will be denoted by I'(E) or C*°(E). In terms of gluing cocycles
we can describe a section as a collection of smooth maps

Sq Uy — F
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such that
55(2) = gga(z)sa(r), Vo € UsNUs.

The functorial operations in linear algebra have a vector bundle coun-
terpart. Suppose E; 5 X (i = 1,2) are two vector bundles over X with
standard fibers F}, © = 1,2, given by gluing cocycles gg,.; along the same
support. For example, the direct sum F; @& F5 corresponds to the direct
(Whitney) sum Ey @ Ey given by the gluing cocycle gga:1 @ ggas2-

The dual vector bundle Ef is defined by the gluing cocycle (gga;l)*1

Wy

where “x” denotes the conjugate transpose.

We can form tensor products, symmetric, exterior products of
vector bundles, etc. In particular, the bundle ET ® Ey will be denoted
by Hom (Ey, E3). Its sections are bundle morphisms, i.e. smooth maps
T : By — FE; mapping the fiber Ej(x) of E; linearly to the fiber Es(z) of
Es;. When Ey = E5 = E we use the notation End (F). If the induced mor-
phisms T'(z) are all isomorphisms then 7T is called a bundle isomorphism. A
bundle automorphism of a vector bundle E is also called a gauge transfor-
mation. The group of bundle automorphisms of E is denoted by §(F) and
is known as the gauge group of E.

Exercise 1.1.4. Suppose L — X is a smooth complex line bundle over X.
Show that
S(L) = C>(M,C7).

The line bundle A™2%(F1) B, is called the determinant line bundle of Eq
and is denoted by det Ej.

If E — X is an R-vector bundle then a metric on E is a section h of
Symm?(E*) such that h(z) is positive definite for every 2 € X. If E is
complex one defines similarly Hermitian metrics on E. A Hermitian bundle
is a vector bundle equipped with a Hermitian metric.

The next exercise will show how to use sections to prove that any com-
plex line bundle over a compact manifold is the pullback of the universal
line bundle over a complex projective space.

Exercise 1.1.5. Suppose M is a smooth compact manifold and E — M is
a complex line bundle. A subspace V' C C°(E) is said to be ample if for
any x € M there exists u € V such that u(x) # 0.

(a) Show that there exist finite-dimensional ample subspaces V' C C*®°(E).

(b) Let V' be a finite-dimensional ample subspace of C*°(E). For each z € M
set

Ve ={veV; v(z) =0}
Equip V' with a Hermitian metric and denote by P(z) : V. — V the or-
thogonal projection onto V.. Show that dimker P, = 1 and the family of
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projections {P(x); = € M} is smooth. As in Exercise 1.1.2(b) we obtain a
complex line bundle Ey — V.

(c) Show that the line bundle E is isomorphic to Ey. In particular, this
shows that F is the pullback of a universal line bundle over a projective
space.

(d) Suppose that f,g : M — CP" are two (smoothly) homotopic maps.

Denote by Ef (resp. Ey) the pullbacks of the universal line bundle U,, via
f (resp. g). Show that E; = E.

Remark 1.1.3. For every smooth manifold M denote by Pic®™ (M) the
space of isomorphism classes of smooth complex line bundles over M and by
[M,CP"]| the set of (smooth) homotopy classes of smooth maps M — C™.
This is an inductive family

[M7(CP1]OO — [Ma (C]P)2}OO e

and we denote by [M, CP*] its inductive limit. The above exercise shows
that if M is compact we have a bijection

Pic™ (M) = [M, CP™).,.

The tensor product of line bundles induces a structure of Abelian group on
Pic®(M). Since the inductive limit CP* of the CP"’s is a K (Z, 2)-space we
can conclude that we have an isomorphism of groups

A% Pic>®(M) — H*(M, 7).

For any L € Pic™®(M) the element ¢/°P(L) is called the topological first Chern
class of L.

One is often led to study families of vector spaces satisfying additional
properties such as vector spaces in which vectors have lengths and pairs of
vectors have definite angles (as in Euclidean geometry). According to Felix
Klein’s philosophy, this is the same as looking at the symmetry group, i.e.
the subgroup of linear maps which preserve these additional features. In
the above case this is precisely the orthogonal group. If we want to deal
with families of such spaces then we must impose restrictions on the gluing
maps: they must be valued in the given symmetry group. Here is one way
to formalize this discussion. Suppose we are given the following data.

e A Lie group G and a representation
p:G — End(F).
e A smooth manifold X and open cover U,.
e A G-valued gluing cocycle, i.e. a collection of smooth maps

9Ba * Ua,B — G
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such that gaa(z) =1 € G Vo € U, and
9ra() = gy5(2) - gpa(T) Vo € Unpy-
Then the collection

p(9pa) : Uap — End (F)

defines a gluing cocycle for a vector bundle E with standard fiber F' and
symmetry group G. The vector bundle F is said to have a G-structure.

Remark 1.1.4. Differential geometers usually phrase the above construc-
tion in terms of principal G-bundles. Given a gluing G-cocycle as above
we can obtain a smooth manifold P as follows. Glue the product G x U,
to G x Ug along U,p using the following prescription: for each x € U,g
the element (g,z) in G x U, is identified with the element (ggo(z) - g,2) in
G x Ug. We obtain a smooth manifold P and a smooth map 7 : P — X
whose fibers 771(z) are diffeomorphic to the Lie group G. This is called
the principal G-bundle determined by the gluing G-cocycle gg,. The above
vector bundle E' is said to be induced from P via the representation p and
we write this as P x, F'. For more details we refer to vol. 1 of [64].

Exercise 1.1.6. Show that the above manifold P comes with a natural free,
right G-action and the space of orbits can be naturally identified with X.

Exercise 1.1.7. Regard S?"*! as a real hypersurface in C"*! given by the
equation |29|? + |21]? + - - - |2n|? = 1. The group

Sl={e";teR}cC*
acts on S?"*1 by scalar multiplication. The quotient of this action is obvi-
ously CP".
(a) Show that S?"*1 — CP" is a principal S'-bundle. (It is known as the
Hopf bundle.

(b) Show that the line bundle associated to it via the tautological represen-
tation S' — Aut (C!) is precisely the universal line bundle U,, over CP".

Exercise 1.1.8. Show that any metric on a rank-n real vector bundle nat-
urally defines an O(n)-structure.

To exist as a subject, differential geometry requires a way to differentiate
the objects under investigation. This is where connections come in. A
connection (or covariant derivative) V on a vector bundle E = M is a map
which associates to every section s € I'(E), and any vector field X on M, a
new section Vs, such that, for every f € C>*(M)

Vx(fs)=df(X)s+ fVxs.
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V x s is the derivative of s in the direction X. One usually forgets the vector
field X in the above definition and thinks of V as a map

Ve :T'(E) = T(T"M ® E)
satisfying Leibniz’ rule

Ve(fs) =df(e) @ s+ fVes.
Note the following fact.

Proposition 1.1.5. There exists at least one connection V° on E. More-
over, any other connection can be obtained from V° by the addition of an
End (E)-valued 1-form A € Q'(End (E)) where by definition, for any vector
bundle F' — M we set

QF(F) :=T(A*T*M ® F).
In particular, the space A(E) of connections on E is an affine space modeled

by Q' (End (E)).

The trivial bundle F' admits a natural connection © called the trivial
connection. To describe it recall that sections of F can be regarded as
smooth functions s : M — F'. Define

Os =ds € Q'(M) ® F.

Any other connection V on F will differ from © by a 1-form A with coeffi-
cients endomorphisms of F, i.e.

V=0+A4, AcQYM)®End(F).

If E is obtained by gluing the trivial bundles F', := F; using the
cocycle ggo, then any connection on E is obtained by gluing connections
V@ on F,. More precisely, if V* = © + A, then on the overlaps U,g the
1-forms A, and Ag satisfy the compatibility rules
(111) Aﬁ = _dgﬁaggi + gﬁaAaggi = g;gldgozﬁ + g;glAagaﬁ-
Exercise 1.1.9. Prove (1.1.1).

Exercise 1.1.10. Consider a smooth family P : z — P, of projectors of the
vector space F' parameterized by the connected smooth manifold X. Show
that (id — P)O defines a connection on the subbundle ker P C F'y.

Imitating the above local description of a connection we can define a
notion of connection compatible with a G-structure. Thus, let us suppose
the vector bundle £ — M has a G-structure defined by the gluing cocycle

9Ba * Uﬁa — G
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and the representation p : G — Aut (F'). Denote by g the Lie algebra of G.
The gluing cocycle defines a principal G-bundle P — M. A connection on
P is a collection of 1-forms

Ay e QUL @9

satisfying (1.1.1), where gﬁaAaggi denotes the adjoint action of gg,(z) on
g while —dggagﬁ_i = gojﬁldgag is the pullback via g, of the Maurer-Cartan
form on G. (This is the g-valued, left invariant 1-form on G whose value at
1 is the tautological map 713G — g.)

Given a connection on the principal bundle we can obtain a genuine
connection (i.e. covariant derivative) on E = P x, F' given by the End (F)-
valued 1-forms p,(A,), where

px : ThG — End (F)
denotes the differential of p at 1 € G.

A gauge transformation of a bundle F with a G-structure is a collection
of smooth maps Ty, : U, — G subject to the gluing conditions

T,ﬁ’ = gﬁaTagﬁ_;'
(From a more invariant point of view, a gauge transformation is a special
section of the bundle of endomorphisms of E.) The set of such gauge trans-
formations forms a group which will be denoted by Sg(F).
To a bundle E with a G-structure one can naturally associate a vector

bundle Ad (E) defined by the same gluing G-cocycle as E but, instead of p,
one uses the adjoint representation Ad : G — End (g).

Proposition 1.1.6. The space Ag(E) of G-compatible connections on a
vector bundle E with a G-structure is an affine space modeled by Q' (Ad (E)).
Moreover, the group of gauge transformations Gg(E) acts on Ag(E) by con-
jugation

Sa(E) x Ag(E) 3 (v, VA) = 7VAy~ 1 e Ag(E).

For more details about principal bundles and connections from a gauge
theoretic point of view we refer to the very elegant presentation in [116].

If F is a complex vector bundle of complex rank r equipped with a
Hermitian metric (e, ®) then it is equipped with a natural U (r)-structure. A
Hermitian connection V on F is by definition a connection compatible with
this U (r)-structure or, equivalently,

Lx<81, 52> = <VX81,82> + <81,VX82>, VX € Vect (M), S1,82 € COO(E)
There is a natural (left) action of G (F) on Ag(E) given by
T -V:=TVT
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The covariant method of differentiation has a feature not encountered
in traditional calculus in R™. More precisely, the classical result “partial
derivatives commute”

0% f B o0 f

0zdy  Oyox
no longer holds in this more general context because of deep geometric rea-
sons. One is led to quantify the extent of this noncommutativity and this is
usually encoded by the curvature of a connection.

Suppose V is a connection on a vector bundle £ — M. For any vector
fields X, Y on M and any section u € T'(E) define

F(X, Y)u = Fv(X, Y)u = [V)(, VY]’U, - V[X7y]u
= (vay — VyVX)U — V[X’y}u S F(E)
Note that for all f € C*(M)
F(fX,Y)u=F(X, fY)u=F(X,Y)(fu) = fF(X,Y)u.

Thus the map
ur— F(X,Y)u
is an endomorphism of E for all X,Y. We denote it by F'(X,Y’). Note that
the map
TM®TM — End(E), X®Y — F(X,Y)
is a skew-symmetric bundle morphism. Thus we can regard the object F(-,-)

as a an element of Q?(End (E)), i.e. a section of A2°T*M @ End (E). F(e,e)
is called the curvature of V. When Fy = 0 we say F' is flat.

Exercise 1.1.11. Suppose E is a vector bundle equipped with a G-structure
and V is a G-compatible connection. Show that Fy € Q?(Ad(E)). In
particular, if F is a Hermitian vector bundle and V is Hermitian then the
curvature of V is a 2-form with coefficients in the bundle of skew-Hermitian
endomorphisms of F.

Exercise 1.1.12. (a) Consider the trivial bundle F';;. Then the trivial
connection © is flat.

(b) If A € QY(End (F)) then the curvature of © + A is
Fa=dA+ANA.

Above, A is thought of as a matrix of with entries smooth 1-forms w;;. Then
dA is the matrix with entries the 2-forms dw;; and A A A is a matrix whose

(i,j)-entry is the 2-form
Z Wik N Wi
k
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If E is given by a gluing cocycle gg, and V is given by the collection of
1-forms A, € Q'(End (F,,)) then the above exercise shows that F is locally
described by the collection of 2-forms dA, + Aa A Aq.

Example 1.1.7. Suppose L — M is a complex line bundle given by a gluing
cocycle zg, : Uyg — C*. Then a connection on L is defined by a collection
of complex valued 1-forms w, satisfying

_ dzap

w We -
8 zanga

The curvature is given by the collection of 2-forms dwy,.

If L has a U(1)-structure (i.e. is equipped with a Hermitian metric) then
the gluing maps belong to S':

20 Uag — S™.

The connection is Hermitian (i.e. compatible with the metric) if w, €
QY (U,) @ u(1) = iR. Thus we can write

Wo = i0a, bo € QY U,).
They are related by

where df denotes the angular form on S*.

Exercise 1.1.13. Consider a Hermitian line bundle L — M and denote by
P — M the corresponding principal S'-bundle. For each p € P denote by
ip the injection

Stsell s p.elt e P,
Suppose V is a Hermitian connection as in the above example. Show that
V naturally defines a 1-form w € Q!(P) such that

iw =df, Vpe P.
w is called the global angular form determined by V. Conversely, show that

any angular form uniquely determines a Hermitian connection on L.

Example 1.1.8. Consider the unit sphere S? C R? with its canonical ori-
entation as the boundary of the unit ball in R3. Define the open cover

{Ua, Us} by
Uy = 52\ {south pole}
and
U = S?\ {north pole}.
We have a natural orientation preserving identification

Usp = *,
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Denote by z the complex coordinate on C*. For each n € Z denote by L,
the complex line bundle defined by the gluing cocycle

20 C* 2 Uy — C*, 21— 2",

Suppose V is a connection on L defined locally by wq, wg where
wg = —n? + Wq-

Denote by F its curvature. It is a complex valued 2-form on S? and thus
it can be integrated over the 2-sphere. Denote by Dy the upper/lower
hemisphere. D, is identified in an orientation preserving fashion with the

unit disk {|z| < 1} C C. We have

/F:/ dwa—i-/ dwg:/ (Wa — wp)
52 Dy D_ oD

dz .
= n/ — = 2min.
Dy *

We arrive at several amazing conclusions.
e The integral of Fy is independent of V !!!
e The integral of Fy is an integer multiple of 27i !!!

e The line bundle L, with n # 0 cannot admit flat connections so that the
noncommutativity of partial derivatives is present for any covariant method
of differentiation !!!

e The line bundle L,, with n # 0 is not isomorphic to the trivial line bundle
C which admits a flat connection !!!

Exercise 1.1.14. Prove that the line bundle L; in the above example is
isomorphic to the universal line bundle over CP! = §2.

The above conclusions do not represent an isolated occurrence. They
are manifestations of a more general construction called Chern-Weil theory.
Below we describe a few particular cases of this construction.

1.1.2. Chern-Weil theory. Consider a complex vector bundle £ — M
and V an arbitrary connection on it. Set n = rank (E). The curvature F'(V)
can be viewed either as a 2-form on M whose coefficients are endomorphisms
of E or as a n X n matrix with entries complex valued 2-forms on M. The
multiplication of even-dimensional forms is commutative so we can speak of
determinants of such matrices. Then

o(E,V) = det (1E + %F(V))
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is a nonhomogeneous element,
¢(E,V) € QM) @ C:= P (M) & C.
k>0

The component of degree 2k is denoted by ci(F, V) and is called the k-th
Chern form of E corresponding to the connection V. Note that
c1(E,V) = itr (F(V)) € Q2(M) ®C,
(B, V) = <2i> det(F(V)) € Q*(M) & C.

™

Example 1.1.9. Consider again the line bundle L, — S%. The computa-
tions in Example 1.1.8 show that

/ c1(Lp, V) =—n
S2

for any connection on Ly,.

The above nice accident is a special case of the following theorem.

Theorem 1.1.10. (Chern-Weil) (a) The Chern forms cx(E, V) are closed
for any k and any connection V on E.

(b) For any connections V°, V' on E and any k € Z there exists a (2k—1)-
form T(V!,V°) on M such that

cr(B, VY — cp(E,V°) =dT(V!, V).

For a proof of this theorem we refer to [105]. Part (a) of this theorem
shows that c(E, V) defines a cohomology class in H?*(M,R) which by part
(b) is independent of V. We denote this class by ¢x(E) and we call it the
k-th Chern characteristic class of E. The element

c(B)y=1+c1(E)+ca(E)+---

is called the total Chern class of E. Note that if F is trivial then all classes
¢k (E) vanish. We can turn this statement around and conclude that if one
of the classes ci(F) is not trivial then E' is certainly not trivial. Thus these
classes provide a measure of nontriviality of a complex vector bundle.

Remark 1.1.11. The computations in Example 1.1.8 show that

/52 c(Lp) =—n

so that in particular L, is nontrivial and c;(L,) € H?(S? Z). One can
show that for any smooth manifold M and any complex vector bundle E —
M the characteristic class ¢ (E) belongs to the image of H?*(M,Z) inside
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H?F(M,R). If we denote by ¢ the natural morphism H?(M,Z) — H?(M,R)
then one can show that

cl(L) = ey (L))

where the topological first Chern class was defined in Remark 1.1.3.

Define the Chern polynomial of E& by
a(E) =) (B € H*(M,R)[t].
k>0
Exercise 1.1.15. Show that
ct(Eh @ E2) = ci(Eq) - ¢t (E2)

where for simplicity we denoted by “” the A-multiplication in Q" (M).
Show that if E = @;-, L;, where L; are complex line bundles then

ck(E)=or(y,-sun) == D iU
1<y <—ip<n
where Y; ‘= C1 (Lz)

Exercise 1.1.16. Consider a complex line bundle L over a compact, closed,
oriented Riemann surface X.

(a) Show that the quantity

deg I = /Ecl(L)

is an integer.

Hint: Use the fact that the restriction of L over the complement of a small
disk in ¥ is trivial.

(b) Suppose u is a section of L with only nondegenerate zeros, i.e. for any
x € u~1(0) the adjunction map

ay : TpX — Ly, TpX 3 (e (Veu) o€ Ly
(V some connection on L) is invertible. For each z € u~1(0) set
deg(z) := sign det a,.
Show that

deg L := Z deg(z).
z€u—1(0)

Hint: Use the fact that L is trivial outside Umeufl(o) D,, where D, denotes
a very small disk centered at x.
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Define the Chern character of a vector bundle to be the cohomology
class

. . k
ch (E) = tx exp(,-F(V)) = ltr (2‘7rF(V)> .

Again this is a closed form whose cohomology class is independent of V.
Exercise 1.1.17. (a) Show that if L — M is a complex line bundle then
ch (L) = exp(er (L)).
(b) Show that
Ch(El D EQ) =ch (El) + ch (EQ)

and
ch (E) ® E3) =ch(E)) - ch(Ey).

The construction of the Chern character has a multiplicative counter-
part. Suppose that f(T') is a formal power series
=> a,T" € C[[T]
n>o

such that ag = 1. If E — M is a complex vector bundle then f(E) € H*(M)
is the cohomology class represented by

F(B,V) = det(Z an(%F(V))”).

n>0
A special case frequently encountered in geometry is that of

T
=1 T
1—exp(—T) + +Z

where the coefficients Bj, are known as the Bernoullz numbers. Here are a

few values of these numbers

1 1 1
Bi=-, Bo=—, B3=—
1 6 ) 2 30 ) 3 42 )
The cohomology class obtained in this manner is called the Todd genus of
E and is denoted by td (E).

Both ch and td decompose into hornogeneous parts

ch(E) =) chi(E), td(E) =) td;(E

>0 >0

B
td (7)== ’” k T*

expressible in terms of the Chern classes ¢;. For example

chy(F) = rank (EF),
(1.1.2)
chy(E) = ¢1(E), chy(E) = 3(c1(E)? —2c2(E))
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(1.1.3) tdo(E) = 1, tdl(E):%cl(E), tda(E) = — (e1(B)” +26a(E) ).

12
So far we have considered only complex vector bundles. There is a real

theory as well. Consider a real vector bundle £ — M and V an arbitrary
connection on it. We define the total Pontryagin form associated to E(V)
by

1

p(E, V) =det(1 — 2—F(V))

T
Again one can prove that this is a closed form whose cohomology class is
independent of V. This time a new phenomenon arises.
Lemma 1.1.12. The components of p(E,V) of degree 4k + 2 are ezact.

Exercise 1.1.18. Prove the above lemma.

The cohomology class p(FE) decomposes as
p(E) =1+ p1(E) +p2(E) + -+ pu(E) + - -
where
pi(E) € H*(M,R).
The cohomology classes are called the Pontryagin classes of the real vector
bundle E. For example, p1(F) can be represented by the form

pi(E, V) = —ﬁu (F(V) A F(V)).

Exercise 1.1.19. Suppose £ — M is a real vector bundle and denote by
E* its complexification £ ® C. Show that

Cort1(E) =0 and cp(E) = (—1)"pi(E).

1.2. Basic facts about elliptic equations

Before we begin talking about elliptic equations we must first define the no-
tion of partial differential operator (p.d.o. for brevity) on a smooth manifold
and explain the basic operations one can perform on such objects. We refer
again to [105] for more details.

Consider a smooth, oriented Riemannian manifold (M, g) and E, F — M
complex Hermitian vector bundles over M. We will denote the Hermitian
metrics on F (resp. F) by (-,}p (resp. (-,")r).

Denote by Op (E, F') the space of C-linear operators

T:C®(E)— C®(F).

Denote by C*°(M) the space of complex valued smooth functions on M. The
spaces C°(E) and C*°(F') have natural structures of C'*° (M )-modules and
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we will be interested in a subspace of Op consisting of operators interacting
in a nice way with these module structures.

For each f € C*°(M) and each T € Op (E,F) define ad(f)(T) €
Op(E, F) by

(ad()T)u = [T, flu:=T(fu) — f(Tu), Yu € C(E).

Note that the maps T — [T, f] and f +— [T, f] behave like derivations, i.e.
they satisfy the Leibniz rule

(1.2.1) (ST, f] =[S, fIT + ST, f] and [T, fg] = [T, flg + f[T’ 9]

for all f,g,T,S for which the above operations make sense.

Now define inductively an increasing sequence of subspaces
PDOY(E, F) c PDOY(E,F)c---c PDOW(E, F) C---
following the prescriptions
PDO)(E, F) := Hom (E, F)

and
PDOVY(E, F)

- {T € Op (B, F); [T, f] e PDO®(E, F), Vf € COO(M)}.
The elements of PDO®) (E, F) will be called partial differential operators
of order < k.

Example 1.2.1. (a) Let E = F = C and let X be a smooth vector field on
M. Then the Lie derivative Lx : C*°(M) — C*°(M), u — Lxu, is a p.d.o.
of order at most 1. Indeed, for any u, f € C*°(M) we have

[Lx, flu= Lx(fu) — f(Lxu) = (Lxf)u
so that [Ly, f] is the endomorphism (Lx f)e.
(b) Let E = F = A*T*M. Then the exterior derivative
d:Q (M) — Q" (M)

is a p.d.o. of order at most 1. Indeed, for any f € C*(M) and any
w € Q*(M) we have

4, flo = d(fw) — f(dw) = df Aw.
Thus [d, f] is the endomorphism df A e of A*T*M.

(c) Consider the Laplacian A = —92 on C*°(R). Then A is a p.d.o. of order
at most 2. Indeed, for any f € C*°(R) we deduce from the Leibniz rule
(1.2.1)

[857 f]. = Q[am f]ax b +(a£f) ..
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(02f) is the zeroth order operator defined as multiplication by 92f. The
computation in part (a) shows that [0,, f] is the operator of multiplication
by 0. f. Hence the commutator [02, f] is the Lie derivative along the vector
field %Gx which by part (a) is a first order p.d.o.

Suppose L € PDO(k)(E, F) and choose fi1,--, fr € C>°(M). Then
Ap(fr,--- fi) =L, fl, -+, fx] € Hom (E, F).

One can prove the following.
e Ar(f1, -, fr) is symmetric in its arguments.
o If dfi(z9) = dgi(xg) for all i =1,--- |k then

AL(fla"' 7f/€)‘1'0: AL(gla"' 79]@)’11?0 :

Thus Ar(f1, -, f&) |z, depends only on the quantities &; = df;(zo) and the
symmetry property shows that it is completely determined by

1
oL(€) = S AL(E, - €).
The quantity or(-) is called the (principal) symbol of L. It is a bundle
morphism
op(-) :mE — i F
where 7, : S*T*M — M denotes the canonical projection of the k-th sym-
metric power of T*M. A p.d.o. L € PDO®) is said to have order k if its
symbol is not trivial. The set of k-th order operators will be denoted by
PDO*.
Proposition 1.2.2. If L; € PDO*)(E|, Ey) and Ly € PDO*2)(E,, E3)
then
Ly o L1 € PDOM+R) (B | By)
and
OLyoL: (§) = 0L,(8) 0 0L, (§), Vo€ M, V&€ T M\ {0}.
Example 1.2.3. Suppose V : C®(F) — C®(T*M ® E) is a linear connec-
tion. Then setting & = df we deduce
Av@u =1V, flu=E&Ru, Yue C®(E).
Thus o1, (§) = £ ® e. Similarly, for the exterior derivative
d: Q" (M) — Q" (M)
the symbol is given by
oa(§) =ENe.
If A:=— Zf\; 9;2 . C®(RN) — C®°(RY) is the (geometers’) Laplacian on

RY then
oa(€) = —lelPe =~ (X l&il) o
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Definition 1.2.4. A generalized Laplacian on a vector bundle F over a Rie-
mannian manifold (M, g) is a second order operator L : C*°(E) — C*(E)
such that

or(€) = — €1k

Definition 1.2.5. If L € PDO(E, F) is a p.d.o. acting between two Her-
mitian vector bundles then a formal adjoint is a p.d.o. L* : C®°(F) —
C*°(E) such that

/ (Lu,v)pdvg = / (u, L*v) gdvg
M M
for all compactly supported sections u € C*°(FE) and v € C*°(F).

For a proof of the following result and examples we refer to [105].

Proposition 1.2.6. Every k-th order operator L admits a unique formal
adjoint L* which is a k-th order operator whose symbol is given by

o1+(€) = (=)o (6)".
A p.d.o. L is called formally selfadjoint if L = L*.

Example 1.2.7. (a) Suppose E — F' is a Hermitian vector bundle over a
Riemannian manifold (M, g) and V is a Hermitian connection on E. Then
for every vector field X on M the covariant derivative Vx is a first order
p.d.o. C®(F) — C*(E) with formal adjoint

Vi = —Vx —divy(X)
where div,(X) is the scalar defined by
Lxdvg = divy(X) - dvy.

(b) If £, V are as above then V*V : C®(E) — C*(FE) is a generalized
Laplacian called the covariant Laplacian determined by the connection V.

(¢) The formal adjoint of the exterior derivative
d: QF(M) — QFFL(M)
is the operator
d* = (1) % dx - QFTH(M) — QF (M)
where n = dim M, v, ;, = nk +n + 1 and * is the Hodge *-operator.

(d) The operator (d + d*)? = dd* + d*d : Q*(M) — Q*(M) is a generalized
Laplacian called the Hodge Laplacian.

The covariant Laplacian in the above example is in some sense the basic
example of generalized Laplacian. More precisely, we have the following
result. We refer to [12] for a different proof.



1.2. Basic facts about elliptic equations 19

Proposition 1.2.8. Suppose L : C°(E) — C*(E) is a formally selfadjoint
generalized Laplacian. Then there exists a Hermitian connection on E and
a symmetric endomorphism R : E — E such that

L=V'V+R.

We will refer to such a presentation of a generalized Laplacian as a Weitzen-
bock presentation. The endomorphism R is called the Weitzenbock remain-
der of L.

Proof Choose an arbitrary Hermitian connection V on E. Then Ly =
V*V is a generalized Laplacian so that L — Ly is a formally selfadjoint first
order operator which can be represented as

L—-—Ly=AoV+B
where
A:C®(T"M @ E) - C*(E)

is a bundle morphism and B is an endomorphism of E. We will regard A
as an End (E)-valued 1-form on M. Hence

(1.2.2) L=V'V+AoV+B.
The connection V induces a connection on End(E) which we continue
to denote by V:
V :C*®(End (E)) — Q' (End (E)).
We define the divergence of A by
divy(A) := —V*A.

If (e;) is a local synchronous frame at xp and if A =", A;e' then, at x(, we
have

Since L — Ly is formally selfadjoint we deduce
Af = —4,;, divy(A)=B" - B.

We seek a Hermitian connection V. = V 4+ C , C € QY(End (E)) and a
symmetric endomorphism R of E such that

VV+R=V*V+ AoV + B.

To determine the terms C and R we work locally, using a synchronous local
frame (e;) at xg. Then
V=Y ¢a(Vi+Ci), Cf=-Ci, Vi

2
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Then, as in [105], Example 9.1.26, we deduce that, at x,
VIV == (Vi+ C)(Vi+Cy)

((C3)? = CiCF = —C?)
=Y V2N v 23 v+ S (6)?

(C)? = 32:(Ci)?)
=V*V -200V —divy(C) + (C)> =V*V+ AoV +B - R.
We deduce immediately that

1 1 1 1
(1.23)  C=-5A, R=DB- divy(4) - (0)? = 5(B+B") - 1<A>2.

The proposition is proved. B

Besides their nice algebraic properties, the generalized Laplacians enjoy
many nice analytic features. They all derive from the ellipticity of these
operators.

Definition 1.2.9. Let E, FF — M be two smooth vector bundles over the
smooth manifold M. A p.d.o. T € PDO¥(E, F) is said to be elliptic if for
any x € M and any £ € TM \ {0} the linear map or(§) : E; — F, is an
isomorphism.

Clearly, the generalized Laplacians are elliptic second order operators.
The operator d + d* of Example 1.2.7 (d) is elliptic because (d + d*)? is a
generalized Laplacian. This feature is so frequently encountered in geometry
that it was given a name.

Definition 1.2.10. A Dirac operator is a first order operator D : C*°(E) —
C>(F) such that D? is a generalized Laplacian.

Frequently, the Dirac operators are obtained from an operator D €
PDO!(E, F) such that both D*D and DD* are generalized Laplacians.
Then

~ 0 D* oo o
D::[D O]:C’ (E®@F)—-C®EaF)

is a Dirac operator.

To discuss the basic analytic properties of elliptic operators we need to
introduce a suitable analytical framework. For geometric applications the
Sobolev and Holder spaces provide such a framework.

To define these spaces we need two things: an oriented Riemannian
manifold (M, g) and a K-vector bundle 7 : E — M endowed with a metric
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h = {-,-) and a connection V = V¥ compatible with h. The metric g = (-, )
defines two important objects:

(i) the Levi-Civita connection V9 and

(ii) a volume form dvy = *1. In particular, dv, defines a Borel measure on
M. We denote by LP(M,K) the space of K-valued p-integrable functions on
(M, dvy) (modulo the equivalence relation of equality almost everywhere).

Definition 1.2.11. Let p € [1,00]. An LP-section of F is a Lebesgue mea-
surable map ) : M — E (i.e. ¥~ 1(U) is Lebesgue measurable for any open
subset U C F) such that:

(i) m o9p(z) = x for almost all x € M except possibly a negligible set.
(ii) The function = — |¢(z)|, belongs to LP(M,R).

The space of LP-sections of E (modulo equality almost everywhere) is
denoted by LP(E). The space L} (E) consists of measurable sections u of
E such that up € LP(F) for any smooth, compactly supported function on
M.

Proposition 1.2.12. LP(FE) is a Banach space with respect to the norm

_ (@) Pdug @) if p< o
oz { @ pante) i <o

For each m =1,2,--- define V™ as the composition

VT* MQE
)

m 0 vE 0 * v (e%¢] * Xm
vh. C (E)—>C' (TM@E — .5 (C (TM ®E)

where we used the symbol V to generically denote the connections in the
tensor products T*M®/ @ E induced by V9 and VZ.

The metrics ¢ and h induce metrics in each of the tensor bundles
T*M®™ @ E, and in particular, we can define the spaces LP(T*M®™ @ E).

Definition 1.2.13. (a) Let u € L} (E) and v € L} (T*M®™ @ E). We
say that V"u = v weakly if
/ (v, p)dv, = /<u, (V™)*p)dvg, Yu e CP(T*M®™ @ E).
M

(b) Define L™P(E) as the space of sections u € LP(E) such that Vj =
1,...,m there exist v; € LP(T*M®’ ® E) such that Viu = v; weakly. We
define the Sobolev norm || - ||, by

P
lallmp = ltllmpe =D IV ullp.
j=1

Proposition 1.2.14. (L*P(E), || ||lxp.z) is a Banach space which is reflezive
if 1 <p< 0.
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Exercise 1.2.1. (Kato’s Inequalities) Suppose ¥ — M is a Hermitian
vector bundle over an oriented Riemannian manifold (M, g). Fix a Hermitian
connection V on E.

(a) Show that for every u € Lzlt;z (E) the function
M 3z — |u(x)

.. 1,2
isin L;’

1o (M) and moreover

|dlu(z)]] < [(Vu)(z)]
almost everywhere on M.
(b) Set Ag := V*V and denote by Ajs the Laplacian on M. Show that for
all u € Liﬁ (E) we have
Apr(u?) = 2Re(Apu, u) — 2|Vul?
so that
Aprlul? < 2Re(Apu, u)

almost everywhere on M.

The Holder spaces can be defined on manifolds as well. If (M,g) is a
Riemannian manifold then g canonically defines a metric space structure
on M and, in particular, we can talk about the oscillation of a function
u: M — K. On the other hand, defining the oscillation of a section of some
bundle over M requires a little more work.

Let (E,h,V) as before. We assume the injectivity radius ppr of M is
positive. Set pg = min{l,py}. If x, y € M are two points such that
disty(x,y) < po then they can be joined by a unique minimal geodesic 7,
starting at x and ending at y. We denote by T}, , : £y, — E, the VE-parallel
transport along v, ,. For each £ € E, and n € E, we set by definition

€ = nl = 1§ = Tuynle = 10— Tyatly-
Ifu: M — F is a section of F and S C M has diameter < py we define
osc (u; S) = sup{|u(z) —u(y)| ; =, y € S}.
Finally set
(U)o, = sup{r %osc(u; By(z)); 0 <r < py, x € M}.

For any k& > 0 define the Hélder norm
k

e = D IV Ul + V™o wemer
5=0

and set
CPYE) = {u € CME); |[ullpa < oo}
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Theorem 1.2.15. Let (M, g) be a compact, N-dimensional, oriented Rie-
mannian manifold and E a vector bundle over M equipped with a metric h
and compatible connection V. Then the following are true.

(a) The Sobolev space L™P(E) and the Hélder spaces C**(E) do not depend
on the metrics g, h and on the connection V. More precisely, if g1 is a
different metric on M and V! is another connection on E compatible with
some metric hy then

L™P(E,g,h,V) = L™P(E, g1,h1,V') as sets of sections

and the identity map between these two spaces is a Banach space isomor-
phism. A similar statement is true for the Hélder spaces.

(b) If 1 < p < 0o then C®(E) is dense in L*P(E).
(c¢) (Sobolev) If (ki,pi) € Zy x [1,00) (i =0,1) are such that
ko > k1 and on(ko,po) = ko — N/po > k1 — N/p1 = on(k1,p1)
then LFoPo(E) embeds continuously in LFvP1(E). If moreover
ko > ki1 and ko — N/py > k1 — N/p1
then the embedding L¥oPo(E) — LFUPL(E) is compact, i.e. any bounded
sequence of L*P0(E) admits a subsequence convergent in the L¥'P-norm.
(d) (Morrey) If (m,p) € Z4+ x [1,00) and (k,a) € Zy x (0,1) and
m—N/p>k+a
then L™P(E) embeds continuously in C**(E). If moreover
m—N/p>k+a

then the embedding is also compact.

The proofs of all the above results can be found in [105].

Suppose now that L : PDOk(E,F) is a k-th order elliptic operator
over an oriented Riemannian manifold (M,g). Let v € L} (F). A weak
LP-solution of the equation

Lu=wv
is a section u € Lf . (E) such that for any smooth, compactly supported
section ¢ of F' the following holds

/(v,cp)deg:/ (u, L*p) pdvy.
M M

The following result describes the fundamental property of elliptic opera-
tors. For simplicity we state it only in the special case when M s compact.
We refer to [105] and the references therein for proofs of more general state-
ments.



24 1. Preliminaries

Theorem 1.2.16. Suppose M is a compact, oriented Riemannian manifold
without boundary.

(a) Let p € (1,00) and m € Z. Then there exists a constant
C=C(L,m,p,g,E,F) >0
such that if u is a weak LP-solution u of Lu = v, v € L"™P(F) then
ue LR (E)

and
ullmakpse < Clullps + [[0]lnpF)-
(b) Let a € (0,1) and m € Z. Then there exists a constant

C=C(L,m,a,g,E,F)>0
such that if u is a weak LP-solution u of Lu = v, v € C™%(F') then
u e C™TR(R)

and

[ellmthoz < Clllulloar + [[v]lm,a;r)-

The above result has a famous corollary.
Corollary 1.2.17. (Weyl’s Lemma) Let L be as above. If
Lu e C™(F)
weakly then u € C*°(FE).

From the a priori inequalities in the above theorem one can deduce the
following important result.

Theorem 1.2.18. Suppose M is a compact, oriented Riemannian manifold,
Ey, Ey are Hermitian vector bundles over M and

L: COO(E()) — COO(El)

is a k-th order elliptic operator. We define the analytical realization of L as
the unbounded linear operator

Lo : L*(Ey) — L*(E)
with domain Dom (L,) := L*?(Ey) and acting according to
L*(Ep) 3 u Lu € L*(Ey).
Then the following hold.

(i) Ly is a closed operator, i.e. its graph is a closed subspace of L*(Ep) x
L*(Ey).
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(ii) The functional adjoint of L, (i.e. the adjoint as a closed linear operator
acting between Hilbert spaces) coincides with the analytical realization of the
formal adjoint L*, i.e.
(La)" = (L")a-
(iii) The ranges of both L, and (L*), are closed subspaces in L*(Ey), re-
spectively L?(Ey). Moreover ker L, € C*(Ey), ker L} € C*(E;) and
Range (L,) = (ker L)+, Range (L}) = (ker L,)*.

(iv) The kernels of both L, and (L*), are finite dimensional.

(v) Denote by P : L*(Eo) — L*(Ey) the orthogonal projection onto ker L.
Then for every 1 < p < oo and every m € Zy there exists a constant
C =C(m,p,L > 0) such that

lu = Pullksmp < CllLtllmp, Yu € LT™P(Ey).

The properties (iii) and (iv) in the above theorem are succinctly referred
to as the Fredholm property of elliptic operators on compact manifolds. The
quantity

dimg ker L, — dimp ker L,
(F=R, C) is called the F-Fredholm index of L and is denoted by indg L.

The Fredholm index of an elliptic operator L is remarkably stable under
deformations. For example, one can show (see [105]) that it depends only
on the symbol of L.

We conclude this section with an exercise which describes the Green
formulee for various p.d.o.’s. These are more sophisticated versions of the
usual integration-by-parts trick.

Exercise 1.2.2. Consider a compact Riemannian manifold (M,g) with
boundary OM. Denote by 7 the unit outer normal along OM (see Fig-
ure 1.1). Let E, F — M be Hermitian vector bundles over M and suppose
L € PDO* (E, F). Set go = glon, Fo = E|aar and Fy = F|p7. The Green
formula states that there exists a sesquilinear map

Bp : C*(E) x C®(F) — C*(0M)
such that

/M<Lu,v)dv(g) = /aM Br.(u,v)dv(go) + /M<u,L*v>dv(g).

Prove the following.
(a) If L is a zeroth order operator (i.e. L is a bundle morphism) then By, = 0.
(b) If L € PDO (F,G) and Ly € PDO (E, F) then

BL1L2 (u, 'U) = BL1 (Lgu, v) + BL2 (u, L’{U).
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M

Figure 1.1. Riemannian manifold with boundary

(c)
Br+(v,u) = —Bp(u,v).

(d) Suppose V is a Hermitian connection on E and X € Vect (M). Set
L=Vx:C>®E)— C>®(E). Then
Br(u,v) = (u,v)g(X, 7).

(e) Let L=V :C>®(E) — C>®(T*M ® E). Then

Br(u,v) = (u,izv)g
where iz denotes the contraction by 7.
(f) Denote by 7 the section of T*M |gps g-dual to 7i. Suppose L is a first
order p.d.o. and set J := o (7). Then

Br(u,v) = (Ju,v)p.

(g) Using (a) — (f) show that for all u € C*(F), v € C*°(F) and any
xo € OM the quantity By (u,v)(zo) depends only on the jets of u,v at z¢ of
order at most k — 1.

1.3. Clifford algebras and Dirac operators

1.3.1. Clifford algebras and their representations. Suppose £ — M
is a smooth, Hermitian vector bundle over a Riemannian manifold (M, g)
and D : C®(E) — C*(E) is a Dirac operator, i.e. D? is a generalized
Laplacian. Denote by ¢ the symbol of D. It has the remarkable property
that

c(é)? = —[¢]21p,, Yz € M, VE €T M.
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If we set V, := T M then the above identity implies that for every x € M
we have a linear map

(1.3.1) c:V, — End(E,)

with the property

(1.3.2) {c(u),c(v)} = —2¢(u,v)1, Yu,v eV

where {A, B} denotes the anticommutator AB + BA of two elements A, B
in an associative algebra.

Now, given a FEuclidean vector space (V,g), we denote by
Cl(V) := CI(V,g) the associative R-algebra with 1 generated by V sub-
ject to the relations (1.3.2). It is not difficult to prove the existence and
uniqueness of such an algebra. It will be called the Clifford algebra associ-
ated to the Euclidean space (V, g). We see that the map in (1.3.1) extends
to a representation

c:ClI(V) — End (V)
of the Clifford algebra called the Clifford multiplication. The maps in (1.3.1)
can be assembled together to form a bundle morphism

c:T*M — End (E)
such that

{c(a),c(B)} = —29(a, B)1p, Vo, B € QY(M).

A map c as above will be called a Clifford structure on the bundle £. Thus
the existence of a Dirac operator implies the existence of a Clifford structure.
Conversely, if V is any connection on a bundle E equipped with a Clifford
structure c then the composition

C>®(E) % C®(T*M ® E) % C*(E)

is a Dirac operator. Thus the existence of a Dirac operator is equivalent to
an algebraic-topological problem, that of the existence of Clifford structures.
We will be interested in a structure finer than Clifford.

Definition 1.3.1. Suppose (M, g) is a Riemannian manifold. A Dirac struc-
ture on M is a quadruple (E,c, V¥ VM) where E is a Hermitian vector
bundle, ¢ : T*M — End (E) is a selfadjoint Clifford structure, i.e.

(1.3.3) cla)* = —c(a), Ya e QY (M),

VM is a connection on T* M compatible with the Riemannian metric and V¥
is a Hermitian connection on F/ compatible with the Clifford multiplication,
i.e.

(1.3.4) VE(c(a)u) = c(V¥a)u + c(a)VEiu,

Vu e C®(E), a € QY(M), X € Vect (M).
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When V¥ is the Levi-Civita connection we say that (F,c, V¥) is a geo-
metric Dirac structure on M. The Dirac operator associated to a geometric
Dirac structure will be called a geometric Dirac operator.

Proposition 1.3.2. (Weitzenb6ck formula for geometric Dirac oper-
ators) If D is a geometric Dirac operator associated to the geometric Dirac
structure (E,c, V¥) then D = D* and

D? = (VEY'VE 4 ¢(F(VF)).

The last term should be understood as follows. The curvature F(V¥) is an
End (E)-valued 2-form. Locally it is a C°°(M)-linear combination of terms
of the form w @ T, w € Q*(M) and T € End (E). Then c(w ® T) is the
endomorphism c(w) - T'.

Exercise 1.3.1. Prove the above proposition.

To describe the Dirac structures on a given manifold M we need a better
understanding of the representation theory of the Clifford algebra associated
to a Euclidean space (V,g). If dimV = n and {ej,--- , e,} is an orthonormal
basis of V' then the monomials

€€, 1<4 << <n, epg:=1

form a basis of CI(V). Thus dim Cl(V) = 24™V " Since the only invariant
of a Euclidean space is its dimension we will often use the notation Cl,, to
denote the Clifford algebra associated to an n-dimensional Fuclidean space.

Note first there is a natural representation
T:ClI(V) — End A"V
induced by the correspondence
VovT,i=e(v) — iy

where e(v) denotes the (left) exterior multiplication by v while i,+ denotes
the contraction by the co-vector v* € V*, the metric dual of v. The Cartan
identity

{e(v),iv<} = Jvf?
shows that the above correspondence does indeed extend to a representation
of the Clifford algebra. The symbol map

o:CI(V) = A"V
is defined by
ow):=T, -1, Ywe A*V.
For example, if {e1,--- ,e,} is an orthonormal basis of V' then

U(eil---eik):eil/\---/\eik.
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We see that the symbol map is a bijection. Its inverse is called the quanti-
zation map and is denoted by q. Set

CIE (V) = g(Acven/oddyry,
The splitting CI(V) = CIT (V) @ CI~ (V) makes CI(V) a superalgebra, i.e.
CE(V) - CE(V) c AT (V), CEWV)-CIF (V) =~ (V).
Given z € ClI(V') we denote by x4 its even (odd) components, z = z4 +x_.

To understand the complex representations of CI(V') we need to distin-
guish two cases.

A. dimV is even, dimV = 2n.

FUNDAMENTAL FACT There exist a Zo-graded complex vector space
S(V) = S, =S5, ®S,,, and a C-linear isomorphism

c¢:Cl(V)®C — End (Sa,)
with the following properties.
(a) dimc Sy, = dimc S,,, = 2" L.
(b)
c(CIT(V)® C) = End (S3,) @ End (S;,).
¢(CI” (V) ® C) = Hom (S3,,,S5,,) & Hom (Sy,,S3,,)-
The above pair (Sop, ¢) is unique up to isomorphism and is called the complex
spinor representation of CI(V).

Sketch of proof  We will produce an explicit realization of the pair
(Sap, ¢) using an additional structure on V.

Fix a complex structure on V compatible with the metric. This is a
linear map J : V — V such that

JP=-1, J'=-J
Then V ® C splits as
VeC=Vv"PeV®
where V10 = ker(i — J) and V0! = ker(i + J). Set
S(V) := A0V = A*V 10,

Note that the Euclidean metric on V induces Hermitian metrics on APV
and thus a Hermitian metric on S(V).

A morphism CI(V) — End (S(V)) is uniquely defined by its action on
V10 and VO For v € V10 define ¢(v) := v2e(v), i.e.

c(0)(ur A Aug) = V20 Aug A Ay,
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Any © € V%! can be identified (via the metric g) as a complex linear func-
tional on V19, Define c(v) = \/_z( ), i

C(@)(ul/\.../\uk \/_Z gcuk7 ul/\ /\aj/\"'/\ukr

Above, g.(-,-) denotes the extension by complex bilinearity of g to V @ C.
Now choose an orthonormal basis (e1, fi;-- - ; en, fn) of V such that f; = Je;,
V7 and then set

1 . _ 1 .

E(ej —ifj), &= ﬁ(ej +if5)-

Then (g;) is a unitary basis of V10, (&;) is a unitary basis of V%! and
(€i,&;) = 0i5. We deduce

c(ej) = ele;) —i(&5), c(fi) = i(e(er) + (&)
One can now check that ¢ induces a map with all the required properties.
In this case

€j =

S+(V) _ Aeven,O‘/’ S—(V) — AOdd’OV ]

Example 1.3.3. Suppose that V is the four- dimensional Euclidean space
R* with coordinates (x!,y', 22, 9?). Set e; = 8_ and f; = 8_ and define J

by Je; = fi. Set 2/ = 27 +iy?. We identify V10 with (V*)% v so that

. 1 )
dz', & = ——=dz".

1
VG V2
Then
Sy & AW V* 22 C @ ATV * @ AO2Y
and

Sy = Cao A V* §; =2 ANy

Define w = dz' Ady' +dz? Ady? and orient V* using w Aw. Denote by * the
Hodge * operator on V* defined by the metric g and the above orientation.
Note that

*(A2V*) C A2V*
and *? = 1 on A2V*. Thus we have a splitting

ANV = ANV e A2 V*

where A2 = ker(1F ). The above choice of basis defines a nice orthonormal
basis of A2, {no,n1,m2} where

1 i
= —w=——(dz' ANdz" + d2% A dZ?),
=" 2\/5( )

1
m = (dx Adz? — dy' A dy?) = Q—ﬁ(dil Adz* 4 d2t A d2?),

E\
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. .
= —(dz' A dy? + dy' Ada?) = ———(dZ' AdE? — dzt A d2).

2 \/5 2\/§

We see that g, dz' A dz? and dz' A dz? form a complex basis of AiV* ® C.

The metric isomorphism V = V* defines an action of A*V* @ C on
S(V) = A%*(V) generated by

c(dz)) = —v/2i(d27), ¢(dZ’) = v2e(dz’)
where i(d27)(dz") = 20;1. Since dz! and dz? are orthogonal we deduce
c(dz' A dzZ?) = c(dzh)e(dz?) = 2e(dz")e(dz?)

and
c(dz! A d2?) = 2i(dzb)i(dz?).

To determine the action of 1y we use the real description
1

c :—cdaflcdl—i-cdecdz}

() = 5 { eldaeldy!) + e(da?)e(d?)

i

:m{ (etaz") + e(dz")) (e(az") - e(d="))

+ (c(d22 + c(dz2)) (c(dZQ) - c(dz2)) }

= ﬁ{ (e(dzl) - i(dzl)) <e(d21) + z‘(dzl))

+(e(d22) - i(d%)) (e(dz2) v z'(dz2)) }
Now it is not difficult to see that c¢(n;)dz’ = 0, Vi = 0, 1,2 so that
¢(A1LV*) C End (ST(V)).

With respect to the unitary basis 1, e1 Aeg = %dil A dz? of ST (V) we have
the following matrix descriptions:

) =vae(m) =2| ' { .

1
cler Aea) = He(dz A dZ?) = efdz)e(d7?) =2 [ ! 8 } ,

0 0

Note that for any real form ¢ € A2 V* the Clifford multiplication c(y) is a
traceless, skew-symmetric endomorphism of S* (V).

1 _
c(E1 N &) = §c(dz1 Adz?) = —c(dz' N dZ?)* =2 [ 0 -1 ] .
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There is a quadratic map ¢ : S} — End (S]) defined by
_ 1 ..
q(¥) =9 @9 — S |yP%d

ie. q(¥) : ¢ — (P, )1h— %|¢’2¢. (The Hermitian metric is complex linear in
the first argument and complex antilinear in the second.) Using the bra-ket
notation of quantum mechanics in which we think of the spinors in Sj{ as
bra-vectors then

1
a({Wl) = [V}l = 5 W),
We can decompose ¢ € ST(V) as

v=a®ps, aecAV* ge A2V
With respect to the basis {1,e; Aea} of ST(V) the endomorphism ¢(1)) has

the matrix description
1012 2 3
[ aP-182)  aB
1) as 08P - laP)
We see that ¢(v) is traceless and symmetric. We will often identify ¢(1))

with a 2-form via the Clifford multiplication ¢ : A2V*®C — End (S4). More
precisely

(135) (@) ~ S(laf = 18w + %((w —aB) €IV C A2V 0 C.

i
4

Exercise 1.3.2. Using the notation in the previous example show that

1 2

9(¥) =7 > (W, elne)p)e(mn).

=0

Exercise 1.3.3. Using the notation in Example 1.3.3 show that for every
w € A2V* we have
c(w) = c(xw)

as endomorphisms of ST(V).

Since Cly, ® C is isomorphic with an algebra of matrices End (Sa,) we
can invoke Wedderburn’s theorem ([122]) to conclude that any complex
Cly,-module V has the form S, @ V.

The odd dimensional situation follows from the even one using the fol-

lowing fact.

Lemma 1.3.4. Let V be a Euclidean space and w € V' such that |u| = 1.
Set Vo = (u)*. Then there is an isomorphism of algebras

¢ : Cl(Vp) — CIT(V)



1.3. Clifford algebras and Dirac operators 33

defined by
o r—xy tur_.

Exercise 1.3.4. Prove the above lemma.

We deduce from the above result and the Fundamental Fact that
Thus the complex representation theory of Cly,_1 is generated by two, non-

isomorphic, irreducible modules.

1.3.2. The Spin and Spin¢ groups. To produce a Dirac bundle on an
n-dimensional Riemannian manifold we need several things.

(a) A bundle of Clifford algebras, i.e. a bundle C — M of associative algebras
and an injection ¢ : T*M — C such that for all z € M and all u,v € Ty M

{#(u), 1(v)} = —29(u, v)1
and the induced map 1, : CI(T; M) — C, is an isomorphism.

(b) A bundle of complex Clifford modules, i.e. a complex vector bundle
€ — M and a morphism ¢ : C — End (£).

We want all these bundles to be associated to a common principal G-
bundle. G is a Lie group with several special properties.

Denote by (V,g) the standard fiber of T*M and denote by Auty the
subgroup of algebra automorphisms ¢ of CI(V') such that

e(V)cV(cCl(V)).
First we require that there exists a Lie group morphism
p: G — Auty.
With such a p fixed we notice that it tautologically induces a representation
p:G— Aut (V).

Denote by E the standard fiber of £. We require there exists a representation
i : G — End (E) such that the diagram below is commutative for all g € G
E —

and all v € V.
FE
(1.3.6) gJ J

g
r c(gv) I

c(v)

This commutativity can be given an invariant theoretic interpretation as
follows. View the Clifford multiplication ¢ : V' — End (F) as an element
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ceV*® E*® E. The group G acts on this tensor product and the above
commutativity simply means that c is invariant under this action.

To produce a Dirac bundle all we now need is a principal G-bundle
P — M such that the associated bundle P x, V' is isomorphic to T™M.
(This may not be always feasible due to possible topological obstructions.)
Any connection V on P induces by association metric connections VM on
T*M and V¥ on the bundle of Clifford modules £ = P x, E. (In practice
one often requires a little more, namely that VM is precisely the Levi-Civita
connection on T*M. This leads to significant simplifications in many in-
stances.) With respect to these connections the Clifford multiplication is
covariant constant, i.e.

VE(c(a)u) = «(VMa) + c(a)VEu, Ya e QY (M), u e C®(E).
This follows from the following elementary invariant theoretic result.

Lemma 1.3.5. Let G be a Lie group and p : G — Aut (E) a linear repre-
sentation of G. Assume there exists ey € E such that p(g)ey = eg, Vg € G.
Consider an arbitrary principal G-bundle P — X and an arbitrary connec-
tion V on P. Then ey canonically determines a section ug on P X, E which
is covariant constant with respect to the induced connection VE = p,(V),
i.e.

VEuo = 0.

Exercise 1.3.5. Prove the above lemma.

Apparently the chances that a Lie group G with the above properties
exists are very slim. The very pleasant surprise is that all these things (and
even more) happen in most of the geometrically interesting situations.

Example 1.3.6. Let (V, g) be an oriented Euclidean space. Using the uni-
versality property of Clifford algebras we deduce that each g € SO(V) in-
duces an automorphism of Cl(V') preserving V' < CI(V'). Moreover, it defines
an orthogonal representation on the canonical Clifford module

c:ClI(V) — End (A*V)
such that
c(g-v)(w) =g (c(v)(g™" -w)) ¥geSO(V),veV,weA,
i.e. SO(V) satisfies the equivariance property (1.3.6).

If (M,g) is an oriented Riemannian manifold we can now build our
bundle of Clifford modules starting from the principal SO bundle of its
oriented orthonormal coframes. As connections we can now pick the Levi-
Civita connection and its associates. The corresponding Dirac operator is
the Hodge-deRham operator.
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The Spin and Spin© groups provide two fundamental examples of groups
with the properties listed above. Here are their descriptions.

Let (V, g) be a Euclidean vector space. Define
Spin(V):={z e Clt; x=v vy, v €V, |v;] =1}

Equip it with the induced topology as a closed subset of CIT. First note
there exists a group morphism

p: Spin(V) — SO(V), x> p, € SO(V)
1

pz(v) = zvz™". We must first verify that p is correctly defined, i.e. p; is
an orthogonal map of determinant 1. To see this note that for every u € V,
|u| =1 the map

R,: V=V, v —uvu™!
satisfies R, (V) C V and more precisely, R, is the orthogonal reflection
in the orthogonal complement of (u) := span (u). We see that for every

x = v9 € Spin(V) we have
pz = Ry, 0 0 Ry,

is the product of an even number of orthogonal reflections so that p, €
SO(V). Since any T' € SO(V) can be written as the product of an even
number of reflections we conclude that the map p is actually onto. We leave
it to the reader to prove the following elementary fact.

Exercise 1.3.6. Show that kerp = {£1}.

This implies that p is a covering map. If dim V' > 3 one can show that
Spin(V') is simply connected (because the unit sphere in V' is so) and thus

p:Spin(V) — SO(V)
is the universal cover of SO(V'). In particular, this shows that 7 (SO(V)) =
Zs. By pullback one obtains a smooth structure on Spin(V'). Hence Spin(V)
is a compact, simply connected Lie group. Its Lie algebra is isomorphic
to the Lie algebra so(V) of SO(V). We want to present a more useful

description of the Lie algebra of Spin(V'). To do this we need to assume the
following not so obvious fact.

Exercise 1.3.7. Show that Spin(V') with the smooth structure induced
from SO(V) is a smooth submanifold of CI(V').

The Lie algebra of Spin(V') can be identified with a closed subspace of
CI* (V). More precisely,

spin(V) = p;*(so(V))
where p, denotes the differential at 1 € Spin(V) of the covering map
Spin(V) — SO(V). A basis of spin(V) can be obtained from a basis of
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so(V'). Choose an orthonormal basis ej,---,e, of V. For each i < j we
have a path ~;; : (—¢,e) — Spin(V') given by
t t t t
7ij (t) = —(e; cos 3 + e;sin 5)(61' co8 5 — € sin 5) = cost + (sint)eje;.

The orthogonal transformation p,, ;) € SO(V) acts trivially on the orthog-
onal complement of Vj; = span (e;, e;), while on V;;, oriented by e; A e;, it
acts as the counterclockwise rotation of angle 2t.

Now denote by J;; the element of so(V') given by
€ — e — —¢€;, et €L, k;’éz,j
The family (J;;)i<; is a basis of so(V'). We deduce

d
71 1120 Pris ) = 215
Hence 1 d 1
pi (i) = 5 g =0 i (t) = geie;.

In particular if A € so(V') has the matrix description
Aej = Zaéei, aé = —ag = @i = a'
i

then (notice the crucial negative sign!!!)
A=— Z aijJi]'
1<j

and

1 g 1 g
(1.3.7) pH(A) = —5 Za”eiej =-1 Za”eiej.

Example 1.3.7. Spin(3) = SU(2).
To see this, regard SU(2) as the group of unit quaternions (so that, in
particular, SU(2) is diffeomorphic to S3). There is a map
SU(2) — SO(3), q— Ty,

where T, acts on R3 2 JmH by

x = Tyx = qrq L.

It is not difficult to see that ¢ +— Tj, is a double cover.
Example 1.3.8. Spin(4) = SU(2) x SU(2). Again identify SU(2) with the
group of unit quaternions and define
T:SU(2) xSU2) — SO4), (p,q)— Tpq
where T}, , acts on R* = H by

Tpex = prq L.
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Again one checks (p, q) — Tp 4 is a double cover.
There is a natural embedding Spin(3) — Spin(4) which can be described
as the diagonal embedding
SU(2) — SU(2) x SU(2), q+— (q,q).

This embedding is compatible with the natural embedding SO(3) — SO(4)
in the sense that the diagram below is commutative.

Spin(3) —— Spin(4)

]

SO(3) ——— SO(4)

Suppose now that (V,g) is a 2n-dimensional Euclidean space. Fix a
compatible complex structure J. This defines an isomorphism of Zs-graded
algebras

p:Cly, ® C— End (S5, ®S3,).
Since Spin(2n) C Cl, we obtain two complex representations
p+ : Spin(2n) — Aut (S3).

These are irreducible and not isomorphic (as Spin(2n)-representations).
These are called the even/odd complex spinor representations of Spin(2n).
The complex Spin(2n)-module S5, @ S, is denoted by Sa,.

When (V] g) is a Euclidean space of odd dimension 2n + 1 then
Spin(2n+ 1) C Cl3,,; = Cly,.
Thus Spin(2n + 1) acts naturally on Sg,. This action
p:Spin(2n+ 1) — Aut (Sg,)

is called the fundamental spinor representation and the corresponding
Spin(2n + 1)-module will be denoted by Sa,41.

Exercise 1.3.8. Using the isomorphism
Clf, = Clypg

constructed in the previous subsection show that the induced representations
of Spin(2n — 1) on S2in are both isomorphic to So,_1.

Example 1.3.9. Using the isomorphism Spin(4) = SU(2) x SU(2) we can
describe the complex spinor representations as follows.

pt : SU(2) — SU(2) — Aut (C?),
p+(p,q) : C?2H>3v—p-veHxC?
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(where H is equipped with the complex structure induced by the right mul-
tiplication by i € H)

p-(p,q): CP=2Hov—v- ¢t eH=C?

(where H is equipped with the complex structure induced by the left multi-
plication by i € H).

Define the group Spin®(V') by
Spin¢(V) = (Spin(V) x S')/Zs

where Zs denotes the subgroup {(1,1), (=1,—1)} of Spin(V) x S*. Assume
for simplicity dim V' = 2n. We obtain two representations

p% : Spin“(V) — Aut (S3,,)
by
pi(g92) = zp+(9)

where py denote the complex spinor representations of Spin(V).

Exercise 1.3.9. Show that Spin®(3) = U(2).
Exactly as in the case of the spin-groups we have a commutative diagram

Spin©(3) —— Spin‘(4)

o ]

SO(3) ——— SO(4)

There is an intimate relationship between the group Spin®(V) and al-
most complex structures on V. Suppose J is an almost complex structure
compatible with the metric ¢ and denote by U(V,J) the group of unitary
automorphisms, i.e. orthogonal transformations of V' which commute with

J.

Proposition 1.3.10. There exists a canonical group morphism £ = &5 :
U(V,J) — Spin®(V') such that the diagram below is commutative.

U(V,.J) —— Spin(V)

SO(V)

The vertical arrow is the composition Spin®(V) — Spin(V) — SO(V).
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Idea of Proof Let w € U(V) and consider a path v : [0,1] — U(V)
connecting 1 to w. Viewed as a path in SO(V), v admits a unique lift
7 :[0,1] — Spin(V'), 4(0) = 1. Using the double cover

St St 2 22
we can produce a unique lift §(¢) of the path det~(t) € S'. Now define

€(w) == (7(1),0(1)). We let the reader verify that & is a well defined mor-
phism U(V) — Spin(V). B

Next, we need to explain how to use these groups to produce Dirac
structures on a manifold. This requires a topological interlude, to discuss
the notion of spin and spin® structures.

1.3.3. Spin and spin® structures. Consider an oriented n-dimensional
Riemannian manifold (M, g). The tangent bundle 7'M can be described via
a gluing cocycle gog : Uyg — SO(n) supported by a good cover, that is,
an open cover (Uy,) of M where all the multiple intersections Uyg..., can be
assumed to be contractible (or even better, geodesically convex). A spin
structure is a collection of lifts

Gap : Uap — Spin(n)
of gnp satisfying the cocycle condition
gaﬁgﬁwg'ya =1.

A manifold admitting spin structures is called spinnable. Spin structures
may or may not exist. Let’s see what can go wrong. Clearly, each map
9ap : Usp — SO(n) admits at least one lift (in fact precisely two of them)

Gag : Uag — Spin(n).
Since gqp satisfies the cocycle condition we deduce
WaBy = JaBdsyGya € Lz = ker(Spin(n) — SO(n)).
The collection w,g+ satisfies the cocycle condition
Wirys — Wans + Wags — Wagy =0 € Zo

for all a, 3,7,0 such that Uygys 7# 0. In other words, the collection w... is
a Zo-valued Cech 2-cocycle. By choosing different lifts Jap We only change
w... within its Cech cohomology class. Hence, this cohomology class is a
topological invariant of the smooth manifold M. It is called the second
Stiefel-Whitney class and will be denoted by wo(M). Tt lives in H?(M, Zs).
The above discussion shows that if wa(M) # 0 then M does not admit spin
structures. The converse is also true. More precisely, we have the following
result.
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Proposition 1.3.11. The oriented manifold M is spinnable if and only
if wo(M) = 0. If this is the case there is a bijection between the set of
isomorphism classes of spin structures and HY (X, Zs).

Remark 1.3.12. The definition of isomorphism of spin-structures is rather
subtle (see [92]). More precisely, two spin structures defined by the cocycles
Jee and l~1.. are isomorphic if there exists a collection ¢, € Zy C Spin(n)
such that the diagram below is commutative for all x € U,g

Spin(n) —>— Spin(n)

lvgﬁoz (x) Iilﬁa (55')

Spin(n) SN Spin(n)

The group H'(M,Zs) acts on Spin(M) as follows. Take an element ¢ €
H'(M,Zs) represented by a Cech cocycle, i.e. a collection of continuous
maps €44 : Uap — Za C Spin(n) satisfying the cocycle condition

€afB " EBy " Eya = 1.
Then the collection cee - Goo is a Spin(n) gluing cocycle defining a spin
structure we denote by € - o. It is easy to check that the isomorphism class

of € - o is independent of the various choice, i.e Cech representatives for e
and o. Clearly the correspondence

HY(M,Zy) x Spin(M) 3 (e,0) — € -0 € Spin(M)

defines a left action of H'(M,Zs) on Spin(M). This action is transitive and
free.

Exercise 1.3.10. Prove the above proposition and the statement in the
above remark.

Exercise 1.3.11. Describe the only two spin structures on S?.

There is a very efficient topological machinery which can be used to
decide whether wy(M) = 0. We refer to [93] for details. We only want to
mention a few examples.

Example 1.3.13. A compact, simply connected 4-manifold admits spin
structures if and only if its intersection form is even. A compact, simply
connected manifold M of dimension > 5 admits spin structures if and only if
every compact oriented surface S embedded in M has trivial normal bundle.

Let (M™,g) be an oriented, n-dimensional Riemannian manifold. As
above, we can regard the tangent bundle as associated to the principal bun-
dle Pso(ar) of oriented orthonormal frames. Assume Pgo(yy) is defined by a
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good open cover U = (U,) and transition maps
9ap : Uap — SO(n).
The manifold M is said to possess a spin® structure if there exist smooth
maps Jos : Uag — Spin(n), satisfying the cocycle condition such that
P (Gap) = ap-
As for spin structures, there are obstructions to spin® structures as well
which clearly are less restrictive. Let us try to understand what can go

wrong. We stick to the assumption that all the overlaps U,g..., are con-
tractible.

Since Spinc(n) = (Spin(n) x S')/Zs, lifting the SO(n)-structure (gas)
reduces to finding smooth maps

hap : Uag — Spin(n)

and
2a8 1 Ugg — S !
such that
p(hag) = gap
and

def
(138) (eaﬂ'ya Caﬁ'y) = (haﬁhﬁ'yh'ya ) Zaﬁzﬁwz’yoc) € {(_17 _1)7 (17 1)}

If we set A\og = zgﬁ : Uap — S! we deduce from (1.3.8) that the collec-
tion (Aap3) should satisfy the cocycle condition. In particular, it defines a
principal S'-bundle over M or, equivalently, a complex line bundle £. This
line bundle should be considered as part of the data defining a spin® struc-
ture. The collection (eq3y) is an old acquaintance: it is a Cech 2-cocycle
representing the second Stiefel-Whitney class.
We can represent the cocycle A3 as
)\aﬁ = exp(iQaﬁ), (9(15 : Uaﬁ — R.

The collection

Napy = g(eaﬁ + 08y +05a)

defines a 2-cocycle of the constant sheaf Z which represents the topological
first Chern class of £. The condition (1.3.8) shows that
NaBy = €apy (Mmod 2).

To summarize, we see that the existence of a spin® structure implies the
existence of a complex line bundle £ such that

AP(L) = wo(M) (mod 2).

It is not difficult to prove that the above condition is also sufficient. In fact
one can be more precise.
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Denote by Spin¢(M) the collection of isomorphism classes of spin® struc-
tures on the manifold M. Any o € Spin®(M) is defined by a lift (hag, 2ag)
as above. We denote by det(o) the complex line bundle defined by the gluing
data (zng). We have seen that

% (det(0)) = wa(M) (mod 2).

Denote by £y € H?(M,Z) the “affine” subspace consisting of those coho-
mology classes satisfying the above congruence modulo 2. Such elements
are called characteristic (not to be confused with the characteristic classes
of Chern and Pontryagin). We thus have a map

Spin¢(M) — Lys, o+ % (det(0)).
Proposition 1.3.14. The above map is a surjection.

Exercise 1.3.12. Show that if H2(M,Z) has no 2-torsion (e.g. M is simply
connected) then the above map Spin®(M) — Ly is one-to-one.

Exercise 1.3.13. Complete the proof of the above proposition.

The smooth Picard group Pic™ (M) acts on Spin®(M) by
Spin®(M) x Pic®*(M) > (o,L) — o ® L.
More precisely, if o € Spin(M) is given by the cocycle
0 = [hag, zap) : Uag — Spin (n) x St/ ~
and L is given by the S* cocycle
Cap i Uap = S
then o ® L is given by the cocycle
[hags 2apCas)-
Note that
det(oc ® L) = det(o) ® L?
so that
AP0 @ L) = (o) 4 2P (L).

Proposition 1.3.15. The above action of Pic®™ (M) on Spin(M) is free
and transitive.

Proof Consider two spin® structures o' and o2 defined by the good cover
(Uy) and the gluing cocycle
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Since pc(hsﬁ),) = pc(hgﬁ)) = gap We can assume (possibly modifying the maps

h(jﬁ) by a sign) that

This implies that
2), (1
CaB = Z((X;;/ Zéﬁ)
is an S'-cocycle defining a complex line bundle L. Obviously 02 = ¢! ® L.
This shows the action of Pic®™ (M) is transitive. We leave the reader verify

this action is indeed free. The proposition is proved. B

The group of orientation preserving diffeomorphisms of M acts in a
natural manner on Spin®(M) by pullback.

Given two spin® structures op and oo we can define their “difference”
o9/01 as the unique line bundle L such that oo = o1 ® L. This shows
that the collection of spin® structures is (noncanonically) isomorphic with
H?(X,Z) = Pic™. It is a sort of affine space modeled on H?(X,Z) in the
sense that the “difference” between two spin® structures is an element in
H?(X,Z) but there is no distinguished origin of this space. A structure as
above is usually called an H?(M, Z)-torsor.

We will list below (without proofs) some examples of spin® manifolds.

Example 1.3.16. (a) Any spin manifold admits a spin® structure.
(b) Any almost complex manifold has a natural spin® structure.

(c) (Hirzebruch-Hopf, [55]; see also [98]) Any oriented manifold of dimension
< 4 admits a spin® structure.

Let us analyze the first two examples above. If M is a spin manifold
then the lift

Gap : Uap — Spin(n)
of the SO-structure to a spin structure canonically defines a spin® structure
via the trivial morphism
Spin(n) — Spin(n) xz, S, g — (g,1) mod the Zs—action.

We see that in this case the associated complex line bundle is the trivial
bundle. This is called the canonical spin® structure of a spin manifold.
Thus on a spin manifold the torsor of spint-structures does in fact possess
a “canonical origin” so in this case there is a canonical identification

Spin(M) = Pic™ = H*(M, 7).

To any complex line bundle L defined by the S'-cocycle (2a8) We can asso-
ciate the spin® structure defined by the gluing data

{(gaﬂv Zaﬁ)}.
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Clearly, the line bundle associated to this structure is L? = L®2. In particu-
lar, this shows that a spin structure on a manifold M canonically determines
a square root det(c)'/2 of det(c), for any o € Spin(M) .

Exercise 1.3.14. Show that any two spin structures on a manifold M such
that H 2(M ,Z) has no 2-torsion are isomorphic as spin® structures.

Exercise 1.3.15. Suppose N is a closed, oriented, Riemannian 3-manifold.
Denote by F'ry the bundle of oriented, orthogonal frames of TN. Fry — N
is a principla SO(3)-bundle. Denote by Sy the set of cohomology classes
c € H*(Fry,Z) such that their restriction to any fiber coincides with the
generator of H2(SO(3),7Z) = Zs. Prove that there exists a natural bijection

SpinC(N) — SN.
The commutative diagram (O¢) shows that given a spin®-structure o on

a closed, oriented 3-manifold N canonically induces a spin® structure 6 on
R x N. We will often use the notations

6:=Rxo, 0g:=6|n.
Conversely, the SO(4)-structure on T'(R x N) naturally reduces to a SO(3)-
structure (split the longitudinal tangent vector d;), and invoking the diagram

(O°) again we deduce that any spin® structure ¢ on R induces a spin®
structure on N or, more precisely, the map

Spin®(N) — Spin(Rx N), c—Rxo
is an isomorphism.

In the conclusion of this subsection we would like to explain in some
detail why an almost complex manifold (necessarily of even dimension n =
2k) admits a canonical spin® structure. Recall that the natural morphism
U(k) — SO(2k) factors through a morphism

¢ :U(k) — Spin®(2k).
The U (k)-structure of T'M, defined by the gluing data
hap : Uap — U(k)

induces a spin® structure defined by the gluing data £(hag). Its associated
line bundle is given by the S'-cocycle

detc(hag) 2 Unp — St
and it is precisely the determinant line bundle
detcT " OM = AROT M.

The dual of this line bundle, detc (T M) = A*OT* M plays a special role in
algebraic geometry. It usually denoted by Kj; and it is called the canonical
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line bundle.  Thus the line bundle associated to this spin® structure is
_1 def
K, = Kj,.

Exercise 1.3.16. Show that an almost complex manifold M admits a spin
structure if and only if the canonical line bundle Kj; admits a square root,
i.e. there exists a complex line bundle L such that L®2 2 K. (Traditionally

such a line bundle is denoted by K 1/ 2, although the square root may not be
unique.)

1.3.4. Dirac operators associated to spin and spin® structures. Sup-
pose (M, g) is an oriented Riemannian manifold of dimension n equipped
with a spin structure. To describe it we assume the tangent bundle T'M is
defined by the open cover (U, ) and transition maps

9ag : Uag — SO(n).

These define a principal SO(n)-bundle Pgo(,) — M. The spin structure is
given by the lifts

Gag : Uag — Spin(n)
which define a principal Spin(n)-bundle Pspin(n) — M. Using the represen-
tation
7 : Spin(n) — Aut (S,)

we can construct the associated vector bundle Pg;p(n) X7 S, with structure
group Spin(n) and fiber S,, given by the gluing cocycle

T(Gag) : Uap — Aut (Sy).

It is called the bundle of complex spinors associated to the given spin struc-
ture and will be denoted by Sop = So(M).

Exercise 1.3.17. As indicated in the Exercise 1.3.11, there are two spin
structures on S 1, e and o. Denote by S, and S, the associated bundles of
complex spinors. These are complex line bundles over S and as such they
must be isomorphic. What bit of information do the spin structures add to
these bundles which will allow us to distinguish them?

Exercise 1.3.18. The bundle Sy has a natural selfadjoint Clifford structure
c:T"M — End (Sys).

The Levi-Civita connection VM on T*M is induced by a connection on
Pso(ny- This is given by a collection of so(n)-valued 1-forms wq € Q' (Us) ®
so(n) satisfying the transition rules (1.1.1). Using the double covering map
p : Spin(n) — SO(n) we obtain a Spin(n)-connection given by the collection

Wo = p*_l(wa) S Ql(Ua) ® spin(n).
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Then the collection of End (Sp)-valued 1-forms 7.(&,) defines a connection
VM on Sy, compatible with the Spin(n)-structure. The proof of the fol-
lowing result is left to the reader as an exercise.

Proposition 1.3.17. (So,c, VM) is a geometric Dirac bundle.

The geometric Dirac operator associated to the above Dirac structure is
called the spin Dirac operator associated to the given spin-structure on M.
We will denote it by D .

It is useful to have a local description of this Dirac operator. Suppose
(e;) is a local, oriented, orthonormal frame of TM over U, and denote by
(e') the dual coframe. Then the Levi-Civita connection on T'M is given by

1
Vej = E Wij€i, Wij € Q (Ua), Wij = —Wjj
A

and on T*M by

Vel = Zw@]e —Ze ®wkwez.

Using (1.3.7) we obtain
VM = - % Zwijc(ei)c(ej) =d-— i Zek ® wrije(e’)e(ed).
We deduce
(1.3.9) Dy =3 (b, - iZwkijc(ek)c(ei)c(ej).
k irjok

The curvature of the connection VM can be obtained as follows. The
Riemannian curvature R of M (or equivalently, the curvature of the Levi-
Civita connection on T'M) is given by the collection of so(n)-valued 2-forms

R, = dw, + wa/\wa Ze /\eZRM
k<t

where Ry : Uy — so(n) is given by
Rypej = é‘klei = Rjjree;.
Then the curvature of the connection (Qa) on Psyin(n) 1s given by
R=p;YR Ze ANelps (RM = ——Ze /\eKE:RJMeZ e;.
k<t k<t 1<j
The curvature of VM is then

VM) = —% Zek A €£ZR§MC(61‘) - c(ej).

k<t 1<j
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Using Proposition 1.3.2 and the above expression one can prove the following
important result.

Theorem 1.3.18. (Lichnerowicz) D, is a formally selfadjoint operator
and

(1.3.10) D2, = (VMy*vM 4 Z

where s denotes the scalar curvature of the Riemannian manifold M .

Remark 1.3.19. Suppose VM is a metric connection on T*M, not neces-
sarily the Levi-Civita connection. Choosing an orthonormal coframe (e') as
above we can represent

VMej = ZQk;ij@k (%9 67;.
ki

Using again the isomorphism 7 we obtain a connection VM = 7%V on Sy,
locally described by

~ 1 . .
VM =g - 1 D eF @ Qpgje(el)e(ed).
i,k
It satisfies the following compatibility relation:
V¥ec(a) = c(V¥a), VX e Vect (M), o € QL (M).

Then (So, c, vM vM ) is a Dirac structure called the Dirac structure induced
by the connection VM. As explained in Sec. 1.3.1, this Dirac structure
determines a Dirac operator we will call the Dirac operator induced by the
connection VM.

Exercise 1.3.19. Suppose (M, g) is a Riemannian spin-manifold and VM
is a metric connection. The trace of its torsion is the 1-form tr(7") locally
defined by

tr (T)(es) = Y gler, Tex, €:))
k

where (e;) is a local orthonormal frame. Show that the induced Dirac op-
erator is formally selfadjoint if and only if the torsion of VM is traceless,
tr (T) = 0.

The above construction can be generalized as follows. Given a Hermitian
vector bundle £ — M and a Hermitian connection V¥ we can define a
geometric Dirac structure

(SM ® E7 Cg, v)
on M where

cp: (M) % End (Sy) 2F End Sy © E)
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and V is the connection on Sj; ® E induced by the connection VM on Sy
and the connection VZ on E. We denote by g the associated geometric
Dirac operator. We say that s g is obtained from ®j; by twisting with
the pair (E, VF).

Exercise 1.3.20. Prove that the above triple (Sys ® E,cg, V) is indeed a
geometric Dirac structure on M.

The curvature of V is
F(V)=FNVM)®1p +1g,, ® F(VF).
From the Weitzenbock formula we deduce

(1.3.11) D p :V*V+Z+C(F(VE)).

The endomorphism R = § + ¢(F(V¥)) is the Weitzenbick remainder of the
generalized Laplacian 'D?M B

At this point we want to discuss some features of the above formula
when dim M is even. In this case Sys is Zo-graded

Sm =S}, &Sy,
and in particular we obtain a splitting
SMQE=S;;9E®Sy,®E.
With respect to the above grading the operator D, g has the block decom-
position
_| 0 Pur
2= | Pre O
where @), i : C*(S}; ® E) — C*(S;; ® E). Then
_ [ Py ePur 0 } _

Dip =
’ 0 Dy ePuE

We conclude that the Weitzenbdck remainder R of @?M g has the block

decomposition
| Ry O
e[V R

When dim M = 4 we can be more specific. Using the computation in the
Example 1.3.3 we deduce

(1.3.12) P i Poare = V'V + Z +e(FH(VE)),

(1.3.13) D 5 Pirp =VV+ Z +c(F(VE))

where F*(V¥) denotes the self/antiself-dual part of the curvature of V¥,
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Assume now that (M, g) is an oriented, n-dimensional Riemannian man-
ifold equipped with a spin® structure o € Spin®(M). Denote by (gas) a col-
lection of gluing data defining the SO structure Pgo) on M with respect
to some good open cover (U,). Moreover, we assume o is defined by the
data

hap : Uag — Spin(n).
Denote by p¢ the fundamental complex spinorial representation
p¢  Spinf(n) — Aut (S,).
We obtain a complex bundle
Se(M) = Pspine Xpe Sy,

which has a natural Clifford structure. This is called the bundle of complex
spinors associated to 0. We want to point out that if M is equipped with a
spin structure then
Sy 2 Sy ® det(a)l/Q.

We will construct a family of geometric Dirac operators on S, (M).

Consider for warm-up the special case when T'M is trivial. Then we can
assume gog = 1 and

hag = (1, 2ag) : Uas — Spin(n) x S' — Spin‘(n).

The S'-cocycle (22 5) defines the line bundle det(c). In this case something
more happens. The collection (243) is also an S Lcocycle defining the com-
plex Hermitian line bundle L = det(0)*/2. Now observe that

Sire = Sy ® det(o)Y/2.

We can now twist the Dirac operator ®y; with a pair (det(c)'/2, A), where
A is a Hermitian connection on det(c)'/? and obtain a Dirac operator on
Sar,s. Notice that if the collection

{wa € u(1) ® Q' (Ua)}

defines a connection on det(o), i.e.

dz2
wg = ;ﬂ +wq over Uyp
Zaﬁ
then the collection )
(:Ja = §wa

defines a Hermitian connection on L = det(c)'/2. Moreover if F' denotes

the curvature of (wq) then the curvature of (&, ) is given by

.1
(1.3.14) F=F.
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Hence any connection on det(o) defines in a unique way connection on
Se(M).

Assume now that T'M is not necessarily trivial. We can however cover
M by open sets (U,) such that each TU, is trivial. If we pick from the start
a connection on det(o) this induces a Clifford connection on each Sy, .
These can be glued back to a Clifford connection on Sys, using partitions
of unity. We let the reader check the connection obtained in this way is
independent of the various choices.

Exercise 1.3.21. Suppose (M,g) is an oriented Riemannian manifold
equipped with a spin® structure ¢ and A is a Hermitian connection on
det(c). Denote by V4 the connection on S, induced by A. Given a smooth
map v : M — U(1) C C* we can construct a new connection AVAy~1. Show
that this connection is induced by the connection A — 2(dy)y~! on det(o).
In particular, the assignment

(v, A) = A= 2(dy)y ™"

defines a smooth left action of the gauge group Gy (1)(det(o)) on the space
of Hermitian connection on det(o).

Let A be a connection on det(c). Denote by V4 the Clifford connection
it induces on Sps, and by D4 := Dy 4 the geometric Dirac operator as-
sociated to the geometric Dirac structure (S, c, V4). The Weitzenbock
remainder of ’D?M 4 is a local object so in order to determine its form we can

work on U, where Sy, » = Sy, ® det(o) |1U/5 Using the equalities (1.3.11)
and (1.3.14) we deduce

1 1
(1.3.15) D2 4, = (VH* VA + 15+ 5e(Fa)

where Fy denotes the curvature of the connection A on det(o). If M is
four-dimensional then we have a splitting

SM,U = S]T/[,a & S]T/[,U

and
s 1
(1.3.16) PiPa= (V) VA + L+ Se(F)).
Exercise 1.3.22. Suppose M is a Riemannian manifold equipped with a
spin® structure o and A is a Hermitian connection on det(c). Show that for

any imaginary 1-form ia € iQ'(M) we have

1
@A_Ha = @A + §C(ia)
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The space Spin®(M) of spin structures on M is equipped with a natural
involution ¢ — &. It can be described as follows. Suppose o is a spin®
structure given by a cocycle (hag, 2za). Then & is the spin®-structure defined
by the cocycle (hag,Zag). We let the reader verify that the isomorphism
class of & depends only on the isomorphism class of o. This involution
enjoys several nice features.

Exercise 1.3.23. (a) For every o € Spin®(M) there exists a natural iso-
morphism of complex line bundles.

det(c) = det(o)
(b)* If dim M = 4 then there exist natural isomorphisms of complex vector
bundles
(1.3.17) 0:SE st 9§, - S5
such that for every 1-form « on M we have the equality

9 (co(@)d)) = co(a)I(¥))
where c, denotes the Clifford multiplication on the bundle S,. Moreover,
for every ¢ € C*°(S) we have the equality

(1.3.18) q(9()) = —q(¥)
where ¢(1)) denotes the endomorphism ¢ +— (¢, 1)1) — %|1/)|2¢. (The Hermit-
ian metric is assumed to be complex linear in the first variable.)

(c) Show that for every Hermitian connection A on det(o) and for every
1 € C*°(S}) we have the identity

(1.3.19) P D a0) =P a0 ()

where A* denotes the connection induced by A on detd = (det o)*.

Hint for (b). If py : Spin(4) — SO(S]) denotes the even/odd spinor
representation then there exists a complex linear isomorphism C. : ij —
gff such that Cy o pr = pir. More precisely, if we identify Spin(4) with
SU(2) x SU(2) and SU(2) with the group of unit quaternions then Sj is the
space of quaternions H equipped with the complex structure given by Rj, the
right multiplication by i. For (¢4, q-) € Spin(4) the map p(¢+,q-) € SO(H)
is described by L, , the left multiplication by ¢.. The morphism Cy is then
given by R;, the right multiplication by j. The description of C'_ is obtained
from the above by making the changes

left — right and p4(q+,q-) = Lq, < p—(q4+,9-) = R 1.

Suppose now that M is a closed, compact, oriented 4-manifold equipped
with a spin® structure o. Upon choosing a connection A on the associated
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line bundle det o we obtain a Dirac operator
Pa:C™(S7) — C=(S;).
This is an elliptic operator which has a finite index

ind¢(® 4) = dimc ker @ 4 — dimc ker @7%.

According to the celebrated Atiyah-Singer index theorem this index can be
expressed in purely topological terms. More precisely, we have the following
equality:

(1.3.20) inde®@ 4 = % </M c1(det o) Aci(deto) — T(M))

where 7(M) denotes the signature of the manifold M.

1.4. Complex differential geometry

We present here a very brief survey of some basic differential geometric facts
about complex manifolds in general, and complex surfaces in particular.
We will return to this subject later on, in Section 3.1. This is an immense
research area and our selection certainly does not do it justice. For more
details and examples we refer to [9, 10, 49, 54, 63] and the sources therein.

1.4.1. Elementary complex differential geometry. An almost complex
structure on a manifold X is an endomorphism J of the tangent bundle T'X
such that J2 = —1. Note in particular that such a structure can exist only
on orientable even-dimensional manifolds. By duality we get a similar en-
domorphism of the cotangent bundle 7% X which we continue to denote by
J.

The operator J extends by complex linearity to an endomorphism of the

complexified tangent TX ® C. It defines two eigenbundles corresponding to
the eigenvalues 4i and thus it produces a splitting of complex bundles

TX ®C=(TX)"q (Tx)"0

where the (1,0) superscript indicates the i-eigenbundle while the (0,1)-
superscript indicates the —i-eigenbundle. Note that (T'X,J) is isomorphic
to (TX)M? as complex vector bundles. Denote by PV (resp. P?) the pro-
jection onto (TX)%0 (resp. (TX)%!) corresponding to the above splitting.

For any vector field X on M define X, := PM9X = }(X —iJX) and
X, :=POlX = %(X+iJX). By duality, these induce projectors of T* X @ C
and thus we get a similar splitting

(1.4.1) T*X @ C=(T"X)" o (T X)%



1.4. Complex differential geometry 53

which leads to a decomposition
(1.4.2) MT*X@C= P AT*X
ptq=k
where
APAT*X = AP(T*X)H0 @ A9(T* X)L,
The sections of AP4T*X are called (p,q)-forms on X. For example, if a €
QY(M) ® C then « extends to a C°°(M, C)-linear map
Vect (M) @ C — C*°(M,C)
and
a=al? + %!
where a!?(X) := o(P1YX) and a%1(Y) := a(PO1Y).

Example 1.4.1. Consider the manifold C" with coordinates z; = x; + iy;,

j=1,---,n. It is equipped with a natural almost complex structure defined
by
0 0 0

—— s ——.
856‘]' 8yj aﬂij
The complex bundle (TC")*0 (resp (T*C")%!) admits a global trivialization
defined by
0 10 o
8zj o 2 c%j 8yj
and respectively
dzj = dx; + idy;.
Similarly (TC™)%! (resp. (T*C™)%!) is globally trivialized by
o 10 0
82]‘ 2 83:]- 8yj
and respectively
dz; = (da:j — idyj).
A (p, q)-form on C™ has the form
a= Z arydz’ @ Ndz’
1,J

where the summation is carried over all ordered multi-indices
I: 1<i1<---<ip<n, J: 1<j1<---<jg<n

and «ajy is a complex valued function on C™.
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The exterior derivative extends by complex linearity to an operator
d: C®°(ANT*X ® C) — O (A*'T*X & C).
It is not difficult to check that
d(AP9) C APT2:4=1 o APTLa 5 APGHL ¢ AP—1.0H+2
Accordingly, we get a decomposition of d
d=d> 1 +d"0+d" +d 12

Traditionally one uses the notation

9 :=d"0, 9:=d".
The almost complex structure is said to be integrable if d>~' = 0 and d=1? =
0.
Proposition 1.4.2. Consider an almost complex manifold (M, J).The fol-
lowing conditions are equivalent.
(a) The almost complex structure is integrable.
(b) d>La=d12a =0 for all a € QY(M) ® C.
(c) *f=0=0%f,Vf € C®(M).
(d) The Nijenhuis tensor N € Q2(TM) defined by

1
VX,Y € Vect (M), is identically zero.

Proof Clearly (a) = (b). Using a partition of unity it is not difficult to
prove the converse, (b) = (a).

Clearly (b) = (c¢). Using partitions of unity we can replace the condition
“Ya € QY(M)” in (b) by the condition “Va = fdg, f,g € C°(M)”. This
weaker, equivalent version of (b) is clearly implied by (c). To establish the
remaining equivalences we need to establish several identities of independent
interest.

Let f € C°°(M). Then
0°f(Xe, Ye) = dOf(Xe, Vo) = XeOf (Ye) = Yo f(Xe) — O ([Xe, Yel)
= Xcdf(}/;) - }/;df(Xc) - df([Xcv ch]c)
We compute each of the terms separately.

1
4

Yodf (X.) = %{ YAf(X) — JYdF(JY) — i(Ydf(JX) + JYdf (X)) }

Xodf (Y,) { Xdf(Y) — JXdf(JY) — i(Xdf(JY) + JXdf (V) }

A([Xer Vo) = 57 (X, Vo] = 1K, Vo)
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_ édf([X XY —1JY]) %df(J[X XY —iJY))
_ édf([X, Y] [JX,JY] —i[JX, Y] - i[X, JY))

—édf(J[X, Y] = J[JX,JY] —iJ[JX,Y] - iJ[X,JY))
1

= gdf([X, Y- [JX,JY]| - JJX,Y] - JX,JY])

L IIX, Y] = JTX, JY] + [JX, Y] + [X, JY)).

_1
8
At this point we use the equality d?f = 0 which implies
udf(V)—vdf(V)=df([U,V]), YU,V € Vect (M).
We deduce

Xdf (Vo) = Yedf (V) = {15, ¥)) = df (11X, 7))}

i
— @ x v+ ar (X YD )
Putting together all of the above we deduce

Pf(X,Y)=0%f(X.,Y,) = édf([X, Y] = [JX,JY] + J[JX, Y]+ J[X, JY))

+édf(J[X, Y] — JIJX, JY] + JIJX, Y] + JIX, JY])

= —df(N(X,Y),.) = —9f(N(X,Y)).
Similarly
PF(X,Y)=—-0f(N).
It is now clear that (¢) <= (d). H

It is very easy to show that if M is a complex manifold (i.e. admits local
coordinates U — C™ with holomorphic transition maps) then the induced
almost complex structure is integrable. The converse is also true but it is
highly nontrivial. It is known as the Newlander-Nirenberg theorem.

Suppose now that M is an almost Hermitian manifold, i.e. TM is
equipped with a Riemannian metric ¢ and a compatible almost complex
structure J, i.e. J* = —J. Extend J to an almost complex structure J° on
T* X via the metric duality so that

(JPa)(X) = —a(JX).
We obtain an eigenbundle decomposition

T*X ® C = ker(i — J°) @ ker(i+ J°) = (T*X)H0 @ (T X)%!
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which coincides with the splitting in (1.4.1). Now define w € Q2(M) by
w(X,Y)=9¢(JX,Y), VX,Y € Vect (M).

Note that w € QY1 (M). We can now define a Hermitian metric on the
complex bundle (T'X, J) by

hX,Y)=g(X,Y) —iw(X,Y).

It is often very useful to have local descriptions of the various notions. Pick
a local orthonormal frame of T'M

{en, fii-sen fu}s fo = Jer.

Then ¢; = %(ej —if;) form a local, complex, unitary frame of TH9 while
£ = %(ei +1if;) form a local, complex, unitary frame of 7%!. If we denote
by (€7, f7) the dual basis of (ej, f;) then

gl = i(euifj)

V2
is a local unitary frame of (7% X)*? and
1
K k sk
ghi=—(e"—1
(et =if")

is a local unitary frame of (7% X)%!. Then
w = iz e NE,
J
If D denotes the Levi-Civita connection then we have the following identity
(see [64, IX, §4, vol.2]):
(Dxw)(Y, Z) = g((Dx )Y, Z)

1 1
(L43) = —Jdw(X,JY,JZ) + Sdw(X.Y, Z) + 2(N(Y, Z), JX).
Exercise 1.4.1. Prove the identity (1.4.3).

Suppose now that dw = 0. The identity (1.4.3) simplifies dramatically
to

(L4.4) (Dxw)(Y, Z) = g(DxJ)Y. Z) = 29(N(Y, Z), JX).

Definition 1.4.3. An almost Hermitian manifold (M, g, J) is said to be
almost Kdhler if the form w is closed. An almost Kéahler manifold (M, g, J)
is said to be Kdhler if the almost complex structure J is integrable.
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Exercise 1.4.2. Suppose (M?" w) is a symplectic manifold , i.e w is a
closed 2-form amd w” is a volume form on M. Show that there exist almost
Kahler structures (g,.JJ) on M such that

w(X,Y) =g(JX,Y), VX,Y € Vect (M).

In this case both g are said to be adapted to w. Moreover, show that when
n = 2 the symplectic form w is self-dual with respect to any adapted metric.

Using the metric duality we can regard any tensor B € Q?(T'M) as a
T* M-valued 2-form

(B(X,Y), Z) := g(B(X.Y), Z), VX,Y,Z € Vect (M)

where (-,-) denotes the duality between T*M and T'M. Now define the
Bianchi projector

bB(X,Y,Z) = (B(X,Y), Z) + (B(Z.X),Y) + (B(Y, Z), X).
Then bN is a 3-form. If dw = 0 then using the elementary identity
N(JY,JZ)=—-N(Y,Z)

we deduce
Dxw(Y,Z) = —2¢g(N(JY, JZ), JX)
so that VX,Y, Z € Vect (M)

1 1
(145)  BN(JX,JY,JZ) = —S(bDw)(X,Y, Z) = —dw(X,Y.Z) = 0

where at the second step we have use the following identity (see Exercise
1.4.4 for a more general situation)

dn(X,Y,Z) = b(Dn)(X,Y, Z), ¥neQ*(M), X,Y,Z € Vect (M).
Consider now an almost Hermitian manifold (M, g, J). A connection V on
TX is said to be Hermitian if Vg =0 and VJ = 0.

If V is such a connection then its torsion is the T'M-valued 2-form T €
Q?(TM) defined by

T(X,Y)=VxY — VyX — [X,Y], VX,Y € Vect (M).

Proposition 1.4.4. Suppose V is a Hermitian connection on an almost
Hermitian manifold (M,g,J) and denote by T its torsion. Then VX,Y €
Vect (M)

(a)
AN(X,Y)=T(X,Y) + JT(JX,Y) + JT(X,JY) - T(JX,JY)

(1.4.6) = N(X,Y)+JN(JX,Y)+ JN(X,JY) = N(JX, JY).
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(b) If (M, g,J) is almost Kdhler then there exists a unique Hermitian con-
nection V on T'M such that
Ty = N.

Proof (a) We prove only the first equality in (1.4.6). It all begins with
the identity
[X,Y] = VxY — Vy X — T(X,Y).
Then
[JX,JY]=V;x(JY)=Vy(JX)-T(JX,JY)
= J(VyxY — Vv X) - T(JX, JY).
JIX,JY] = J(Vx(JY) - Vyy X — T(X,JY))
= VY — IV X — JT(X,JY).
JIX,Y]=J(VyxY - Vy(JX)-T(JX,Y))
=JVixY +VyX — JT(JX, Y).
We deduce
ANX,Y)=T(X, )+ JT(JX,Y)+JT(X,JY)-T(JX,JY).

(b) We first need to prove an auxiliary result.

Lemma 1.4.5. For any T'M -valued 2-form T there exists a unique connec-
tion on T M compatible with the metric whose torsion is precisely T .

Proof of the lemma Denote by D the Levi-Civita connection on M.
Then any other metric connection has the form
V=D+A, AcQ'(End_(TM))

where End_ (T'M) denotes the bundle of skew-symmetric endomorphisms of
TM. Since D has no torsion we deduce that the torsion of V is

Tv(X,Y)=AxY — Ay X, VX,Y € Vect (M)

where Ax denotes the contraction of A with X. We can regard A as a
T* M-valued 2-form using the identification

(A(X,Y),Z) :=g(AzX,Y).

Thus we deduce

(1.4.7) (T(X,Y), Z) = (A(Y, Z), X) + (A(Z, X), Y).
A cyclic summation leads to the identity
bl = 2bA.

We can now rewrite (1.4.7) as follows:
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_ %bT(X, Y, Z) — (A(X,Y), Z).
Hence 1
A= T+ JbT.

The lemma, is proved. B

According to Lemma 1.4.5 there exists a unique metric connection V on
TM such that T'= N. It is explicitly defined by

1
V:D—N—}-gb]\f.

We have to show that when (M, g, J) is almost Kéhler this connection is
also Hermitian, i.e.
VJ=0.
Note first that in this case, according to (1.4.5), we have
V=D-N,

that is,

9(VxY,Z)=g(DxY,Z) —g(N(Y,Z),X), VX,Y,Z € Vect (M).
We have to show that

4(Dx Y, Z) - g(N(JY, 2), X) = —g(DxY, JZ) + g(N(Y, ] 2), X)
or equivalently
(1.4.8) g(DxJY,Z)+g(DxY,JZ) = g(N(JY,Z), X) + g(N(Y,JZ), X).
Note that

N(JY,Z) = N(Y,JZ) = —JN(Y, Z)
and
9(DxJY,Z) + g(DxY,JZ) = g((DxJ)Y, Z)
so that (1.4.8) is equivalent to
g((Dx )Y, Z) = 2g(N(Y, Z), JX)

which is precisely (1.4.4). The proposition is proved. B

Remark 1.4.6. (a) If J is integrable (so that M is Kéahler) then N = 0
so that the connection constructed in the above proposition is precisely the
Levi-Civita connection.

(b) One can show (see [64]) that on any almost complex manifold there
exist many connections compatible with the almost complex structure and
torsion N. We refer to the survey [46] for additional facts on Hermitian
connections.
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Definition 1.4.7. The Chern connection of an almost Kéahler manifold
(M,g,J) is the unique Hermitian connection with torsion N.

Exercise 1.4.3. Suppose that (M, g, J) is an almost Kahler manifold and
D is the Levi-Civita connection of g. Show that the Chern connection V
associated to the almost Kahler structure can be described as

1
Vx =Dx — §J(ij), VX € Vect (M)

Exercise 1.4.4. Suppose (M,g) is a Riemannian manifold and V is a
connection on T'M compatible with the metric g with torsion 7. Define
tr (T) € QY(M) by

= Zg(ei,T(ei,X)), VX € Vect (X)

where e; denotes a local orthonormal frame on M. Show that for any n €
QOP(M) we have

p
dU(X0> 7 Z vX 77 XOa 7Xj>"' 7Xp)
7=0
(149) +Z J+k Xk)aX07"'7Xj7"'7Xk7"' 7Xp)7
i<k
dim M
d*T](Xl, cee 7Xp—1) = - Z (vein)(thla Tt 7Xp—1)
=1
(1.4.10) +n((tr 7Y, X1, .., Xp1)
p—1
_Z(_1>]< g(Xj7T)7 77(.7.7X17 e 7Xj7 e 7Xp—1> >
j=1

where (e;) is a local orthonormal frame, tr (T') denotes the vector field dual
to tr(T"), g(X;,T) denotes the 2-form (X,Y) — ¢(X;,T(X,Y) and the
pairing (e, e) refers to the inner product of two forms. (Observe that the
above identities extend by complex linearity to complex valued forms and
vectors.)

Exercise 1.4.5. Suppose (M, g,J) is an almost Kéhler manifold and V is
the associated Chern connection.

(a) Show that tr (V) = 0.

(b) Show that if X,Y € C°®°(T% M) then N(X,Y) € C°(T1OM).
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(c) Denote by g, the extension of g by complex bilinearity to TM @ C. Show
that for every X € C°°(T%' M) the 2-form wx defined by

has type (0,2), i.e.
wx(JY, Z) = wx (Y, JZ) = —iwx (Y, Z), VY, Z € Vect (M).

(d) Show that for any n € Q%P(M) and any Zo,---,Z, € C°(T"' M) we
have the identities

p
(1.4.11) M(Zo,.... 2Zy) = (=D (V) (Zo,- . Zj, -+ ),
j=1
~ dim M
(1412) 8*77(217 ) ZP*I) = - Z (Veﬂ?)(@z‘» ARREE prl)
=1

where e; denotes a local, orthonormal frame of T'M. (For a generalization
of these identities we refer to [46].)

Hint: Use that fact that for any Zg, - -+, Z, € C®(T%* M) and n € Q°P(M)
we have

(877)(207 ) Zp) = dn(ZOv ) Zp)
and

@ n)(Zv, -+ Zpa) =d"n(Zy, -+ Zpa).

In the remainder of this section we will assume (M, g, J) is an almost
Kahler manifold. Denote by w the associated symplectic form

w(X,Y) = g(JX,Y), VX,Y € Vect (M).

Set 2n = dim M. We orient M using the nowhere vanishing 2n-form w”.
Note that

Using the metric g and the above orientation we obtain a Hodge operator
%1 QP (M) — Q" P(M)
which we extend by complex anti-linearity to an operator
*: QP(M) ® C — Q" P(M).
Exercise 1.4.6. Let ¢ € QP9(M). Prove that
Ko € QPII(A])
and

N = |l dvg
where | o | denotes the Hermitian metric induced by (g, J) on APIT*M.
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Exterior multiplication by w defines a bundle morphism
L:QPI(M) — Qp-l-l,q—&-l(M)‘
Its adjoint, L* = A : QPTLatL(AT) — QP9(M), is called the contraction by

the symplectic form.

Exercise 1.4.7. Suppose (M, g, J) is an almost Kahler manifold and (e;, f;)
is a local orthonormal frame such that f; = Jf; for all ¢. Its dual coframe
will be denoted by (e, %) and, as usual, set

ei=2""2(e; —if;), & =2""%(e; +1fi),
el — 2712ty ifh), & =2 V2(e — ifi),
For k =1,2,--- ,n we denote by 1, and 7; the (locally defined) odd deriva-
tions of Q**(M) uniquely determined by
et = (5};, =, e =Tt =0

where ¢ denotes the Kronecker symbol. Show that locally

A=—-i E Ul
k

Denote by II?¢ the natural projection Q*(M) @ C — QP4(M) and set
M= TP : Q" (M) ®C — Q"(M)® C,

p.q

H= Z(n —p—q)IP.
P.q
Observe that IT is bijective and IT* = II-!. Now define d.,d* : Q*(M)®C —
Q*(M)® C by d. = I 1dII and d} = I1-1dIl.

Example 1.4.8. Consider the space C" (with coordinates

2l ... 2™) equipped with the canonical Kihler structure

i i g5t
wo = 3 Z dz' NdzZ'.
(3
Set &' = %dzi and & = %dz". For every pair of ordered multi-indices
[:(@'1 < "'<ik); J:(jl < ...<jm)
we set
el =t N pek, T =g A AT,
Denote by I¢ the ordered multi-index complementary to I, i.e. as unordered
sets, we have the equality ¢ = {1,--- ,n}\I. Also denote by o7 the signature
of the permutation obtained by writing the multi-indices I and I¢ one after
the other.

J
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We can rewrite
wo =1 E e'"'NE
i

so that
1

02 _ —
—wp =i"e A AP AE A AT
n:

Observe that )
xel = — (xdz' — i dy)

V2
= %(dml /\dyl) Ao A (dmyi) A A (da™ Ady™) A (dyi + idxi)
(hat «— missing term)
e ) L O N O N N =

Using the above exercise we deduce

*Wy = Wy

(n—1)!
and, more generally,

x(ef nET) = (—1)|J|(”*‘I|)i"2010‘]a[c NET".

The operators we have introduced above satisfy a series of important
identities. For a proof of the following proposition we refer to [146].

Proposition 1.4.9. Suppose (M, g, J) is an almost Kdhler manifold. Then
2 = «2 — Z(_l)erqu,q’
P.q
A=s"1Lx, d = — xdx,
L,A] =
[L,d] = [A,d"] = [L, ] [A,
[L,d*] =d., [Ad]=-d, [L,d}]=

;]

7

—d, [A,dJ)] = d".

When M is Kéahler the above list of identities can be considerably en-
riched. For a proof of the following important identities we refer to [49].

Proposition 1.4.10. Suppose (M, g, J) is a Kahler manifold. Then
O =—%0%, 0" =—%0%, d"=0"+0",
[L7a] = [L? ] = [Aa a*] = [Aa 5*] =0,
[L,0"] =id, [L,§"] = —id,

[A 9] = id*, [A,8) = —id",
99" = —§"0 = —i0*LI* = —i0AD
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00" = —0*0 = —i0*LO* = i0A0.
If we set Ag = dd* + d*d, Ay = d0* + 8% and Ay = 0*0 + 00" then
1

Do = A5 = ;A

We include here for later use some simple consequences of these identi-
ties.

Corollary 1.4.11. Suppose (M, g,J) is a Kdihler manifold. Then we have
the following identities.

(1.4.13) iA(0a) = —0*a, Ya € Q™ (M),
(1.4.14) iADB = 0*3, VB e Qb0 (M),
(1.4.15) iA(0Of) = —%d*df Vf e Q% (M).

Proof To prove (1.4.13) we use the commutator identity
[A, 0] = i0*.
We deduce
Ada = 0N+ 10" = 10"«
since Ao = 0 because o € Q1 (M). The first identity is proved. The same

method proves the second identity as well. The third identity follows from
the first and the equality Ay = %Ad. |

The identities in Proposition 1.4.10 do not hold for almost Kéhler man-
ifolds but surprisingly the identities in Corollary 1.4.11 continue to hold on
an arbitrary almost Kéhler manifold. We will spend the remainder of this
subsection proving this fact.

Proposition 1.4.12. The identities (1.4.13) — (1.4.15) continue to hold for
arbitrary almost Kdhler manifolds.

Proof We prove only (1.4.13) and
1 _
(1.4.16) 5d*df = 0*0f, Vf e Q% (M),

The identity (1.4.14) follows from (1.4.13) by complex conjugation while
(1.4.15) follows from (1.4.13) and (1.4.16).
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Denote by V the Chern connection of the almost Kahler structure and
choose a local orthonormal frame (e;, f;) as in Exercise 1.4.7. To prove
(1.4.13) we use the identity da = (da)b!, that is,

da(e, ;) = (do)(ei, 5), Vi, j.
At this point we want to use the fact that the torsion of the Chern connection
is N and the identity (1.4.9)
(da)(es €5) = (Ve,a)(&5) — (Va) (&) + a(N (e, &5))-
= (Vgia)(e_j) + a( N(&', Ej) )
because Ve, oo € Q%H(M).

To compute Ada we use the local description of A in Exercise 1.4.7. We
deduce

iAo = > (9a)(er, &) = Z( (Vep@)(Er) + (N (ek, &5)) )
k

k

We need to analyze in greater detail the terms in the above sums. We will
use the fact that for any 8 € Q¥(M) we have

B(JX) =—ip(X), VX € Vect (M) @ C.
This implies that

(1.4.17) Bler) =16(fx), VEk.

Then .
§(Vek — ink)a(ek + lfk)

1 1/ . .
= 3 (Vaaler) + Vialfi) + 5 (-iVaa)(er) +i(Ve,)(fr)
(use the fact that V., a, Vs, € Q%1 (M) and (1.4.17))
= (Ve,a)(er) + (V) (fr)-
Using the identity (1.4.12) we deduce

D (Ve 0)(E) = —0%a.

k
To conclude the proof of (1.4.13) it suffices to show that

(1.4.18) N(eg,éx) =0, Vk.
We have
1 ) ) ) )
N(ex, &) = §N(6k —ifr,er +ifx) = iN(ex, fr) = iN(ex, Jey)

= —iJN(ek, ek) = 0.
The identity (1.4.13) is proved. Combining the above arguments with
(1.4.11) one can easily obtain (1.4.17). The details are left to the reader. B

(Vska)(ék) =
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1.4.2. Cauchy-Riemann operators. Suppose (M, J) is an almost com-
plex manifold and £ — M is a complex Hermitian vector bundle over M.
We denote by QP4(E) the space of smooth sections of the complex bundle
APIT*M ® E so that we have a decomposition

OF(E)= P U(E).
p+q=k
A Cauchy-Riemann operator (CR-operator for brevity) on E' is a first order
p.d.o.
L:Q"(E) - Q% (E)
such that
L(fu) = (Of) @ u+ fLu, YVf € C°(M), uc Q" (E).

Let us remark that the above condition is simply a statement about the
symbol of L. We denote by CR(E) the space of CR-operators on E and by
Ap(E) the affine space of Hermitian connections on E. Denote by P and
PY%! the projectors associated to the decomposition

QYE) = QY(E) @ Q"Y(E).
Given a connection A € A (E) with covariant derivative
vA:QUE) - QYE)
we obtain an operator
oy = PP o VA QY(E) - QVY(E).
We let the reader check that 04 is a CR-operator. We thus obtain a map
Ds : Ap, — CR(E), A+ 04.
Proposition 1.4.13. The map O, is a bijection.
Proof  We first show that ?. is injective. Suppose A, B are two Hermitian
connections such that 94 = 0g. Then
60=B-A

is a 1-form valued in the bundle of skew-Hermitian endomorphisms of E
such that
5% =o.
Note that )
0N X) = 5 (0(X) +16(J X)), VX € Vect (M)
where §(X) is a skew-Hermitian endomorphism and i§(JX) is Hermitian.

This implies 6(X) = 6(JX) = 0 since any complex endomorphism decom-
poses uniquely as a sum of a skew-Hermitian and a Hermitian operator.
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To prove the surjectivity we will construct a right inverse
V*:CR(E) — Ap(E).

Fix a Herznitian connection Ag on E and denote by Lg the associated CR-
operator d4,. If L € CR(E) then

f=L—-Loc Q" (End(E)).

We have to construct a 1-form § valued in the bundle of skew-Hermitian
endomorphisms of E such that

ot =p.
In other words, § satisfies the functional equation
(X)) +16(JX) =20(X), VX € Vect (M).

We deduce from the above equality that §(X) is the skew-Hermitian part of
the endomorphism 23(X) so that

6(X) = B(X) = B(X)".
Now set
VEoHS g 1 5 - B
The map
Lo+ 8 — VEots

is a right inverse for 0,. W

Suppose L € CR (E). Then L induces first order p.d.o.’s
L:OPYE) — Qp,q+1(E)
uniquely determined by
Lla®u) =0a@u+ (=1)PTa A Lu, VYa € QPYM), uec C°(E).

If A is Hermitian connection on F we denote by the same symbol all the
CR-operators

op: PYUE) — QPItI(E).
Then for every u € C*°(E) we have
(1.4.19) u=FY%u — (Dau) o N

where N denotes the Nijenhuis tensor of the almost complex structure on
N.

Exercise 1.4.8. Use the arguments in the proof of Proposition 1.4.2 to
prove the identity (1.4.19).
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In the remaining part of this subsection we will assume the almost com-
plex structure on M is integrable. This means the manifold M can be
covered by (contractible) coordinate charts U, — C" such that the transi-
tion maps are holomorphic. A holomorphic structure on the rank-r complex
vector bundle FE is a collection of holomorphic local trivializations, i.e. a
collection of local trivializations

U, : Ely,— Cp,
such that the transition maps
_ 2
9a = V5(p) 0 U (p) : Ung — GL(r,C) C C"
are holomorphic. A holomorphic vector bundle is a pair

(vector bundle, holomorphic structure).

Two holomorphic structures ¥ = (U, g5, = Vo ¥ l) and & =
(Po, hga = Pg o @) are isomorphic if there exist holomorphic maps
Ty : Uy — GL(r,C)
such that
hoa = TgpaTy "
We denote by Hol (E) the set of isomorphism classes of holomorphic struc-

tures on E. (To be completely rigorous, one has to include in the definition
of equivalence the gluing cocycles subordinated to different covers.)

Exercise 1.4.9. Prove that any holomorphic structure on E induces an
integrable complex structure on the total space of the bundle such that
the canonical projection £ — M is a holomorphic map. Moreover, two
equivalent isomorphic holomorphic structures induce biholomorphic complex
structures on the total space.

Fix a holomorphic structure on E given by the local holomorphic trivial-
ization W,. There is a canonically associated sheaf of holomorphic sections.
If V is an open subset of M and V, = V N U, then a section ¢ of E over V
is called holomorphic if the functions

Yo = \Ilaow’\/a: Vo — C"

are holomorphic. We denote by Oy (FE) the sheaf of holomorphic local sec-
tions of E. The manifold M is equipped with a fundamental sheaf Oy,
the sheaf of local holomorphic functions on M. Then Oy (E) is a sheaf of
Opr-modules. It is a locally free sheaf, i.e. it is locally isomorphic to the
sheaf OF;.

Exercise 1.4.10. Prove that two holomorphic structures on E are isomor-
phic iff the associated sheaves of holomorphic sections are isomorphic as
sheaves of Oj-modules.
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Denote by e; the canonical spanning sections of the trivial vector bundle
Cyy,, and define
‘1’;1(61) = u?? T 7\P;1(€T) = u? S OM(E') UCY)'

These sections span the fibers of E,. Any section u € C*®°(E,) can be
uniquely written as

u=>Y_fiuf, fieC®U)®C.

Define 9,, € CR(E,) by
Ot = Z(éfl) ® us'.

Since the identifications F, = Eg over U,g are given by holomorphic maps
we deduce

O = 55 over Uayg.
Thus the operators d, glue together to form a CR-operator on E. It depends
on the choice of the trivializations ¥,. We will denote it by Jy.

Exercise 1.4.11. Show that
5\1; o 5\1; = 0.

Definition 1.4.14. A CR-operator L on a complex vector bundle E over
a complex manifold M is called integrable if L? = 0. We will denote by
CR;(F) the space of complex integrable CR-operators.

Suppose (\IJ = (\Ila)> and (\il = (\ila)) define two isomorphic holomor-

phic structures on E. Thus, there exist holomorphic maps
Yo : Uy — GL(r,C)
such that
UpoW tye =700 U
Define
P, = ’y;l\lla.
Observe that
Ppodt =Vz00, L

Thus, the collections <\Il = (\I/a)) and <¢' = (@a)) lead to the same holo-

morphic gluing cocycle. Moreover, since the maps v, are holomorphic we
have

By = Oa.
The collections ¥ and ® are cohomologous, i.e. there exist smooth maps

Ty : Uy — GL(r,C)
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such that
U, =T,0d,.
Clearly
Ts = 9paTagap
so that 71" defines a complex automorphism of the bundle £. Thus, two col-

lections of local trivializations which lead to the same (holomorphic) gluing
cocycle differ by an automorphism of F.

Suppose now that 7' € G(F) is a complex (not necessarily holomorphic)
automorphism of E. Using the trivializations ¥, it can be described as a
collection of smooth maps Ty, : U, — GL(r,C) satisfying the gluing rules

T = ggaTagEi = TglggaTa = 9Ba-
It defines new trivializations
By :Ey—C, &, =T, 00,.
Notice that
Cpod! =T, WU, Ty =T ggaT = gpa

so that @, are compatible with the gluing cocycle ggo. We will denote
® =V oT. We obtain a new CR-operator Jg.

If s is a section of E, then we can write
s = ZSZ el ) and T's = Zsl 1Ta(ei).
Note that
0pT's = Z(ész) 1T (€;) TZ (0s;)W = Tys.
i
In other words
éq;oT = Té\I;T_l.

The group G(FE) of complex automorphisms of E acts on CR;(F) as

above, by conjugation. We thus have a well defined map

Hol (E) — CR;(E)/S(F)

which associates to each holomorphic structure ¥ on E the §(E)-orbit in
CR,(E) of the CR-operator dy. Observe that the sheaf Oy (E, ¥) of local
sections of F holomorphic with respect W coincides precisely with the sheaf
of local solutions of the partial differential equation

Ogu =0, u local smooth section of E.

If U7 and ¥y are two holomorphic structures such that the associated CR-
operators lie in the same orbit of G(F) then clearly the associated sheaves
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of holomorphic sections are isomorphic as sheaves of Op;-modules and, ac-
cording to Exercise 1.4.10, the two holomorphic structures are isomorphic.
This means that the map

Hol (E) — CR,(E)

is one-to-one. This map is also surjective and we refer to [29, Chap. 2]
or [63, Chap. I] for a proof of this nontrivial fact. The following results
summarizes the above observations.

Proposition 1.4.15. The map Hol (E) — CR;(E)/S(E), (E,¥) — Oy
described above is a bijection.

In view of this proposition, we can reconsider the manner in which we
regard holomorphic bundles. In the sequel, by a holomorphic bundle over
a complex manifold we will understand a pair (F, L) where F is a complex
bundle and L is an integrable CR~operator.

Suppose now that E is equipped with a Hermitian metric h. As we have
seen we have a bijection

Os : Ap(E) — CR(E), A 04

Set
Ayt = 971 (CRy(E)).

Lemma 1.4.16. The space .A}ll’l(E) consists of Hermitian connections A
such that Fj’o = Fg’2 =0.

Proof Suppose A € A,ll’l(E). Then using (1.4.19) we deduce FX’Q =03 =
0. On the other hand, since the connection A is compatible with the metric
h, the curvature I is skew-Hermitian so that Fj’o =—(F20,4)!=0. 1

There is an action of G(F) on A, (E) induced by the isomorphism A}ll’l (E)
CR,(FE). More precisely, given T' € G(E) and A € /l,ll’l(E) we define T - A
by the equality

Op.a =TT
We have thus proved the following result.

Proposition 1.4.17. Any Hermitian metric h on a complex vector bundle
E over a complex manifold defines a bijection

Hol(E) = A, (E)/S(E).

Moreover, any integrable CR-operator 0 on E induces a unique holomorphic
structure ¥ on E and a unique Hermitian connection A such 04 = 0 = Oy.
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Remark 1.4.18. The above identification has profound consequences. For
example, in [58] it is shown that, modulo some topological identifications,
it contains as a special case the classical Abel-Jacobi theorem.

Example 1.4.19. Suppose L — M is a complex line bundle over a complex
manifold M equipped with a Hermitian metric h. The group §(L) can be
identified with the group of smooth maps

f:M—C".
Suppose we are given an integrable CR-operator 0 on L. This induces a
holomorphic structure on L and a Hermitian connection A such that

da =0 and Fa € QVY(M).

To find an explicit local description of A we choose a local trivializing patch
U and a nowhere vanishing holomorphic section s of L over U. Set

p= h(s,s) = s
The connection A is locally described by a (1,0)-form 6 determined by the
conditions

VAs = fs,
dp = 0h(s,s) + Oh(s,s) = p(0 + 0)
from which we deduce
= 9 = Jlogp.
p

The curvature of A is given by the 2-form

df = 00log p.
Suppose now that f € G(L). We get a new CR-operator d on L:
- Of
- f

defining the same holomorphic structure on L as d. Its associated Chern
connection, denoted by Ay, can be determined as in the proof of Proposition
1.4.13 using the equality

O = fof ' =

hoan W
This formula describes the action of §(L) on A;L’l(L).
Suppose that instead of the metric h we work with the metric
hy = exp(2u)h

where v is a smooth real valued function on M. Denote by A, the Chern
connection associated to the CR-operator 0 and the metric h,. Then

Oa,s = 0ys, 0,=0log|s[} =0+ 20u
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so that A, — A = 20u.
Fu, = FA+200u. R

Example 1.4.20. Supppose L; — S? is a complex line bundle of degree
¢ € Z over S? = P!. Observe that any CR-operator on L, is automatically
integrable since Q%?(P!) = 0.

Thus, for any Hermitian metric h on L we have
An(L) = Ay (L)
and we have a bijection
Ap(L) — CR;(L) = CR(L), A da.

Fix a CR-operator 9 : Q9(L) — QU1(L). Then, for every metric h on L
denote by A the Chern connection determined by ¢ and h. If we change
h — hy := e®™h, u : S — R then, using the computations the previous
example, the curvature of Aj;, changes according to

Fy, — Fa, + 200u.

Suppose additionally that S? := P! is equipped with a Kéahler metric go.
(All Riemannian metrics on a Riemann surface are automatically Kéhler.)
Denote by wg the Kahler form. Then, using the Kéhler-Hodge identities in
Corollary 1.4.11 we deduce

200u = 2A(00u)wy = (—iAgu)wp.

Let
_ 2mdeg(L)

volg, (S?)

/ <icw0 — FAh) =0.
SQ

Thus, the 2-form icwy — Fa, is ezact, and there exists a smooth function
uw: 8% — R, unique up to an additive constant, such that

so that

200u = icwy — Fa,.
The curvature of Aj,, is the harmonic 2-form

27 deg(L) :
= —————Ziwy.
Anu volg, (52) 0
The metric h,, is determined by (¢, go), uniquely up to a positive multiplica-
tive constant. W



74 1. Preliminaries

Suppose (M, g, J) is a Kdhler manifold and E — M is a holomorphic,
Hermitian line bundle. Denote by A the associated Chern connection and
by 04 the family of operators

op: PYUE) — QPIt(E).

There is a Hodge *-operator
(1.4.20) xp : QPYUE) — QU PR
defined as the the tensor product (over C) of the complex conjugate-linear
bundle morphisms

s @ APITEM — AP ITEM
and the metric duality B

Dgp:E— FEXE".

We have the following generalization of Proposition 1.4.10. For a proof we
refer to [49].

Proposition 1.4.21. Let E — M and A be as above. Then
3124 = 5124 =0, 0404+ 0404 = e(Fa)
where e(Fa) denotes the exterior multiplication by Fa € QU1 (M). Addition-
ally, the Hodge identities continue to hold:
0% = — *p Opaxp, O = — % 0%,
[L,A] =
04, L] = [0a, L] = [0}, A] = [04,A] = 0,
[1,04] = 104, [L,33] = —i0a,
[A,04] =10%, [A,04] = —10}.

We conclude with a Weitzenbock type identity we will need in 3.3.4.

Proposition 1.4.22. Suppose (M, g, J) is an almost Kahler manifold and
E is a Hermitian line bundle equipped with a Hermitian connection A. Then
for every smooth section s of E we have the equality

204045 = (VA)*VAs —i(AFy)s.

Proof Fix a local orthonormal frame (ei, fi) as in Exercise 1.4.7. Then

8A—Zék/\VA— Z(e —iff) A (VE +1VH)

k

1 ko oA L gk oAy, L P
252(6 AVE + f /\ka)+§Z(e AVE —fFAVE)
% %
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Toa, i k A k A
=3V +§Zk:(e AVE = fFAVE).

For s € Q%(E) we have 04045 = (VA)*da so that
% O 1 * i *
D40as = 5(vf‘) vA + 5(vA) S (FAVE = FFAVL)s.
k
For any vector field X on M we denote by (X ) the contraction by X. Then
(VA" =D (Vg ile;) + (V) ilF))-

J

Since
((VE)ile)) + (V) i(fi) )" AVE = FFAVE)s
= SF((V2) V5, = (V4)'Va )s
we deduce

% 9 1 * 1 * *
D40as = (V) Vs + 253 (VA — (VR)'VE)s.
k

Using the identities
(VL) =-Va —div(er), (VA)" =-Vi —div(e)

and
_[v?k’v?k] = —Faler fr) — vék,fk]
we deduce ) .
o i
04048 = i(VA)*VAs ~3 Zk: Fal(ek, fr)s
i . .
-3 Z(Vék,fk] + d1v(ek)ka - dlv(fk)ka)s
k
i

_ !

2

(92 =iAE) )s = 5 ST (Vi g+ divien) T, - div() Ve, )s
k

Hence, to conclude the proof of the proposition it suffices to prove the fol-
lowing identity:

(1.4.21) > ek, fil =D (div(fi)er — div(ex) fr)-

k k
The proof of this identity relies on the following elementary facts:

w= Zek AfE Wt = nldvg, dw = 0.
k

Let us now supply the details. First note that (1.4.21) is equivalent to
(1422) S (e fil) = div(f;) and S fI(lex, fil) = —div(er):
k

k
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Next, observe that
1

div(e;) = *d x ¢/ = = 1)l

d(ff no™ )

1

= G AT = A e e )

and, similarly,

div(f;) = *d* fi = — (de? AW N(er, f1, -+ s en, fn)-

1
(n—1)!

Thus (1.4.22) is equivalent to

1 . 1 _ 4
(1423) (n_1)|(df]/\w )(elaflv'” 76n7fn)__;fj([ek7fk])
(1.4.24) (n— 1)!(d€j A" (e, fi,e e ens fn) = zkjej [exs fx])-
Now introduce the operators
Ck_z(fk) (ek) ]C:].,"',TL
They enjoy some nice elementary properties.
(1.4.25) C? =0 and [Cy,Cj] =0, Vk,i.
(1.4.26) Cr(n A\ Crp) = Ckn A Crp, Y, € Q°(M), Vk.
Define P :=[]; Ck, P := H#k Cj and S := ), Ck. Observe that
1 n—1 __ 1 n
(n—l)!w —n!Sw ’
Thus
1 , , 1
dfi Awn? e sen, fo) = P(AfT A -l
(n—l)'(f w )(elvflu 7e7f) (f ( _1)‘(.4.) )

— P(df? A Sw™)
(use the identities (1.4.25), (1.4.26))

= —ZPk Cr(df?) A Crw™) ,ch (df7)Pw™ = Crdf!
k

—deﬂ ek, fr) = Zf” lex, fi]).

This proves the equahty (1.4.23). (1.4.24) is proved similarly. The proof of
Proposition 1.4.22 is complete. B
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Exercise 1.4.12. Suppose (M, g, J) is an almost Kéhler /-manifold and
E — M is a Hermitian line bundle equipped with a Hermitian connection.
Denote by A the Hermitian connection induced on the line bundle A%2T* M
by the Chern connection. Show that for every section 3 € Q%2(E) we have
the following Weitzenbock type identity:

- = 1
05030 = 5 ( (VASBY*gAS®B L iN(Fy + Fp)).

1.4.3. Dirac operators on almost Kéahler manifolds. Suppose (M, g, J)
is an almost Kéahler manifold of dimension 2n. We denote by D the Levi-
Civita connection of g and by V the Chern connection of this almost Kéahler
structure. Recall that if M is Kdhler then D = V.

The almost complex structure defines a canonical spin® structure oy on
M. We have seen that the line bundle associated to this structure is K} =
A%"T*M. The Fundamental Fact in §1.3.1 shows that the associated
bundle of spinors is

S, = AO’*T*M, S(::i: ~ AO,even/oddT*M‘

The Chern connection induces Hermitian connections on A®PT*M, Vp and
in particular, a Hermitian connection on KA_/[I. In this manner we obtain a
geometric Dirac operator

@ . AO,evenT*M N AO,oddT*M
o :
We say that @, is the canonical Hermitian Dirac operator associated to the
almost Kahler structure.
On the other hand, the Chern connection induces CR-operators
9 : APIT* M — APIT!

and we can form the first order p.d.o.

5 + 5* . AO,evenT*M N AO’OddT*M.
Proposition 1.4.23. Let (M,g,J) be as above. Then

P = V29 + ).

Proof Choose a local orthonormal frame (e;, f;) of T'M such that f; = Je;.
Set e; 4, = fi and define ¢;, & as usual. Denote by D the connection on Se
induced by the Levi-Civita connection on T'M and the Chern connection on
K;;'. Then

9. = Y ele)D, + Y ele)D,

)
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To proceed further we need to use the explicit description of the Clifford
multiplication explained in the proof of the Fundamental Fact. We have
to be careful about conventions because the description S, =2 A%*T*M uses
the isomorphism TM10 = T* M1 given by

E; — .

We deduce
(&) = V2e(&), c(eF) = —V2i(&).
If we continue to denote by V the connection on A%*T*M induced by the
Chern connection then, using Exercise 1.4.5, we deduce
V20 + ) =Y eV, + 3 e(e) Ve,

i i
Next, note that since all the computations are local we can assume that,
topologically, M is the open ball in R?". It has a spin structure and we
denote by Sy the associated bundle of complex spinors. This spin structure
also defines a square root /2 of the canonical line bundle and we can write
Se Sy K —1/2 As in Remark 1.3.19 the Chern connection induces a Dirac
structure (Sg, ¢, V, V), where the connection V on Sy satisfies

(1.4.27) Vxc(a) =c(Vya), VX € Vect (M),Ya € QY (M).

Using the Chern connection on KA_/ll we obtain by twisting, as in §1.3.4, a

connection on S., which we continue to denote by Vv, satisfying the same
compatibility relation (1.4.27). We can now define a new Dirac operator

9, = Y eV + Y el

We have thus obtained three first order p.d.o.’s @, @,,, V2(0 4+ 0*) which
have the same symbol. The proposition will be proved once we show these
three operators actually coincide. The proof of this more refined statement
will be carried out in two steps.

Step 1
@C = @h'
Set S =V — D e Q'(End (S.)). Then

2n n
Dy, —D. = Zc(ei)S(ei) = Zc(ai)S(ai) + Zc(éi)S(éi).
i=1 i ;
Thus we have to show that

(1.4.28) D c(e)S(e) + Y e(e)S(&) = 0.
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Using Proposition 1.4.4 we deduce
2n .
Viej = Diej — > Nijper, Vi, j=1,---,2n
k=1

and

2n
Viel = Diel = Njek, Wi j=1,---,2n
k=1

where N = Z??k:l N;kei ® e/ @ e* denotes the Nijenhuis tensor. We will

regard N as a T M-valued 2-form using the metric duality
N(X,Y,Z)=g(X,N(Y,Z)), VX,Y,Z € Vect (M).

Thus N € C®°(T*M®3) and is skew symmetric in the last two variables. We
can extend it by complex multilinearity to an element of C°°(T*M®3) @ C.
Using Exercise 1.4.5 (b), (c) we deduce that

N € COO((T*Ml,O)®3) o COO((T*MO’l)®3).
From Remark 1.3.19 we deduce

2n

N R 1 . .

S=V-D= 1 ~;1el & N(eiaejvek‘)c(ej)c(ek)
Z7j7 =

A~ =

1 &N , L A
=1 Y €@ N(eejer)c(e)ee) + 5 > & @ N(&, &, a)c(@)c(E)
i5.k=1 i5.k=1
and therefore

> (bN)(Eigjier) - e(e)e(e)e(e") (145
1<i<j<k<n
Similarly, one proves that

n

Zc(gi)S(a-) =0.

i=1
The equality (1.4.28) is proved.

Step 2
D, = V2(0 + ).
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Set § = V-V € Q'(End (S,.)). Note that both connections V and V satisfy
the compatibility condition (1.4.27), so that

[S(X),c(a)] =0, VX € Vect (M), o € QY(M).

This means that Vo € M the operator S(X), commutes with every element
in C(T;M)®C = Endc(Se|). Using Schur’s lemma we deduce that S(X),
is a multiple of the identity. In other words, there exists a purely imaginary
1-form a such that
S =a®id.
We want to prove a = 0. Note that the constant function 1 can be viewed
as a section of AY9T*M < S, so that
=(V-V)1=V1

so that it suffices to show V1 = 0.
Locally we have

Ve; = Z Qk]ei

i,k=1
and
2n
J )
el = E Qe
ik=1

Using the metric duality we can regard the End (T'M)-valued 1-form € as a
T* M-valued 2-form

Qex €is €5) = g(Viej, €;).
We can extend it by complex linearity to an element of C°(T*M®3) ® C.
Note that since V is compatible with the complex structure it preserves the
splitting TM ® C = TM"? @ TM%!. This implies that VX € Vect (M) the
2-form (X, -, -) has type (1,1), i.e

Q(X,Ez‘,sj):Q(X,Ej,éj):()’ Vi, j=1,---,n.
Moreover, VX € Vect (M)
Vxej = ZQ (X,&i,ej)ej, Vx&; = ZQ (X, ei,&))

The connection V° induced by V on Sy has the local description

. 1 o
VO=d- 1 Z " @ Qer, e, e5)c(e’)c(e?)
irj,k

—d— i > e @ Qleg, 1,5)e(e)e(d) — i > " @ Qep, &5, 8)c(& ()

i7j7k /[:7j7k
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1 v 1 . .
-3 > & @ Qe i, )c(e)e(@) — i > & @ Qe &, e)c(@)e(e).
i,9,k i,5,k
Now define § € Q' (M) by
VE'A--AEY=0QE A---NE"
The connection V on S, induced by V is
- - 1
V=V’+4
2
Since c(¢%)1 = 0 we deduce
. 1 NN |
Ve, 1= 1 Z Qek, €i, Ej)e(e)e(é?) + 55(%)
i,
(c(eh)c(8)1 = —26%)
1 1
=35 Q irEi a .

On the other hand, if we denote by g. the complexification of the metric g
(by complex linearity) we deduce

(Ve @) (&) = =& (V&) = —gelej, Ve, &)
= - ch(5j7 Qex,e1,8i)é0) = — 25;'@9(61476@,51) = —Q(ep,€5,8)
¢ ¢

so that
ngé::j = — ZQ(Ek,é‘j,éi)él.
7

This implies immediately that

5(519) = — Z Q(Ek, Eis é‘i)

so that V., 1 = a(e;) = 0. Similarly we have a(z;) = 0 which shows that
a = 0 and completes the proof of the proposition. B

Remark 1.4.24. For an alternate proof of Proposition 1.4.23 we refer to
[119].

The following result now follows immediately from the above. Its proof
is left to the reader.

Proposition 1.4.25. Supose (M, g, J) is an almost Kdahler manifold of di-
mension 2n, L — M is a Hermitian line bundle and B is a Hermitian
connection on L. L defines a spin® structure or, = 0. ® L, where o, is the
spin® structure induced by J. Moreover, det(or) = KA_; ® L% Using the
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Chern connection Ag on M and the connection B on L we obtain a connec-
tion A = Ag ® B¥? on det(oy) and thus a geometric Dirac operator ® 4 on
Se, = QU*(L). Then

Pa=V2(0p+p).

1.5. Fredholm theory

When defining the Seiberg-Witten invariants one relies essentially on the
fact that the various operators involved are Fredholm. In this section we
discuss some important topological features of Fredholm operators.

1.5.1. Continuous families of elliptic operators. Suppose (M, g) is a
smooth, closed, compact, oriented Riemannian manifold and E°, E' — M
are real vector bundles equipped with a metric (-,-) and @, : C*(E?) —
C>(E%) is a first order elliptic operator. Suppose X is a smooth, compact,
connected manifold. Using the natural projection X x M — M we obtain by
pullback a bundle Ex — X x M. Now consider a section T of Hom (E%, EL).

We can regard T as a smooth family (7},),cx of morphisms of E0 — E*.
We can now form the family of elliptic operators
P, : C*(E%) — C¥(E")
described by
@w = @0 + TI
These operators have symbols independent of x € X and define closed,

unbounded, Fredholm linear operators L?(E°?) — L?(E!) with common do-
main LY?(E). Moreover the map

ind (@,): X - Z, =+ ind(P,)

is constant since X is connected.

Suppose dim ker @, is independent of z. Then dim ker @ = dim ker®,—
ind (®,) is also independent of x. We then get two smooth vector bundles
ker® and ker®* and a real line bundle

det(®) = detker® @ (det ker@*)*

called the determinant line bundle of the family 3. Remarkably, one can
still define such a line bundle even if the dimension of the kernels of @,
jumps. To explain the construction we first recall a couple of facts proven in
[105], Sec. 9.4.1. First, set for simplicity H; = L?(E"), i = 0,1. For every
closed subspace V' C Hj define the unbounded operator

Dy, HodV — Hy
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with domain L'?(E®) @ v acting according to
Dy (h®v) =D, h+v, Yue LY (E%), ve V.

A stabilizer of the family (9, )zecx is a finite-dimensional subspace V' C H;
such that @y, is surjective for all z € X. We will denote by S(P) the set
of stabilizers.

Example 1.5.1. The cokernel of a single operator @, = ker®*, is a sta-
bilizer for the one-member family @ so that S(@) # (. In fact, any finite
dimensional subspace of H; containing the cokernel will be a stabilizer. Ob-
serve that if we denote Vy = ker®@* then

kerPy, ={u®0; uckerP}
so that there is a natural isomorphism ker3 = ker 3@y, .

If V e S(@) then for every z € X we have a natural short exact sequence
of Hilbert spaces

0— ker@y, L Hya VS H, 0.

It admits a canonical splitting in the form of the bounded, right inverse
Rve: Hi — (ket@y,)" C HooV
where Ry hi1 = hg @ v if and only if
(v @® ho) € (ker®y)L, Pho+ v = hy.

Remark 1.5.2. For any stabilizer V' of a family @ we could define @;, by
the equality
Dy (v+hg) = —v+ ho.
This operator is onto and it has a right inverse Ry, defined by the conditions
Rvhi =v @ hg & (v® hg) € (kerDy)T, Dho —v = hy.

In this book we will consistently work with the first convention, Py, and Ry .

The following results can be deduced immediately from the considera-
tions in [105, §9.4.1].
Fact 1 S(®) # 0. Moreover, if V € S(@) and W D V then W € S().

Fact 2 For any V € S(®) the bounded linear operators Ry, depend
smoothly upon z and the family z +— ker®y,, defines a smooth vector
bundle ker®,, over X.

Suppose V,W € §(®), V. C W. The short exact sequence
(1.5.1) 0=V ->W->W/V -0



84 1. Preliminaries

admits a natural metric induced splitting by identifying W/V with the or-
thogonal complement in W. We also have a natural dual split exact sequence

(1.5.2) 0>V W*"— (W/V)* = 0.
Then there is a natural exact sequence
(1.5.3) 0 — ker @y — ker@y, — W/V — 0

where the first arrow is induced by the inclusion V' <— W and the second
arrow is given by orthogonal projection. This sequence admits a natural
splitting

swyv : WV = ker@y,, w/v— (—Ry(w/v)) ® (w/v).

Taking the direct sum of the split exact sequences (1.5.3) and (1.5.2) (in
this order) we obtain the split exact sequence

(1.5.4) 0—ker@y, V" —mker@y @ W* - W/Va(W/V)" -0
which leads to an isomorphism

ker@y @V @ (W/V) @ (W/V)* — ker Dy, & W,
By passing to determinants we obtain a natural isomorphism

Ly« detker@y @ det V* — det ker @y, @ det W*

defined by the commutative diagram below.

det ker®@y, ® det V* —= 5 det ker@, ® det V* @ det(W/V) ® det(W/V)*

Iy v

1%

det ker @y, ® det W*

Set Ly := detkerPy ® det V* so that Iy is a line bundle isomorphism
Ly — Lyw. Thus, the isomorphism class of the real line bundle Ly is
independent of V € S().

Definition 1.5.3. The isomorphism class of the line bundles Ly is called
the determinant line bundle of the family 3 and will be denoted by det3.

The above construction has a built-in coherence, explicitly described in
the next result.

Proposition 1.5.4. If Vi C Vo C V3 are stabilizers of the family D, then

Iy, pvi = Ly vy © Ly vy -
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Proof We begin by making a few useful conventions. For any ordered
basis b of a vector space FF we will denote by b* the dual ordered basis of
E*, by det(b) the element it defines in det E and by det(b)* the corresponding
element in det E*.

If by and by are ordered bases in Fy and Fo we denote by by U bs the
ordered basis in the ordered direct sum E; @ E>. Observe that

det(b] U b3) = det(by U by)™.
There is a natural isomorphism
R — det(E @ E¥)

defined by 1+ det(b U b*), where b is an arbitrary ordered basis of E. It is
easy to see that this isomorphism is independent of b.

For 1 <i < j < 3 denote by s;; : V;/V; — ker@vj the natural splitting
sy, /v; of the exact sequence

(Sij) 0 —kerPy, — kerPy, — V;/Vi — 0.

Fix an ordered basis by of V7, an ordered basis 31 of keri‘Z)Vl and ordered
bases by /b1, bs/be of Vo /Vi and V3/V,a. We get bases by = by U (ba/b1) of Vi
and by = by U b3/b2 of V3. Set bg/bl = bg/bl U b3/b2 so that by = by U bg/bl.

Using the split sequence (S12) we obtain an ordered basis
B2 = (1 U s12(b2/b1)
of ker®y, and similarly, from (Ss3), an ordered basis
B3 = (2 U s23(b3/b2) = B1 U s12(ba/b1) U s23(b3/b2).
From the explicit description of s;; we deduce immediately that
s13(ba /b1 U b3 /b2) = s12(b2/b1) U sa3(b3/b2).
This implies
B3 = B1 U s13(b3/b1).
The above identities can be written succinctly as
Bj = Bi Usij(bj/bi).
The isomorphism I;; can now be described as follows:
det(B; U b;) = det(B; Ub; U (b /bi) U (b;/b;)*) —
— det(B; U si5(b;/bi) U (bi)" U (b;/bi)")
= det(3; U b; U (bj/b;)") = det(B; U bj).

The proposition is now obvious. B
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Exercise 1.5.1. Suppose @ is a family such that dimker®, is independent
of x € X. Show that

det®, = detker®, @ (det ker@:)*.

Suppose now that we have two families (7p), (71) of morphisms param-
eterized by X. They are said to be homotopic if there exists a morphism

7 . 70 1
T: E[O’l]xx — E[0,1]><X such that

T‘{z}xX: Ev 1= 07 L.

Proposition 1.5.5. Two homotopic families (T;), i = 0,1, have isomorphic
determinant line bundles
det®, = detd,;.

Proof We denote by @ the family of operators parameterized by [0, 1] x X
generated by the homotopy (7). Fix U € S(®). Then U € S(®°) N S(D?).
To prove the proposition it suffices to construct an isomorphism

ker @Y, — ker@{.

To do this, consider the bundle ker@;; — [0,1] x X, fix a connection on it
and denote by 7, the parallel transport from ker® U,(0,z) O ker D U,(1,2) along
the path [0,1] > ¢t — (t,z) € [0,1] x X. Then 7 induces the correspond-
ing isomorphism. Observe that the homotopy class of the isomorphism is
independent of the choice of the connection on ker®;. B

Definition 1.5.6. (a) The family (D,).cx is called orientable if det® is
trivial.

(b) An orientation on a real line bundle L — X is a homotopy class of
isomorphisms ¢ : L — R. Two oriented line bundles ¢; : L; — R, i = 1,2,
are said to be equivalent if there exists an isomorphism ¢ : Ly — Lo such
that ¢9 0§ and ¢; are homotopic through isomorphisms.

From Proposition 1.5.5 we deduce immediately the following consequence.

Corollary 1.5.7. Suppose (T;), i = 0,1, are two homotopic families. Then
det @Y is orientable iff det@' is orientable. Moreover, any orientation on
det@° canonically induces an orientation on det@?.

In practice one is often led to ask the following question.
How can one construct orientations on a given oriented family D ?

We will address two aspects of this issue.
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Step 1 Describe special cases when there is a canonical way of assigning
orientations.

Step 2 Describe how to transport orientations via homotopies.

Step 1 To construct an orientation on det3 it suffices to construct coherent
orientations on the line bundles £y,. The coherence means that the natural
isomorphisms Iy are orientation preserving. We describe below several
situations when such an approach is successful.

Suppose the family (@), is nice, i.e. satisfies the following two condi-
tions:

(i) dimker®, is independent of x.

(ii) The real vector bundles ker ® and ker @™ are equipped with orientations.

For example, if ind (¥,) = 0 and all the operators @, are one-to-one
(and hence also onto) then both the above conditions are satisfied. If @, is
a family of complex operators satisfying (i) then the condition (ii) is auto-
matically satisfied since the bundles in question are equipped with complex
structures and thus canonical orientations.

To proceed further we need the following elementary fact.

Exercise 1.5.2. There exists a finite-dimensional subspace V' C H;j such
that ker®™ is a subbundle of the trivial bundle V.

We denote by S () the set of oriented finite-dimensional subspaces of
H; such that the bundle V) := ker®* is a subbundle of V.

To proceed further we will need to make an orientation convention.

Convention Consider a split exact sequence of finite-dimensional vector
spaces
0— FEy— E1 — FEy — 0.

If any of the two spaces above is oriented then the third space is given the
orientation determined by the splitting induced isomorphism

Eo® Ey = FE.
More precisely

or(Ey) Nor(E3) = or(Eq).

Nowlet V e S (). Denote by V the orthogonal complement of the bun-
dle Vp := ker®, inside the trivial bundle V. To orient Ly = ker @y @ det V*
we equip ker @y, with a compatible orientation. This is done as follows.

Orientation Recipe
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o Orient V := V/V, using the canonical split exact sequence of Hilbert spaces
0—-Vy—-V— V — 0.

where the second arrow denotes the orthogonal projection. Observe that ker ¥y,
is canonically isomorphic to ker3®.

© Equip ker®@;, with the orientation induced by split exact sequence (1.5.3)
0 — ker®@y, — ker®y — V/Vj = V —0.

The orientation on V' and the above orientation on ker®;, induce an
orientation on Ly. Now observe that we have the following sequence of
isomorphisms of oriented line bundles:

I
Iy := detker® ® (det ker®*)* = det ker Py, ® det Vg = Ly, Ay
FEzactly as in the proof of Proposition 1.5.4 we see that for any oriented
stabilizers V' C W we deduce that Iy = Iy o Iyy which shows that Iy
is orientation preserving. This coherence allows us to equip det® with an
orientation.

Proposition 1.5.8. Suppose (D,).cx is a nice family. Then det® admits
a natural orientation which can be concretely described as follows.

e PickV € S().
o Equip the bundle ker 3y, with the compatible orientation.

e Orient det V* ® det® = det Dy, using the orientation on V. and the com-
patible orientation on ker @, .

There is another situation when one can canonically assign orientations.
Suppose the vector bundles E° and E' are equipped with complex structures
and the operators @, and 7, are complex. Then the stabilizers can be
chosen to be complex subspaces so that the bundles ker @, are complex, hence
equipped with canonical orientations. Arguing exactly as above we can
deduce that the orientations thus obtained on the determinant line bundles
are independent of the choice of complex stabilizers. We summarize the
results proved so far in the following proposition.

Proposition 1.5.9. If the family (D,) is the direct sum of a nice family
and a complex one then its determinant line bundle can be given a canonical
orientation.

Remark 1.5.10. (a) The above observations extend to more general sit-
uations. Suppose that H°,H! — X are two, smooth, real Hilbert vector
bundles over a compact smooth manifold X and @ : H® — H! is a Fred-
holm morphism. This means 3 is a smooth morphism of Hilbert bundles
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such that for every z € X the induced map @, : H? — H! is Fredholm.
To such a morphism one can attach a determinant line bundle. Moreover,
Proposition 1.5.9 continues to hold in this more general context.

(b) The construction in this section which associates to each continu-
ous family of elliptic operators a line bundle on the parameter space has its
origins in K-theory. Each continuous family of Fredholm operators parame-
terized by a compact CW-complex X defines an element in K (X), a certain
abelian group naturally associated to X, which is a homotopy invariant of
X. We recommend [3] for a beautiful introduction to this subject.

Exercise 1.5.3. Prove the claims in the above remark. (Hint: Consult

3].)

Step 2 Suppose we have two homotopic nice families, (@2)% x and
(®1)zex. Using the canonical orientation on det®° and the connecting
homotopy we can produce another orientation on det®'. Naturally, one
wonders what is the relationship between this transported orientation and
the canonical orientation on det®'. It is natural to expect that the com-
parison between these orientations depends on the given homotopy.

We will consider only one situation, which suffices for most applications

in Seiberg-Witten theory. Suppose X consists of one point and (V*,T;),
i = 0,1, are two pairs (connection on E, morphism E° — E'). We get two
Dirac operators

D, : CF(E") — CF(BY).
Fix orientations on ker®; and ker®;. Clearly the two families (V¢ T;)
satisfy the conditions (i) and (ii) and we thus get two oriented lines

¢; det®; — R, 1=0,1.
Each homotopy h(s) =@, determines a homotopy class of isomorphisms

77/} : det@O — det@l

and we obtain an induced orientation on det%; defined by the composition

-1
o det@, o det@, 2

We thus obtain a linear isomorphism

-1
Yol RS detp, BR

whose homotopy class is determined by a number m € {—1,1}. This real
number is called the orientation transport along the given homotopy. We will
denote it by (@1, h,D,). We want to emphasize that this number depends
on the chosen orientations on ker®, and ker®; and on the chosen homotopy
h(s).
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Example 1.5.11. To understand the subtleties of the above construction
we present in detail the following simple example. Consider the map

k
L:R" >R v Z(v,ei)ei
i=1
where n > k, (e;) denotes the canonical basis of R™ and (e, e) denotes the
usual inner product. The kernel of L is precisely the subspace spanned by
€k+1, - ,€en. We choose this ordered basis to orient ker L. Observe two
things.

1. coker (L) = 0 so that an orientation of the line det L uniquely defines an
orientation of ker L.

2. The map L is homotopic to the trivial map R” — R¥ whose kernel and
cokernel are naturally oriented. This homotopy induces another orientation
on det L. The difference between these two orientations is precisely the
orientation transport along the path tL, ¢ € [0,1] defined above. We want
to describe this explicitly since it is very similar to the situation we will
encounter in Seiberg-Witten theory.

Consider the family L; : R» — R* v+ tLo, t € [0,1], and set
V :=span (e, - ,e;) C R™

V' is a stabilizer for the family L;.

For t = 0 we have V' = ker Lj and the compatible orientation of V' given
by the rules above is the natural one, determined by the oriented basis
e1,- -+ ,e. ker Ly is oriented using the natural isomorphism

ker Lo ®V = ker Ly, (kerLo® V)3 (u®v)— ud0.
Hence
(1.5.5) e1®0,---,e, ®0
is an oriented basis of ker Ly .
Observe that for each ¢ > 0 the collection of vectors in R* @ V

vi(t) == e1 & (—tey), - ,vp(t) := ex B (—teg),
(1.5.6)
Vg+1(t) = exp1 D0, -~ v (t) == €, ® 0
forms a basis of ker Ly;. When ¢ = 0 it coincides with the basis (1.5.5).
Thus for ¢ = 1 it defines an oriented basis of ker Ly ;.
The orientation on ker L which induces the above orientation is deter-
mined from the natural split exact sequence

0—kerL — ker Ly — V — 0.
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This leads to the isomorphism

ker L®V = ker Ly,
(1.5.7)
kerLOV 3 (udv)—udv—Rv@0 € ker Ly

where R denotes the canonical right inverse of L which in this case is the
natural inclusion V' C R".

The natural basis of
ex+1 D0, - ,e, B0, 0B ey, ---,0Pe

of ker L & V' determines via the isomorphism (1.5.7) the following basis of
ker Ly :

ek—‘rl@oa”' 7€n@07 (_61)@615”' 7(_€k)@6k'

The orientation defined by this basis differs from the positive orientation
defined by the basis (1.5.6) by (—1)k=®)+k Thus ker L is oriented by the
element (—l)k("*kﬂ)ekﬂ A -+ Aey, of detker L.

Returning to the general situation, let us additionally assume
(1.5.8) ind®, = ind3®; = 0.

The orientation transport has a couple of important properties.

PO Fiz D, and P,. Then (P, h,P,) depends only on the homotopy
class of h.

P1 If along the homotopy the operators %, are invertible then
e(®1,h, Do) = 0.

Proof Note that the trivial subspace is a stabilizer for the family @..
This property now follows from the proof of Proposition 1.5.5. B

P2  Suppose hg, resp. hi, is a homotopy connecting 3, to @, resp. ¥,
to ®,. Denote by h the resulting homotopy connecting P, to P,. Then

5(@27 ha@()) = 5(@% hlv@l) ' 6(@17 hOa@O)'

Definition 1.5.12. Suppose h(s) = @, is a homotopy connecting two op-
erators @, and ;.

(a) The resonance set of the homotopy is
Zp={s€[0,1]; kerP, = {0} }.
For each s € Zj, we denote by Py the orthogonal projection onto ker(®,)*.
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(b) Set Cs =P, — . Cs is a zeroth order p.d.o., i.e. a bundle morphism.
Define Cs = %Cs. The homotopy is called regular if the resonance set is
finite and Vs € [0, 1] the resonance operator

R :ker®, % L*(EY) L ker @7

is a linear isomorphism.

P3([119]) Suppose h is a regular homotopy connecting @° to @'. Set d, =
dimker®, = dimker®;. Then

(1.5.9) (@1, h, Do) = sign(Ry)sign (Ro) [] (-1)*
s€[0,1)

where sign(R;) = £1 (i = 0, 1) according to whether R; : ker®,; — ker®;
preserves or reverses the chosen orientations.

Proof Using the product formula P2 we can reduce the proof of (1.5.9)
to two cases.

Case 1 Z; = {0}. Set
=1 .
0+ 5%5(@37 ha@O)
Using P1 and P2 we deduce (@4, h,?,) = 0. We have to show
oy = (—1)sign (Ry).

Set Vo = ker®, and fix an oriented basis (f1, -, fn) (n = dp = dim Vp) of
Vo. Then V} is a stabilizer for @, for all sufficiently small s € [0, e] and

det@,; = detDy, , @ Vg

For s # 0 the operator @, is invertible and for each f; there exists a unique
ry, € LY2(Ep) such that

(1.5.10) D.xr+ fr =0.

Then z1© f1,- -+, xp® fn is a basis of ker Py, ; and we see that the orientation
of Vp induces an orientation on ker @y, .. These orientations on ker @y, . and
Vo are compatible (in the sense described at Step 1) and define according
to Proposition 1.5.8 the canonical orientation on the line det®,, s > 0. For
s = 0 we orient det®@, using the oriented bases (ey,--- ,e,) of ker®, and
(f1,++, fn) of Vo

Denote by Qs the orthogonal projection onto ker®y, . C L?*(E'). The
trivial connection - on the trivial bundle L2(E') x [0,e] — [0, ¢] induces
a connection Qsd% on the bundle ker@y, , — [0,e]. It produces a parallel
transport map

Ts s ker Dy, o — ker Dy .
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ker @y, o is oriented by the oriented basis e; ® 0, , e, @ 0 while ker @y
is oriented by the oriented basis z1 ® f1, -+, T, D v,. Set

Uk(s) © vi(s) := Ts(er ©0) € ker Dy, .

The vectors yx(s) @ vy(s) determine a smoothly varying basis of ker @y,
described by the initial value problem

Dsyr(s) +vr(s) = 0

0) = e
(1.5.11) 'Z:(O) _

(f[)/m yk) € (kerf)/Z)VQ,s)L

Observe that o is 1 depending on whether 75 preserves/reverses the above
orientations for s very small. In other words, to decide the sign of o we
have to compare the orientations defined by the bases

(z(s) ® fr) and (yx(s) ® vk(s))

of ker®y, .. We cannot pass to the limit as s \, 0 since the vectors z(s)
“explode” near s = 0. The next result makes this statement more precise
and will provide a way out of this trouble.

Lemma 1.5.13.
(1.5.12) |szx(s) + Ry fill = O(s) as s\, 0

where || - || denotes the L?-norm.

Proof of the lemma First observe that we have an asymptotic expansion
(1.5.13) D, =Dy +5Co +0(s%) as s\, 0

where O(s?) denotes a morphism E° — E! whose norm as a bounded oper-
ator L?(E%) — L%(E") is < const - s% as s \, 0. Set

B srr(s) if s#0
Z’“(S)_{ “Ry'fy if s=0"

We want to prove that
1z(s) — 2 (0)] = O(s) as s\, 0.
Using the equalities (1.5.10) and (1.5.13) we deduce
(@ + 5Co + O(s?)) 2 + sfr =0
so that
(1.5.14) Dozk = —5Cozp — sfi + O(s%) 2.
We decompose zj, following the orthogonal decomposition

LY(E®) = ker@o @ (ker @)™ — 21, = 20 + 2.
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Recall that Py denotes the orthogonal projection onto ker®§ = Range(D,)™*.
We can now rewrite (1.5.14) as

Doz = (1 — Po)(—sCoz, — sfi + O(s%)21)
(1.5.15) |
PoCozi + fi = PoO(s)zy.

From the first equation we deduce

21| < Cs(llzrll + 1 fell)
so that
(1.5.16) 2 Il < Csll2R1 + 1 fell)-
We can now rewrite the second equation in (1.5.15) as

Ryz; = PoCoz) = PoO(s) (2], + 2ir) — fr. — PoCozi
so that .
20 = 21(0) + Ry PO(s) (2 + zi5) — Ry ' PoCozi
and using (1.5.16) we deduce
127 = zx (O]l < Cs(ll2]l + 1)

The equality (1.5.12) is now obvious. B

Notice that the bases zx(s) ® sfi and i (s) @ fi define the same orien-
tations on ker@y, ., for all s > 0 sufficiently small. Thus, in order to find
the sign of o4 we have to compare the orientations determined by the bases
zk(s) @ fr and yx(s) ® vk as s \, 0. The advantage now is that we can
pass to the limit in both bases. Thus we need to compare the orientations
determined by the bases (—R; 1) ® 0 and e, ® 0. They differ exactly by
(—1)"sign (Rp) where n = dimker®, = dy.

Case 2 Zj, = {1}. Set 0 = lim; » €(P1, h, D). We have to show

o_ =sign (Ry).

The proof is identical to the one in Case 1. The equality (1.5.12) has to be
replaced with

Isex(1 = s) = By fil = O(s), as s\, 0
because instead of (1.5.13) we have
(1.5.17) D, =D, —sC1+0(s%) as s\, 0

In the end we have to compare the bases Rfl fr and ex. Property P3 is
proved. W

Remark 1.5.14. For a different proof of P3 we refer to [119].
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In Section 2.3 we will need the following technical result.

Proposition 1.5.15. Suppose @,, t € [0,1], is a continuous family of real
first order elliptic operators

D, : L'?(E°) C Hy == L*(E°) — H, := L*(E")
with the following properties.
(a) ind®, = 0.
(b) D, is invertible for t close to 0 and 1.

(¢) There exists a smooth family of continuous linear maps Ly : R — H;
such that

(c0) Ly =0 fort=0,1.

(c1) The map Sy == Ly +®, : Ho® R — Hy, ho ® p — Ly + D ho is
onto.

(¢2) The real line bundle L := ker(Se) — [0, 1] is oriented.
Observe that the fibers of L over i = 0,1 can be identified with R via the
natural isomorphisms
(1.5.18) witR— L w—(0,pn).

On the other hand, the orientation of L defines orientations ¢; : L; — R,
1 = 0,1. The homotopy class of the isomorphism ¢;w; : R — R is uniquely
determined by a sign e; € {+1}.

Then the orientation transport along the path @, is eo/e1.
Proof Recall how one computes the parallel transport. Fix an arbitrary
oriented stabilizer V' for the family ,. We get a vector bundle
ker®y,, — [0, 1].
Once we fix a connection V on this bundle we get a parallel transport
(1.5.19) T =Ty :kerPy,— kerPy ;.

Using condition (b) we obtain isomorphisms ker®,,;, = 0® V, i = 0,1,
defined explicitly by

(1.5.20) 700 Ve 3 (0,v) — (-7 'v,v) € ker Py,

Via these isomorphisms we can regard T as a map 7071 o Tgl V- V.
The orientation transport is then the sign of its determinant. For ¢ € [0, 1]
define Uy : Hy®V ® R — Hy by

ho ©v @ p— Si(ho & p) +v = Lipi+ Py (ho & v) = Lip+ v +D;ho.
There exist natural isomorphisms

It :=ker@y, ® R — ker U;
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defined by
It ;== ker Py, ©R > (ho, v, p) = (ho,v, 1) — Ryt (Lip) © 0.
On the other hand, we have isomorphisms
J: VoL — kerUt1

defined by

V@ L3 (v, ho,p) = (ho,v, p) — (hg(v), 0, u' (v))
where (h(v), pt(v)) is the element in Hy & R uniquely determined by

(Bh(0), 1 (0)) € (ker S, Lopt(v) + Pyl (o) = v.

Using (c0) we deduce that for ¢ = 0,1 ker S; = R @ 0 and we can be more
explicit, namely

p(v) =0, hh(v) =P, v.
Thus, for t = 0,1 we have
Jt_l(h7 v, p) = (U7 0, ).
We thus get isomorphisms
I 0 Ji i V@ Ly — ker Py, &R

depending smoothly upon ¢t. Now look at the following diagram.
1

VoR VOR - VR VoR
a . : ;
aop i ker@v,o &) R %) ker@‘/’l &) R Eal
i Jitn Jtn |
. w ! m wit v
VaR V@ Ly - PV @ Ly VaoR

-1
\ $o é1 /
VaoR ! VaoR

The maps 7; are defined by (1.5.20) and Ty denotes the parallel transport
defined in (1.5.19). The dashed arrows are defined tautologically, to make
the diagram commutative. We are interested in the sign of the determinant
of the 7-arrow. The maps ¢; are determined by the orientation (trivializa-
tion) of the fibers £; induced by the orientation (a.k.a. trivialization) of

L.

The connection V induces via Jt_IIt a connection V/ on V. @ £ with
parallel transport 7. The (!!!)-arrow is precisely 7".
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On the other hand, the orientation (trivialization) of £; defines a canon-
ical connection VY on V @ £ with parallel transport 7°. Since V' and V? are
homotopic we deduce T° is homotopic to T’ so that in the above diagram
the (!!!)-arrow is also equivalent to 79. With respect to the trivializations
¢; the map TV is the identity, thus explaining the bottom arrow.

The isomorphism a; : VAR — V ®R is the identity. To see this observe
that (for ¢ = 0) we have

ag(v @ p) = wy 'y Horo(v @ p) = wy 'y o((—Pp 'v) B v @ p)

=w ' N (Do) svep) =w (vepe0) =v& p.
The proposition is now obvious from the diagram and the above explicit
description of the maps a;. W

Exercise 1.5.4. Formulate and prove a generalization of the above propo-
sition where instead of maps L; : R — H7 we have linear maps L; : E — H;
in which F is a finite-dimensional oriented space.

1.5.2. Genericity results. Suppose X, Y and A are Hilbert manifolds
and

F:AxX—->Y, (\Mx)—y=F(\uzx)
is a smooth map. Fix yg € Y. We are interested in studying the dependence
upon the parameter A of the solution sets

Sy ={reX; F\a) = o}

More precisely, we are interested whether there exist values of the parameter
A for which the solution sets Sy are smooth submanifolds. According to the
implicit function theorem this will happen provided yq is a regular value of
the map

Fy: X =Y, z— F(\ ),
that is, for every zo € S) the differential

OF)

% : T.’L'OX — Ton
is a bounded linear surjection. We will say that A is a good parameter if
1o is a regular value of F)\. In this subsection we will address the following

question.
Is it possible that “most” parameters are good?

A result providing a positive answer to this question is usually known as a
genericity result.

Note first of all that if we expect genericity results it is natural to assume
the parameter space A is “sufficiently large”. More precisely, we will assume
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that yg is a regular value of F'. To understand why this is a statement about
the size of A introduce the “master space”

S={(\z)e AxX; F(\z)=1yo}

Since yo is a regular value of F' this means that for all (A\,z) € S the
differential

DF: T(/\’m)./\ XX — TyOY

is a bounded linear surjection. In particular, S is a smooth Hilbert manifold.
We see that if A is “too small” the above operator may not be surjective.

Denote by 7 the natural projection A x X — A. We obtain a smooth
map

T:S—>AxX—A

and the solution sets Sy can be identified with the fibers 7=1(\) of 7. We
see that any regular value of 7 is necessarily a good parameter. Thus,
if “most” parameters are regular values of m then “most” of them must
be good and we have a genericity result. This looks more and more like
Sard’s theorem but there is one aspect we have quietly avoided so far: the
manifolds X, Y, A may be infinite dimensional and thus out of the range of
the standard Sard theorem. Fortunately, S. Smale [124] has shown that
under certain conditions, the Sard theorem continues to hold in infinite
dimensions as well. To formulate his result we need to introduce the notion
of nonlinear Fredholm maps.

Definition 1.5.16. A smooth map F : M — N between Hilbert manifolds
is said to be Fredholm if for every m € M the differential

Dy F 2 Ty M — Ty N

is a bounded, linear Fredholm operator. If M is connected, the indices of
the operators D,, F' are independent of M and their common value is called
the index of F and is denoted by ind (F).

A subset in a topological space is said to be generic if it contains the
intersection of an at most countable family of dense, open sets. Baire’s
theorem states that the generic sets in complete metric spaces or locally
compact spaces are necessarily dense. The expression “most x satisfy the
property ...” will mean that the set of x satisfying that property is generic.

Theorem 1.5.17. (Sard-Smale) Suppose F': M — N is a smooth Fred-
holm map between paracompact Hilbert manifolds, where M is assumed con-
nected.

(a) If ind (F) < 0 then F~1(n) =0 for most n.
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(b) If ind (F') > 0 then most n € N are regular values of F' and for these n
the fibers F~1(n) are finite dimensional (possibly empty) smooth manifolds
of dimension ind (F).

Let us now return to the original problem. We want to apply the Sard-
Smale theorem to the map w : § — A, so that we have to assume it is
Fredholm. The following result describes a condition on F' which guarantees
that 7 is Fredholm.

Lemma 1.5.18. Suppose that both A and X are connected, yg is a reqular
value of F' and for each A € A the map F : X — Y is Fredholm. Then
m:S — A is Fredholm and

ind (7) = ind (F)), VA€ A.

Exercise 1.5.5. Prove the above lemma.

The final result of this subsection summarizes the above considerations.

Theorem 1.5.19. Consider smooth, paracompact, connected Hilbert mani-
folds X, Y, A, a smooth map F': A x X — Y and a point yg € Y satisfying
the following conditions.

(i) yo is a reqular value of F.

(ii) The maps F : X — 'Y are Fredholm for all A € A.
Then the following hold.

(a) If ind (Fy) < 0 then Sx =0 for most \.

(b) If ind (Fy) > 0 then Sy is a smooth (possible empty) manifold of dimen-
sion ind (Fy) for most A € A.






Chapter 2

The Seiberg-Witten
Invariants

Get your facts first, and then distort them as much as you
please.

Mark Twain

2.1. Seiberg-Witten monopoles

This section finally introduces the reader to the central objects of these
notes, namely, the Seiberg-Witten monopoles. They are solutions of a non-
linear system of partial differential equations called the Seiberg- Witten equa-
tions. We will discuss several basic features of these objects.

2.1.1. The Seiberg-Witten equations. First we need to introduce the
geometric background. It consists of a connected, oriented, Riemannian four
dimensional manifold (M, g) equipped with a spin® structure o. There are
two bundles naturally associated to this datum.

e The bundle of complex spinors S, = ST & S ;
e The associated line bundle det (o) which is equipped with an U (1)-structure.

Fiz a Hermitian metric on det(o) inducing this U(1)-bundle and denote by
Ay = As(M) the space of Hermitian connections on det(o). Also, denote
by ¢, the first Chern class of det(o), ¢, = c1(det(0)).

We can now define the configuration space

Cp = Co(M) = C(S}) X Ay

101
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Observe that this is an affine space. We will denote its elements by the
symbol C = (¢, A) and by G, = G, (M) the group of smooth maps M — S?.
Given A € A, we obtain a geometric Dirac structure (S,, ¢, V4, V), where V
denotes the Levi-Civita connection while V4 is the connection induced by A
on S, which is compatible with the Clifford multiplication, the Levi-Civita
connection and the splitting ST & S, . As usual, we will denote by @ 4 the
Dirac operator I'(S}) — I'(S; ) induced by this geometric Dirac structure.

We can now conjugate V4 with any element v € G, and, as shown
in Exercise 1.3.21, the connection yV4y~! is induced by the connection
A —2(dy)y~! € Ay, that is,

VAN = vA-2dv/y
We can regard the correspondence
90 X eo > (7777/}714) = (waaA - 2d7/7) S ecr

as a left action of G, on C,, (7v,C) — ~ - C. For each C € €, we denote by
Stab(C) the stabilizer of C with respect to the above action

Stab(C) := {’y €G,;v-C= C}.
Definition 2.1.1. A configuration C is said to be irreducible if
Stab(C) = {1}.

Otherwise, it is said to be reducible. We will denote by Cs ;. the set of
irreducible configurations and by C; ,q the set of reducible ones.

Proposition 2.1.2.
Coe = {C=(w,4); ¥ =0},

Moreover, if C = (¢, A) is a reducible configuration, then Stab(C) is iso-
morphic to the subgroup S* C G, consisting of constant maps.

Exercise 2.1.1. Prove the above proposition.
The quadratic map ¢ introduced in Example 1.3.3 defines a map
_ 1 .
q: C*(S7) — Endo(S7), q(v) =¢ ¢ — |v*id.

Endo(S}) denotes the space of traceless, symmetric endomorphisms of S7.
More precisely,

(5536 % (p,000 — Sl € C(87).

We want to emphasize one working convention.
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We will always assume that a Hermitian metric (e,®) on a complex
vector space is complex linear in the first variable and complex conjugate-
linear in the second variable.

Definition 2.1.3. Fix a closed, real 2-form n € Q*(M). Then a (o,n)-
monopole is a configuration C = (¢, A) satisfying the Seiberg- Witten equa-
tions

(2.1.1) (SWon) {C(FX +§?77A+1/)] _ (%]q(w

where the superscript “4” denotes the self-dual part of a 2-form and ¢
denotes the Clifford multiplication by a form. The 0-monopoles will be

called simply monopoles. The closed 2-form 7 is called the perturbation
parameter.

A few comments are in order.

e Note first that the Seiberg-Witten equations (2.1.1) depend on the metric
g in several ways: the symbol of the Dirac operator depends on the metric,
the connection V4 depends on the Levi-Civita connection of the metric and
the splitting Q*(M) = Q% (M) & Q% (M) is also dependent on the metric.
e Notice also that the second equation in (2.1.1) is consistent with the iso-
morphism iQ% (M) = Endy(S}) induced by the Clifford multiplication c.

We denote by Z, = Z,(g,n) the set of solutions of the Seiberg-Witten
equations and set
Z’a,irr = Z’o’ N eo,irr-
Observe next that if C € Z, and v € G, then v-C € Z,. Thus, Z, is a
Gs-invariant subset of C,. We set

M, =My(9,m) = 20/
and
Mo irr = Zoirr/Go-
M, is known as the Seiberg- Witten moduli space.
Besides the huge §-symmetry, the Seiberg-Witten equations are equipped

with another special type of symmetry. The involution ¢ — & on Spin®(M)
defines a bijection ¥ : €5, — €5 _, induced by the isomorphisms

V:S} — St det(7) & det(o) = det(o)*.

More precisely, 9(¢, A) = (9(¢), A*) where for any connection A on det(c)
we have denoted by A* the connection it induces on det(c)*. The results
in Exercise 1.3.23 coupled with the equality F4+« = —F4 show that if C
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is a (o, n)-monopole then 9(C) is a (&, —n)-monopole. Also observe that
9o = 95 = § and, for all v € G, we have

(2.1.2) d(y-C)=~"1-9(Q).
This shows that we have a bijection

(2.1.3) 0 : My (g,m) — Mo(g,—).

In the remainder of this chapter M will be assumed to be compact, con-
nected, oriented and without boundary.

The Seiberg-Witten equations are first order equations and thus cannot
be the Euler-Lagrange equations of any action functional. However, the
monopoles do have a variational nature.

Proposition 2.1.4. Define €, : €, — R by
s 1,1 . 2 .
&)= [ (VAR + 10 + 51506) = i)+ [Fa -+ 200" ?) oy
M

where s denotes the scalar curvature of the metric g and for any endomor-
phism T : S} — ST we have denoted |T|? := tr(TT*). Then

&0 A) = [ (vl + 3le(Fs + i) = a0,

+4 / It 2dv, — 471'2/ 2
M M
where ce = c1(det(0)). In particular, we deduce that
¢, (1, A) > 4/ InT|2dv, —4772/ 2
M M
with equality if and only if (v, A) is an n-monopole.

Proof The proof relies on the following elementary identities.

Lemma 2.1.5. Let o € iQ2 (M), ¢ € C*°(S}) and T € Endo(S}). Then
we have the following pointwise identities:

(@) = tr(a(@)?) = 511"
(@) = 4jaf,

(T, q()) & te(Tg(v)) = (T, 0.
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Proof of the lemma  All the computations are pointwise so it suffices to
prove they hold at a given arbitrary point x € M. Set V =T,M. We now
use the notations and the computations in Example 1.3.3. Then

Llaf? — |82 af i
|Q(¢)|2=tr<[ : ’dﬁ o %(|B|2f|al2) ] >

= S (laf> = [B1)? + 2|5

N —

1 1
= (o + 18 = Slul*
The second equality follows from the identities

s 2
(O meme)? = -2 _ap)id, tr(id) = 2.
k=0 k=0
To prove the third identity we observe it is linear in 7' and since any
T € Endo(S} |.) can be written as T = S7_trc(ing), tx € R, it suf-
fices to prove it for T' = ¢(ing). The computations in Exercise 1.3.2 show
that

tr(a(4) - eing)) = (6, elne)s) - rleliong)?)
= LW clin)) - e(m) P = (. elinge), k=0,1,2.

The lemma is proved. B

We can now continue the proof of the proposition. First, an integration
by parts coupled with the Weitzenbock formula (1.3.16) gives

/ (D 406 2dv, = / DD 40, ) v,
M M

= [ (€T 0 + S0P + SelF )0 ) )y
M
(use Lemma 2.1.5)
= [ (1940 + 5102+ S(etr . atwn ) o,
M
Next observe that

1
[ 16 i) = Gatw) Py,

= [ (1etED P+ yate) ~clin )R Yoy ~2 [ (e, jat0) - clin v,
Hence

[ (vl + Gletrt + i) = Gatw)F ) v,
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(use Lemma 2.1.5)
S 11 . .
= [ (1940 + S0 + 315000 = )P + 24P + 407 ) ) o,
The last two terms can be rewritten as
2/ <\Fj|2 +2<Fj,in+>>dug
M
1 1
=2 [ (G + 2B ) + L = 51
a\ 2 2

1 . 1 _
=2 [ (a2t =2 4 AR - 5 v,

:/ <|FA—|—2i77+|2—4|77+|2>dv9—/ FaoNFy
M M

:/ (]FA+2i77+\2—2|77+\2>dvg+4772/ c1(A) A ci(A).
M M
Thus
1 . 1
[ (a0l + Gle(t +in) = GawF ) v,
M

s 11 . .
= [ (1900 + 310l + Jlgat0) — clin ) + Pa+ 20 )

+/ (47r203 — 4\77+]2)>.
M

Proposition 2.1.4 is now obvious. l

2.1.2. The functional set-up. So far we have worked exclusively in the
smooth category. To define the Seiberg-Witten invariants we have to intro-
duce additional structures on the moduli space M, (g,n) and, in particular,
we need to topologize it. The best functional framework for such purposes
is supplied by the Sobolev spaces.

Pick a nonnegative integer m and a real number p € (1, 00) such that
4
m+2—->0.
p

This condition guarantees that the Sobolev spaces L™*?P embed continu-
ously in some Holder space.

Now fix a smooth Hermitian connection Ay on det(c) and denote by
ATTLP the space of L™T1P connections on det(o). More precisely,

APTLE = {A = Ag+ia; ac Lm“’p(T*M)}, AP = A2,

GZH_l — Lk+1’2(S;) % A?+l.
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Next, define
Yme — Yymp — [MP(ST) @ LWP(iAﬁ_T"‘]w)7 yk . yk2,
where AiT*M denotes the bundle of self-dual 2-forms. We want to empha-

size that the Sobolev norms on the spaces of spinors are defined using the
fixed reference connection Ag. Finally, define

g0 = {1y € L™22(M,C); |y(w) =1, Vo€ M},
9]5+2 — 9§+2,2'

We see that since any v € L™*2P(M, C) is continuous, the expression |y(m)|
is well defined everywhere.

Using the isomorphism ¢ : iA2 T*M — Endy(S/) we are free to identify
q(¥) € Endo(S}) with the self-dual 2-form ¢! (g(z))). When no confusion is
possible we will freely switch between the two interpretations of ¢(v¢) writing

q(v) instead of ¢~ 1(q(v)).

Lemma 2.1.6. For every k > 1 the correspondence ¢ — q(v) defines a
C°-map
q: LM2(SH) — LF2 (A2 T M).

Sketch of proof  We consider only the case & = 1 and we begin by
showing that ¢(v) € L2, Vo € L2,

Since 1 € L?? it follows from the Sobolev embedding that v € L for
all p € (1,00) so that, using Lemma 2.1.5, we deduce

1
/M la(4)[dvy = 3 /M | dv, < oo.

Next observe that there exists a constant C' > 0 such that
[ 1vaw)Pas, <c [ v,
M M

Since ¢ € L*? we deduce from the Sobolev inequality that V40 € L4 for
some q > 2 restricted only by the inequality

0=2-4/2>1—4/q.

The Holder inequality now implies

/ Va()[2dv,
M

) q/2 (a—2)/q
<C (/ yvAow\advg> (/ ]¢]2q/(q_2)dvg> < 0.
M M

The stated regularity follows from the identity



108 2. The Seiberg-Witten Invariants

(2.1.4) g0 +9) = a(¥o) + ¥ © o + o ® 9 — Re(tho, P)id + q(4))
for all 1o, 1) € L*2. The details are left to the reader. W

Suppose now that n € L¥2(A2T*M) is a fixed closed form (i.e. satisfies
dn = 0 weakly). Arguing similarly we deduce the following result.

Proposition 2.1.7. For every k > 1 the correspondence
(0, A) =Dt @ (F +in" —q(¢))
induces a C°°-map SW,, : G+l yk,

Exercise 2.1.2. Prove the above proposition.

The group G¥*2 also has a nice structure.

Proposition 2.1.8. For every k > 1 the group S5*2 is a Hilbert-Lie group
modeled by L*+22(M,iR).

Proof Again we consider only the case k = 1. Observe first that g%
C%(M, S"). The space of continuous maps M — S, topologized with the
compact-open topology, is an Abelian topological group. Since the target
Slis a K(7Z,1)-space we deduce that the group of components of C°(M, S*)
is isomorphic to H'(M,Z). For any v € C°(M,S') we denote by [y] €
H'(X,7) the component containing v. The identity component ([y] = 0)
consists of those maps v which can be written as v = exp(if) for some
continuous map f: M — R.

Define
Gy = {7 €82 ] = 0} = {exp(if); feL*?(M, R)}'

It is clear that it suffices to show that G, is a Hilbert-Lie group. This will
be achieved in several steps.

e Observe first that
§, c L3¥2(M,C).
e Equip G, with the topology as a subset in the space of L*2-maps M — C.
e We now construct coordinate charts. . The coordinate chart at the origin
is given by the Cayley transform
T:Up =G, \ {1} — L>*(M,iR),

o -epli) _ -sisg)
exp(f) = TV = T2 06h) ~ T oG B
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Observe that T is a bijection onto L3?(M,iR) since T =T}, i.e.

w11

1+ T[elf]
For an arbitrary v € 90 define
T, : U, :=v-Uy — L**(M,iR)

by

Ty(p) =T(v" ')
To show that this is a smooth structure it suffices to show that the transition
maps T’y o Tﬁ_1 are smooth maps L>?(M,iR) — L32(M,iR). This follows
immediately from the identity T = T so that

Ty o Ty (if) = T(y- 67" - T(if)).

We leave the details to the reader. H.

Exercise 2.1.3. Finish the proof of the above proposition.

The tangent space of 9§+2 at 1 is Lk+2’2(M, iR). The exponential map
exp : T19];+2 — 9§+2, if — el

is a local diffeomorphism, just as in the finite-dimensional case. Often,
we will refer to the elements in this tangent space as infinitesimal gauge
transformations.

Now observe that G52 acts on C5+! and Y* by
ChM 3 (¢, A) > (-, A= 2dy/v) € €T,
Yt = LR2(S;) @ L2 (GALT M) 3 (¢,w) = (v ¢w) € Y.
The following result should be obvious.

Proposition 2.1.9. The above actions of G52 on C¥*1 and Y% are smooth
and, moreover, the map SW, : CkT1 — Yk s GE+2_cqujvariant, i.e.

SW,(7-C) =~-SW,(C), vCe i, ve g5t

The above proposition shows that every C € €5*! defines a smooth map
Ght?P— et vy C
Its differential at 1 € G52 is a linear map
Lc: TGk — Teehtt
explicitly described by
Cc: TIGE? 3 1f — (ifeh, —2idf)
where C = (¢, A). We will often refer to £¢ as the infinitesimal action at C.
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As in the smooth case the stabilizer of a configuration C = (1), A) € Ck+1
is either trivial

Stab(C) = {1} <= ¢ #0

or
Stab(C) = S' «— ¢ =0.
Set
ektl = {Ce ekt stab(C) = {1} }
and

ehHl = {c € G+l Stab(C) # {1} }

ored
Observe that
T1Stab(C) = ker £¢.

We have thus proved the following result.

Proposition 2.1.10. The following statements are equivalent.
(i) C = (¢, A) € Ck+L s reducible.
(ii) ¥ = 0.
(iii) Stab(C) = S1.
(iv) ker £¢ # {0}.
Define
k+1 _ -1 E+1 _ guk+1 _ ok+l /ok+2
Z’O’ (9777) *SWn <0)7 ma *ma (9777)7*2’0' /90'
25t (g,m) = 25 (gom) N et ML (g,m) = 2% /95T,

oarr oarr? o,irT oarr

Proposition 2.1.11. Suppose n € LF?(A>T*M), k > 1. Then for every
C € 22(g,n) there exists v € G2% such that - C € Ck+1. In particular, if n
15 smooth we deduce
~ k
g‘ng'(gﬂﬂ = ma(ﬂﬂ)» Vk > 27

i.e. any L*?-solution (v, A) of the Seiberg- Witten equations is gauge equiv-
alent to a smooth solution.

Proof The proof is a typical application of the elliptic bootstrap technique.
Suppose C = (¢, B) € €27 satisfies the Seiberg-Witten equations SW,(C) =
0. By definition ib = B — Ay € L>*(T*M).

Using the Hodge decomposition of Q'(M) we can write
b=by+df +d°S

where by denotes the harmonic part of b, f € L32(M), 3 € L>?(A*T*M).
We now define

vi=oxp(3f), (W A) =7 C= (exp(5/), Ao +ibo +id"B).
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Set a = bg + d*5. The main point of this gauge transformation is that
d*a = 0. Using Exercise 1.3.22 we can rewrite the Seiberg-Witten equations
for (¢, A) as
{ D Ay —5c(ia)y
idta = Lq(w) —in* - F
We can use the first equation to “boost” the regularity of ¥. Note that since
a, € L*? we deduce from the Sobolev embedding that a,1 € LP for all
p € (1,00). This implies c(ia)y in LP for all p € (1,00). Thus D 4., € L?,
Vp € (1,00) so that, by elliptic regularity v» € L'"P, Vp < co. In particular
1 is Holder continuous. As in the proof of the Lemma 2.1.6 we deduce
q(y) € LMP, Vp.
To proceed further we need to use the following elementary fact.

Exercise 2.1.4. The operator d* + d* : QY(M) — Q% (M) & Q°(M) is
elliptic.

We can now combine the second equation and the condition d*a = 0 to
obtain

(d¥ + d)a+int € LYP, Vp < .

Now observe that L*? embeds continuously in L*~14 Vi > 1. Hence nt €
L', ¥p < 0o and thus

(d+d")a € L'?, Vp < cc.

Invoking the elliptic regularity results for the operator d* + d* we deduce
a € L**. This implies immediately that c(ia)y € LY for all p < oo and
using this information back in the first equation we deduce v € L?P, Vp < oo.
This information improves the regularity of the right-hand side of the second
equation and, arguing as above, we gradually deduce the conclusion of the
proposition. W

The last result shows that by looking for monopoles (modulo gauge
equivalence) in the larger class of Sobolev objects, we do not get anything
new. However, the Sobolev setting is indispensable when dealing with struc-
tural issues.

2.2. The structure of the Seiberg-Witten moduli
spaces

So far we have defined the moduli spaces as abstract sets of orbits of G,.
In this section we show that these spaces, equipped with some natural
Hausdorff topologies, are smooth, compact, oriented finite-dimensional man-
ifolds.
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2.2.1. The topology of the moduli spaces. Fix a closed form
ne LMY T*M), k> 1.
The moduli space ME+1(g, 1) is a subset of the set of orbits
PR+l .= @k+l /gh+2,

If 9§+2 were a compact Lie group then this quotient would have a natural
Hausdorff topology. In our situation G52 is obviously noncompact. We
cannot a priori exclude the possibility that two orbits of §¥*2 on €5*! may
have arbitrarily close points and thus the quotient topology on B**! may
not be Hausdorff.

In this subsection we will prove that a natural topology of B! is Haus-
dorff and 9MA*+1 (g, n) is in fact a compact subset of BE+L,

For any point C € C¥*1 we denote by Oc¢ the orbit of G52 containing C,
that is,

Oc = {7-Ceek yegir.
Now define
3(0¢,, 0c,) = nf{[y1 - C1 =72 - Call; 71,72 € G5}
where for any configurations C; = (v;, 4;) € C¥+1 i = 1,2, we set
1€ = CalP 5= [ (11 = vaP + 11 — AaP v,
M

Note that
lv-C=7-Cf = IC = Gl
for all Cy,Cy € G5! and v € G52 so that we can alternatively define

3(0c,,0¢,) = mf{[|C1 —v- Cof; v € G572}
Clearly § defines a map § : BET! x BE1 L R,
Proposition 2.2.1. For k > 1 the pair (B¥*1,6) is a metric space.
Proof Again, we consider only the case kK = 1. We only have to prove
(5(OC1,OCQ) =0 = OC1 = OCQ.
Suppose 6(Oc,,Oc,) = 0. Then there exists a sequence v, € G232 such that
2:2.0) [ (1n(s = o)+ 200 4 o = - ) oy = 0(1) a5 1 — o,
M

In particular, this implies
(2.2.2) /M |dyp|?dvy < const - /M |A1 — Ao|*dvg +o(1) as n — oo.

Since the sequence v, is obviously bounded in L? we deduce from the above
inequality that the sequence =, is bounded in L?(M,C). We can now use
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the Sobolev embedding theorem to deduce that a subsequence of v, (which
we continue to denote by ;) converges weakly in L'? and strongly in L,
1 <p<4,toamap e L. Clearly |y| = 1 almost everywhere on M.

Using the Sobolev embedding again we deduce that 1o € LY for all
g < 00 so that 7, - 19 converges strongly in L? to =y - ¢». By passing to the
limit in the inequality

/M |1 — Y - 1/)2|2dvg =o0(1) as n — o0

we deduce Y1 = v - ¥o.
On the other hand, since A} — Ay € LY for all ¢ < oo the functional

F:LY*(M,C)> f H/ |f(A1 — A2) + 2df Pdvy € R
M

is obviously convex and strongly continuous so that it is weakly lower semi-
continuous (see [19, Chap. 1,3]) which implies
2.2.1
0 < F(v) < liminf F(y,) 220,
n

Hence v is a weak solution of the partial differential equation
(2.2.3) 2dy = v(Ay — Ay), v € LY?(AT*M ® C).

Since the operator d 4+ d* is elliptic and the right-hand side of the above
equation is in any L9, ¢ < oo, we deduce v € L™ for all ¢ < co. Using
the Sobolev embedding L?? <« L'* we can now deduce y(A; — Ag) € LY,
Plug this in (2.2.3) to deduce v € L**. Sobolev inequalities again imply
(A1 — As) € L?? and putting this back in (2.2.3) we deduce v € L32. Thus
we have produced a v € 93’2 such that

Ay = Ay = 2dy /vy, 1 =71,

that is, C; = - Cy and O¢, = Oc,. The proposition is proved. B

Clearly the canonical projection 7 : Gkl — (B! §), C — Oc is con-
tinuous since

6(OC17 OC2) < [|C1 = Cf|.
The moduli space 9ME+1(g,n) is a subset in the metric space BET! and thus

it is equipped with a metric space structure as well. The induced topology
has other remarkable features.

Proposition 2.2.2. Fiz the closed formn € L™2(A*T*M), m = max(k,4),
k > 1. Then the metric space (IME+1(g,n),6) is compact.
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Proof For simplicity we consider only the case k = 1. We have to show
that given any sequence C, € 2,727’2 there exist a sequence v, € 9‘3’2 and
Ce 2727’2 such that

I Cr, — C|| = 0(1) on a subsequence nj — oo.

To simplify the presentation we will denote the extracted subsequences by
the same symbols as the original ones. Using Proposition 2.1.11 we see
that modulo some gauge changes we can assume C, = (¢, A,) € €. In
particular, this means 1, and A,, are twice continuously differentiable.

Our next result presents the key estimate responsible for the compact-
ness property of the moduli space.

Lemma 2.2.3. (Key Estimate) Suppose C = (¢, A) € Z3(g,7n). Then
][5 < 2max(0, —min s(z) + 4[17[|oo).

Proof of the lemma Using the Kato inequality (see Exercise 1.2.1) we
deduce that Vo € M

Al (@) < 2((VA) VA, ¥),
(use the Weitzenbock identity)

= 203005 00 — (@) — (e(F ) e

(use @4 =0, e(Ff) = 3q(¢) — ic(nt) and Lemma 2.1.5)

— P = Liga)t - (e, v

2
s(z) 1
< - p@)P ~ L@l + 2l oelw@)
Set u(x) = |[¢(x)|?>. Thus u is a nonnegative C2-function satisfying the
differential inequality
1 — 4|n™
Ayu+ ~u? + Mu <0.
4 2
If z¢ is a maximum point of u then Ajru(zg) > 0 so that
u(x 1
90) (Lutao) + s(ao) ~ 41*]) <0

so that
u(zo) < max(0, —2min s(z) + 8|77 |00 )-

The lemma is proved. B

To proceed further we need to introduce some notation.
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e H*(M, g) := the space of harmonic k-forms on (M, g).
e H*(M,7Z) := the lattice in H*(M, g) defined by the morphism
H*(M,7) — H*(M,R).
Define
p(g) = supir;f{Hu —v|lo/ ue HY(M,g), veH (M, Z)}
u
In other words, p(g) measures how far away from the vertices of the lattice

H' (M, Z) one can place a point in H*(M, g). It is a finite quantity, bounded
above by the diameter of the fundamental parallelepiped of the lattice.

We leave the reader to check the following consequence of Hodge theory.

Exercise 2.2.1.

ker( (dF +d*) : QY (M) — (92 & QO)(M)) = H'(M, g).

Now write A, = Ay + ia, and then use the Hodge decomposition

where h, € HY (M, g), fo ® B, € LY?((A° @ A2)T*M). Now pick x, €
47HY (M, Z) such that

I = halls = [ = halla; x € 47H (M, Z)} < 4mp(g).
Such a choice is possible since 47H! (M, Z) is a lattice in H*(M, g).
Lemma 2.2.4. There exists y, € C°°(M, S') such that
ixXn = 2dvn/Yn.

Proof of the lemma Denote by x, the pullback of X, to the universal
cover M of M. Fix mg € M and for any m € M set

fuli) = [
C
where ¢ denotes an arbitrary smooth path connecting mg to m. Because the
integrals of x,, along the closed paths in M belong to 47Z the map
Y = exp(ifn/2) : M — S!

descends to a map ~, : M — S'. Since 2d7,/5, = ix, we deduce ix, =
2dyn/ V. 1

Denote by P : L*(T*M) — L?(T*M) the orthogonal projection onto
H!(M, g). Replace the configurations C,, with

C = ellrry, C = (W), Ao + i(hn — xn) + id*5y).
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These satisfy the additional conditions
d*a, =0, |[Payll2 < 4mp(g), Vn.

Since we are interested in gauge equivalence classes of configurations we
could have assumed from the very beginning that C, = C/,. The Seiberg-
Witten equations for C, and the above additional conditions can be rewrit-
ten as

@A&ﬁn _%C(ian)¢n
(2.2.4) i(dh+d)an = 3q(¢n) —int — F}

[Panl2 < 4mp(g)

Using the Key Estimate we deduce that
(dT + d*)an|lo = O(1) as n — oco.

Since (dF + d*) is elliptic and ker(d™ + d*) = H!(M, g) we deduce from
Theorem 1.2.18 (v) that

Vp <oo: |lan — Payllip =O(1) as n — oo.

The space H!(M, g) is finite dimensional so that all the Sobolev norms on
it are equivalent. The third condition in (2.2.4) implies

(2.2.5) Vm € Zy, p<oo: ||Paplmp=0(1)
so that
(2.2.6) Vp <oo: |lan|ip = O(1).

Coupling the Sobolev embedding theorem with the Key Estimate and (2.2.6)
we deduce

le(ian)tn o = O(1).
Using this in the first equation of (2.2.4) we deduce from the elliptic esti-
mates

¥p < 50+ [ull, = O(L).
This implies
Vp < oo |le(ian)tn|ip = O(1)
and using again the elliptic estimates for the first equation in (2.2.4) we
deduce

(2.2.7) Wp<oo: nllap = O(1).
Using this in the second equation of (2.2.4) we deduce
Wp<oor (A +d)anliy = O
Finally we invoke Theorem 1.2.18 and (2.2.5) to conclude
(2.2.8) Vp <oo: |lanll2p = O(1).
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The inequalities (2.2.7), (2.2.8) and the Sobolev embedding theorem imply
that a subsequence of C, converges weakly in L?? and strongly in L9 to
a configuration C € ©22, Clearly C is a solution of the Seiberg-Witten
equations. The proposition is proved. W

Remark 2.2.5. We could have continued the above proof a step further
to conclude that the convergence C, — C also takes place in the strong
topology of L¥t1:2. We leave the reader to fill in the missing details.

The Key Estimate has an important immediate consequence.

Corollary 2.2.6. Suppose the scalar curvature of M is nonnegative, s > 0.
If the closed 2-form n € LY?(A*T*M) is such that

1
7]l <  min s(2)
then any n-monopole is reducible.
2.2.2. The local structure of the moduli spaces. The space B'j.“ is

the quotient of an infinite-dimensional affine space C¥*1 modulo the smooth

action of G52, Moreover, the action of G52 on Glgﬁr is free so it is natural

to expect that the quotient B¥*1 .= @FF1 /Gk+2 i5 4 Hilbert manifold.

aarr o,irT
To discuss the local structure of B! we need to introduce a stronger
topology on B¥+1. Define

0k+1(0c,, Oc,) = inf{H’Y1C1 —12Ca|lkt1,2; V1,72 € 9§+2}-

Since § < 61 we deduce that 11 is indeed a metric on TB§+1. Remark
2.2.5 shows that MM *1(g,7) is compact in this topology as well.

Suppose now that C = (¢, A) € C2. We can regard the infinitesimal
action £c as a real unbounded operator L?(M,iR) — L*(ST @ iT*M) with
domain LY?(M,iR). Its L?-adjoint is the real unbounded operator

£e LA(ST @ iT* M) — L*(M,iR)
with domain L2(S} @ iT*M), uniquely determined by
(eclif)d@ia) = (f, 260 @ia)e.
Vif € L*(M,iR), ¢ @ ia € LV*(S @ iT* M).
More explicitly,
L2 M

= —/ f(jmw,w + 2d*a> dvg :/ Re(if, (—2id*a — iIm(y, ¥)) ddv,.
M M
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On the other hand,

. 20 @ 30)) o = [ i, 2 i),
Hence
(2.2.9) Se()p @ia) = —2id*a — iTm(w, ).
Now define the local slice at C as

Sc=stti={CeTect gt =0}

= {(,1a) € I*12(8, 1T M); £e() @ ia) =0},
Observe that if C is reducible then
Sc = {¢ @i e L2, g = 0}.

In this case Stab(C) = S! acts on Sc by complex multiplication on the
spinorial part

et . (w @ia) = (eitvj)) @ ia.
The slice has a simple geometric interpretation. It consists of the vectors in
TCCE, which are L2-orthogonal to the orbit Oc.

Define an action of Stab(C) on G¥+2 x Sc by
h- (7? C) = (’Yh_lv hC)

This action commutes with the obvious left action of G52 on G52 x Sc so
that the quotient
(G52 x Sc)/Stab(C)

is equipped with a left 9§+2—action.
Proposition 2.2.7. Let C = (¢, A) € C¥*2 k > 1. Then there exists a
smooth map F : G¥+2 x Sc — C2 with the following properties.
(i) F(1,0) = C.
(i3) F is GE2 equivariant.
(i1i) F is Stab(C)-invariant.
(iv) There exists a Stab(C)-invariant neighborhood of 0 € Sc such that the
induced map

F: (G52 x U)/Stab(C) — C?

is a diffeomorphism onto a G¥+2-invariant open neighborhood of C in C2.

Proof Again, for simplicity, we consider only the case k = 1. The general
case involves no new ideas. Define

F:G3 xSc — (2,
(7,9 @ ia) — (v + v, A+ ia — 2dy/7).
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Clearly JF is a smooth map. The conditions (i) — (iii) are obvious. To prove
(iv) we will rely on the following result.

Lemma 2.2.8. There exists a Stab(C)-invariant neighborhood W of (1,0) €
G3 x Sc with the following properties.

e P1 The restriction of F to W is a submersion. In particular, F(W) is an
open neighborhood of C € C2.

e P2 Fach fiber of the map F : W — F(W) consists of a single Stab(C)-
orbit.

Proof of the lemma We will use the implicit function theorem. The
differential of F at (1,0) € G5+2 x Sc (k = 1) is the map

D10y : T1,0)(G2 x Sc) = L*?(IA°T* M) x S¢ — L**(SF @ iA'T*M)
given by
(if.9 @ia) — (ifv + ) & (ia — 2idf) = Lc(if) + ¥ @ ia
We will prove several facts.
Fact 1 The kernel of Dy 5)J is isomorphic to the kernel of £c.
Fact 2 Dy )J is surjective.

These two facts are elementary when C = (¢, A) is reducible, ¢ = 0 and
in this case they are left to the reader as an exercise.

Exercise 2.2.2. Prove Fact 1 and Fact 2 when C is reducible.

When 1 #£ 0 these facts require an additional analytical input.
Fact 3 If ¢ # 0 then the correspondence
T
f = ANf + 1012 f
defines a continuous bijection L>?(M) — LY“2(M).

We now prove Fact 1 and Fact 2 when 1 # 0 assuming Fact 3 which
will be proved later on.

Proof of Fact 1~ We have to show that D, )3 is injective, that is, the
equation '

ifv+¢ =

ia — 2idf =

e @ia) =

has only the trivial solution f = 0, ﬁ =0, a = 0. The first equation implies

Im(e, ¥) = [P f.

o O O
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Using the second and the third equations we deduce
0 = 2d*a + Im(e, ¥) = AAf + || f.

Fact 3 now implies that f = 0 and using this in the first and second
equations we deduce ) =0 and a = 0.

Proof of Fact 2 Let ¢ @ ib € TcC2 = L>%(S} @ iA!T*M). Then the
equality
D1,0)J(if, ¢ ®ia) = ¢ @ib, (if;9,id) € T1,0)55 * Sc
is equivalent to
ify+¢ = ¢

(2.2.10) ia —2idf = ib .

Le(paia) = 0
Using the Hodge decomposition of Q'(M) we can write & = du + ¢ where
u € L32(M) and ¢ € L??(T*M) is co-closed. The second equality implies
that ¢ equals the co-closed part in the Hodge decomposition of b. The
exact part du is uniquely determined by Au which, according to the second

equation, is given by 2A f + d*b. Thus it suffices to determine f and . We
claim that f is the unique L3 -solution of the equation

(2.2.11) ANF + |92 f = —Tm(y, ¢) — 2d*D
and
(2.2.12) Y =d—if.

Fact 3 guarantees that (2.2.11) has a unique solution. We see that with
the above choices the first equation in (2.2.10) is automatically satisfied.
The second equation is satisfied as soon as we choose u as a solution of the
equation

Au = 2Af + 2d*b.

This equation has a solution u € L3?(M) because the right-hand side has
zero average, i.e. it is L?-orthogonal to the kernel of the selfadjoint Fredholm
operator A. We only need to show that the third equation is satisfied as
well, i.e.

(2.2.13) 2d*a + Im(y, 1) = 0.

To show this, note that, according to the second equation in (2.2.10), we
have

(2.211) 2.2.12)

90" — AAS + 2 sm(h, &) — [2f PEY —gmip, v).

Fact 2 is proved.
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Proof of Fact 3 Arguing as in the proof of Lemma 2.1.6 we deduce that
there exists a constant C' > 0 such that

14Af + 9P fll12 < Cllflls2, Yf € L**(M)

so that T does indeed define a bounded linear operator L3? — L2, Note
also that if

AAf+ [P =0
then, multiplying both sides by f and integrating by parts, we deduce

4/ ]dfzdvng/ [ f2dv, = 0
M M

which shows that df = 0 and f|¢| = 0. Since ¥ # 0 we conclude that f =0
showing that T' is injective.

Now define Ty : L3?(M) — LY?*(M), f — 4Af. Tp is a Fredholm
operator with index 0 since it is determined by a formally selfadjoint elliptic
operator. The difference T' — Ty is the operator f +— [¢|2f which, in view
of Sobolev embedding theorems, is compact. Thus 7" is Fredholm, injective
and has index 0. Hence it must be surjective as well.

We now return to the proof of Lemma 2.2.8. Using the implicit function
theorem we can find a Stab(C)-invariant open neighborhood of (1,0) €

G3 x Sc such that F(W) is open. We are left to check P2. We distinguish
two cases.

A. Cisirreducible. In this case ker D(; 0yF = ker £¢ = {0} and the assertion
P2 follows from the implicit function theorem.

B. C is reducible, C = (0, A). Denote by & the length of the shortest non-
zero vector in the lattice H!(M,47iZ). Now fix W small enough so that
lial2 < & for all (v,¢ @ia) € W.

Suppose (fyj,zbj ®ia;) € W (j = 1,2) are such that

F(y, v @iar) = Fya, P2 @ ian)

and if we set v = v2/v1 we deduce

1L1 = ’)/ILQ and idl — idg = —Qd’y/”y.
The left-hand side of the second equality is co-closed while the right-hand
side is closed. Thus, the right hand side represents a harmonic form, more
precisely, an element in H'(M, 47iZ). Since ||ia; — ias| < & we conclude
that dy/y = 0 so that ia; = iay and there exists ¢t € R such that v = e,
that is, 7o = e'*;. The lemma is proved. B

Let us now prove (iv). Fix Wy as in the statement of the lemma. The
G3-invariant open set G3 - Wy can be written as a product G2 x Uy where Uy
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is a Stab(C)-invariant neighborhood of 0 in Sc. Denote by & the L?-length
of the shortest nonzero vector in the lattice H' (M, 47iZ).

Now pick V, C Up such that for all i) @ ia € V, we have
.. . h
(2.2.14) lallz2 + [¥]l22 <7 < 5

Clearly F(G3 x V) is an open set because it coincides with G2 - F(V}.), which
is open. We will show that if r is sufficiently small the fibers of

F:83xV, =2

are Stab(C)-orbits. Consider (% ®ia;) € Vi, 5 = 1,2, and v € G52 such
that

F(y,¥1 @iar) = F(1, 1y @ iao),
This means

Y+ 1y =y + 1) and iay = ia; — 2dvy/y.

Denote by w the harmonic part of the closed form dv/7, so that

dy/y =w+idf, fe L**(M).

Then

h_2 seee 12 4 2 Alld 2

1 > lar —iaslly = 4flwllz + 4lldf 2.
From the definition of /& we deduce that w = 0, so that v = e/ and
(2.2.15) ag = a1 — 2df.

The conditions £¢ (% @ 1ia;) = 0 imply
2d*a; + Jm(h, ;) = 0.

If C is reducible (¢» = 0) then the above equality shows that f = const. and
the condition (iv) is proved. Suppose ¥ # 0 and set

vi= ¢
Denote by f the L2-orthogonal projection of f onto the kernel of A, more

precisely
P 1
Ji= vol(M) /Mf'

Since f is defined only mod 27Z we can assume
f € 0,2n].
The equality (2.2.15) yields

1. .
ldf ll2,2 < §(||a1 2,2 + [|az2]l2,2)-
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Using Theorem 1.2.18 we deduce that there is a constant C' > 0, depending
only on the geometry of M, such that

If = flls2 < Cr.
Using the Sobolev embedding theorem we deduce
(2.2.16) If = fllow < Cr

where we use the same letter to denote the constants depending only on the
geometric background.

On the other hand, from the equality (1 — i)y = eif4p; —1py we deduce
(22.14) U . L
or % /Mre‘fwl—wvg: /Mul—e‘f)wdvg: /Mre‘fw—e“ff)wdvg
> [ 1= exp(-if) - lolde, — [ (1= expli(s = 1)) - wlde,
M M
— 11— exp(—if)| / bl — / (11— expli(f — ) ) - ldv,
M M

(2.2.16) R
> |1 —exp(—if)lyv — Crv

so that o
11— exp(—if)] < CEIT
v
We conclude that
(C+v)r

[ fll3,2 <

Suppose we fix r at the very beginning such that (el D ia) € Wy as soon
as

, N¥ll22 + [fidl|22 < 7.

Il < E22

This means
(1,41 @ i), (e, 4y @ iag) € Wy
and
F(1, 4 @ ian) = F(e by @ idig).
Then Lemma 2.2.8 (with ¢ # 0) implies that e!f = 1. Proposition 2.2.7 is
proved. W

Consider C = (¢, A) € C2 and a neighborhood of 0 € Sc as in Proposi-
tion 2.2.7. Then the map U — (B**! 65, 1) given by
¥ @1d = Ocy g ia)
is continuous, maps open sets to open sets and its fibers are the orbits of

the Stab(C)-action. Hence it induces a homeomorphism ® of U/Stab(C)
onto a neighborhood of Oc in BA+1.
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Exercise 2.2.3. Show that ® is a bi-Lipschitzian map, i.e. there exists
C > 0 such that

%H(% —1h2) @ (a1 — a2)||k+12 < 1 (P(h1 @ idn), B (v @ Ha) )

< Ol — 2) ® (a1 — a2) k11,2,
Ve); @ ia; € U/Stab(C).

From Proposition 2.2.7 we deduce the following important consequence.
For any C € C2 we denote by [C] the image of C in BX+!.
‘Bk+1

o,irr?

Corollary 2.2.9. The topological space ( Ok+1), k > 2, has a natural
structure of smooth manifold. For every irreducible C € C2, the tangent
space to Bl;;rlr at [C] can be naturally identified with Sc.

Now fix the perturbation parameter n € L™2(A2T*M), m = max(4,k)
and an n-monopole C = (¢, A). Modulo a gauge change, we can assume
C € ©3 so that C is at least twice continuously differentiable. According
to Proposition 2.2.7, to study the structure of a neighborhood of [C] €
IME+1(g,n) it suffices to understand the structure of a neighborhood of C in
2F+1(g,m)NSc. First, observe that the techniques in the proof of Proposition

2.1.11 imply the following result.

Exercise 2.2.4. Any C' € ScNZE™(g,7n) has better regularity than LF12,
namely, C' € €mFL,

We have to understand the LFt12-small solutions C := (4, ia) of the
equation

SW,(C+C) = 0
2.2.17 K ! .
( ) { £eC = 0
We follow the well traveled path of perturbation theory and linearize this

equation

{DCSWn(C) = 0

Lc(C) = 0 -
At this point it helps to be more explicit. For ¢, € LF12(ST) define

i0,9) = Slimo o+ 1) OV § @ g+ § @ — el ).

More precisely, ¢(1, 1[)) is the traceless, selfadjoint endomorphism of S, given
by

b= (1, )d = (¢, V)0 + (¢, 1)) — (Re (), 1)) .
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We will identify it with a purely imaginary 2-form via the isomorphism
induced by the Clifford multiplication. Then

Dy SWy( 016) = (2 + getia)s ) @ ( dia - i) ).
Thus, the linearized equations (2.2.17) define a bounded linear operator
T : LFPR2(SE @ iT* M) — LF*(S,; @ iALT*M @ iA°T* M)
described by
v | 2)41./} * %;(id)@ﬁ
(2.2.18) [ .. } — dtia — 54(¢,v)

1a

—2id*a — iIm(, )
Observe that 7c = SW + £¢, where the underline signifies linearization.

Lemma 2.2.10. The operator 1c is Fredholm. Its real index is

(o) = (& — (2x+57)

where x denotes the Euler characteristic of M, T := b2+ — by denotes the

signature of M and
cz. = / Co N Co.
M

Proof Set Cp:= (0, Ag) where Ay is the fixed, smooth reference connection
on det(o). The Sobolev embedding theorem shows that the difference 7¢ —
Tc, is a compact operator LF+1.2 _, k2 hecause it is a zeroth order p.d.o.
Thus 7¢ is Fredholm if and only if 7¢, is Fredholm and both operators have
the same index. On the other hand,

i DA,V
o [ W= |
"Lia _%id*a

which shows that 7¢, is defined by the direct sum of two first order elliptic
operators with smooth coefficients

P, T(SF) = T(S;)
and
dt —2d* : iQY (M) — i(Q2 & Q°)(M).
Thus 7¢, is Fredholm. We deduce
indr7Zc = indr7c, = 2indc®@ 4, + indr(d™ — 2d*)
(use the Atiyah-Singer index theorem)
1 1, 4by —4by —2(by +by) — 3(by —by)

:1(03—7)+(b1—b2+—50):1%+ 1
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(x =2(bp — b1) + b2)

1 1
= Z(c%; — (4bg — 4by +2by 4+ 37)) = 1(03 —(2x+37)). W

It is reasonable to hope we could extract information about the local
structure of M5! (g,n) near [C] using the implicit function theorem. This
would require the surjectivity of 7¢ and would imply that near [C] the moduli
space is a smooth manifold of dimension d(c). Moreover, in this case, the
tangent space at [C] could be identified with ker 7¢.

It is thus natural to investigate the surjectivity of 7¢ and, in case this
surjectivity is not there for us, to see how much of the implicit function
argument we can salvage.

Consider the following sequence of operators:

SW
(Kc): 0— TyGE2 =6 12 =5 yk 0.

Because SW, is Gk+2-equivariant and SW,,(C) = 0 we deduce
d i
o SW, (e - ) =0,

that is, SW, o £c = 0. Thus the sequence (K¢) is a cochain complex called
the deformation complex at C. Its cohomology will be denoted by HE.

Lemma 2.2.11. The deformation complex K¢ is Fredholm, that is, the
co-boundary maps have closed ranges and the cohomology spaces are finite
dimensional. Moreover

HE = ker £c, HE = ker Ic
and
coker Tc = HE @ HE.

In particular,

d(o) = indr(7c) = —xr(HC).

Proof Clearly Hg = ker £c. Moreover, Hodge theory shows that the
range of £ is closed in TcC2. We now regard £¢ as an unbounded operator
L?*(—) — L*(—) with domain LY“2(iA°T*M). Its range is closed in TcCO =
L?*(Sy @ iA'T*M) and we have an L2-orthogonal decomposition

L*(Sy @ iAT* M) = Range (£c) @ ker £¢.

Thus we have the isomorphism

HE = {C € ker £¢; SW, (C) = O} = ker 7c.
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Since 7c is Fredholm it maps TcC2 onto a closed subspace of Y%. Since
Range(7c) = Range(SW, ) ® Range(£¢) we deduce that the range of SW,
is L*2-closed. Moreover

coker 7c = coker SW, @ cokerf¢ = HE @ ker £c.
This completes the proof of the lemma. H

Corollary 2.2.12. T¢ is surjective if and only if H2 = H% = 0. In partic-
ular, Tc can be surjective only if C is irreducible (<= HY =0).

Definition 2.2.13. An n-monopole C is said to be regular if 'H% =0.

Exercise 2.2.5. Suppose C = (0, A) is a reducible n-monopole. Then C is
regular iff the operator @ 4 : LF*12(ST) — LF2(S7) is surjective and b = 0.

Corollary 2.2.14. If C € C2 is a regular, irreducible n-monopole then a
small neighborhood of [C] in ME(g,m) can be given the structure of a
smooth manifold of dimension d(o). The tangent space at [C] is naturally
isomorphic to Hé.

Definition 2.2.15. The integer d(o) is called the virtual dimension of the
moduli space METL(g, 7).

We can provide some information about the structure of 9t¥+1(g, n) near
irregular solutions as well. For simplicity set U := Hé and denote by V the
L?-orthogonal complement of U in Sc. We need to understand the small
solutions C of the equation

(2.2.19) SW,(C+C) =0, CeSc.

Denote by P the L?-orthogonal projection onto U and by Q the L?-orthogonal
projection onto the L?-closure of Range(SW, ). We rewrite the equation

SW, (C+ C)=0as
{ QSW,(C+C) = 0
(1-Q)SW,(C+C) = 0

Since QSW,, : Sc — Range (SW,) is onto and SW, is Stab(C)-equivariant
we deduce from the implicit function theorem that there exists a small
Stab(C)-invariant neighborhood NV of 0 in U = ker SW, | 5. and a Stab(C)-

equivariant smooth map
fN—=V
so that the set

{C; QSW,(C+C) =0, [|Cllpsro is small}
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can be described as the graph of f. More precisely, this means that
QSW, (C+udv)=0, ueN, veV,
if and only if v = f(u). The small solutions of (2.2.19) can be all obtained
from the finite-dimensional equation
k(u) =0, uwel,
where x : N — (Range SW, )= = HE,
= (1 - Q)SW,(CH+ud f(u)).

The map « is clearly Stab(C)-equivariant. It is called the Kuranishi map at
C. If Cis regular then the Kuranishi map is identically zero. We have thus
proved the following result.

Proposition 2.2.16. There ezist a small Stab(C)-invariant neighborhood
N of 0 € H¢ and a Stab(C)-equivariant smooth map

ki N — HE
such that a neighborhood of C on MEH1 (g, n) is homeomorphic to the quotient
x~1(0)/Stab(C).

For more information on how to piece these local descriptions to a global
picture we refer to the nice discussion in [29, Sec. 4.2.5] concerning the
similar problem for Yang-Mills equations.

2.2.3. Generic smoothness. The considerations in the previous subsec-
tion lead naturally to the following question:

Is it possible to choose the perturbation parameter n € L™? (m =
max(4,k)) so that for any n-monopole C we have HY = HE =07

If this question had an affirmative answer then for such n’s the moduli
space sm{;“(g, 1) would be a compact smooth manifold of dimension d(o).

The vanishing of H% is easier to understand because Hg = 0 if and only
if C is reducible. To formulate our next result we need to introduce some
notation. For every form « on M we denote by [a] its harmonic part in its
Hodge decomposition.

Proposition 2.2.17. The following conditions are equivalent.

(i) All n-monopoles are irreducible.

(ii) 2m[co] ™ # [n]*
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Proof (ii) = (i) We argue by contradiction. Suppose there exists a re-
ducible monopole C = (0,4). Then F; + inT = 0 so that 2r[c,]T =
i[F4]T = [n]T. This contradicts (ii).
(1) = (i1) We argue again by contradiction. Suppose 27[c,]T = []T. Since
7 is closed we can write
n=[n+da, oac L™T2(ATM).

Hence 1 )

7t = ]t + (da + wda) = [ + S(da — s (v0))

1
= " + 5(da+ d(+a).
Similarly we have Fiy = [Fa] + df8 where [F4] = —27i[c,] so that

Fi = —2ri[c,|t + %(dﬂ + d*(x5)).

Since 27[cy]t = [n]T we deduce [F4]" = —i[n]T. Now pick a connection
A € AR such that Fa = [Fa] —ida. Then Ff +in™ = 0 so that (0, A) is
a reducible n-monopole. B

Define
NE = NE, = {ne LRA2T* M) dn =0, [ # 2mleo] ).

Observe that N = () if bf = 0 while if b5 > 0, M¥ is an open set in the
space ker d N L¥2(A2T*M). We deduce the following consequence.

Corollary 2.2.18. (a) If b = 0 then for any perturbation parameter 1 €
kerd N L*2(A2T*M) there exist reducible n-monopoles.

(b) If by > 0 then N¥ # 0 and for any n € N¥ there are no reducible

n-monopoles.

In the sequel, if b; > 0 the perturbation parameter will be assumed to
belong to some N, f where k > 4. The original question is then equivalent to
the following

Fiz k > 4. Can we find n € N¥ such that H(Z: = 0 for any n-monopole
Cc?

This is where the genericity results come in. We will need to use them
in a context slightly more general that the one in §1.5.2. We begin by
presenting this context.

Note first that it suffices to look at the restriction of SW,, to @(’:Z}r The
map

SW,, : 2. Hk

o,arT
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can be regarded as a section of the trivial vector bundle

uk : %k X e?f,irr - eg,irr'
This bundle is equipped with a 9]§+2—action covering the 9§+Q—action on the
base. More precisely, for every v € G52 and (y, C) € U* we have

7,0 =097 0
Observe that SW, is a G&2-equivariant section of this bundle. Thus SW,,
descends to a section [SW,] of

[U]k — uk/9§+2 _ Bk+1

oarr”
On the other hand, the trivial bundle is equipped with a G%*%invariant
connection V so that

VeSW, = (SW,)(C), VCeeZ,,, CeTcC?

T,arT) oarr:
Now observe that for every v € G52 we have

Bk+1

aarT

1:Sc = Sy.c = Tiq

where 7, denotes the differential of ~ : Ggyirr — G?mrr.

The above observation show that V descends to a connection V on

TBL“?{TIT and its action can be read off from the action of V on Sc. For every

Ce Tc@? we will denote by [C] the L2-orthogonal projection onto the L2-

closure of ker £c. A priori [C] is only an L?-object but in fact we have the
following result.

Exercise 2.2.6. Prove that if C € Tc@2 then [C] € SISH, that is,
[C] € LFL2(SE @ iAT*M).

The moduli space ME*+1(g,n) is precisely the zero set of the section
[SW,,] of [U]¥. We leave it to the reader to prove the following fact.

Exercise 2.2.7. (a) Suppose that for all [C] € [SW,]71(0) the adjunction
map

ac: T[C]BkJrl — V[kq, [C] — V[C] [SWn]

oirT

Bk+1

is surjective. Then [SW,]71(0) is a smooth submanifold of i

(b) Let SW,,(C) = 0. Then the adjunction map ac is surjective if and only
if the map DcSW,, : TcC2 — Y* is surjective, i.e. H(z: =0.

Definition 2.2.19. The parameter € N is said to be good if the adjunc-
tion map of every n-monopole is surjective.
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We can rephrase the initial question as follows:
Can we find good parameters?

We follow the approach sketched in §1.5.2. In that case the bundle [U]*
was trivial. We can regard the family of sections [SW,)] as a section of the

bundle

€ UF x NF — BEYL X NE, (Con) — SW,(C).
The connection V on [UJ* induces by pullback a connection on & which we
continue to denote by V. Set

z= {([q,n) e B x NE, SW,(C) = o}.

oirr

The space Z plays the same role as the “master space” introduced in §1.5.2.
We will prove two things.

Fact 1 For all ([C],n) € Z the map
Ty Batrr X Ny 2 ([Cl, ) = Vig[SW,] + V4 [SW,] € (.
is surjective, so that Z is a smooth Banach manifold.

Fact 2 The natural projection
T Z = NG (Co) e
is a Fredholm map with index d(o).

As shown in Lemma 1.5.18, Fact 2 is implied by Fact 1. In particular,
the regular values of 7 are all good parameters. Thus we only need to prove
Fact 1.

Proof of Fact 1 Let ([C],) € Z. Fix a representative C = (¢, A) € €2 of
C. Notice that since SW,, is Gk+2_equivariant we have

S_WW(C) = S_Wn([C]) = V[q [SWW] |[C}
because the vector C — [C] is tangent to the orbit of §5+2 through C. Thus,
to establish Fact 1 it suffices to show that the map
S TicCa x NI 3 (C, ) = DcSW,(C) + Dy SW (1)

is onto. More explicitly,

. Si
- P 40 + 3e(ia)y k2 >
S(E. ) — 2 . L*
(C.n) dtia +in"t — 34(¥, ) © iAi?*M

Since the linear map DcSW,, : TcC2 — Y* has closed range we deduce
immediately that S has closed range as well. To establish the surjectivity it
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suffices to show that if ¢ @ iw € Y* is L2-orthogonal to the range of S then
¢ =0 and w = 0. Consider such a (¢ @ iw). This means
(2.2.20)

| @i+ ey, dldu, + [ Reldtia+in® - 306, 0).iwhdo, =0
M M

for all ¢ € LFHL2(SH), a € LFY2(AYT*M) and 1) € kerd N LF2(A2T*M).
Set @ = 0 and ¢y = 0 in the above equation. We conclude that

/ (T, wydv, =0, Vi € kerd N L*?(A*T*M).
M

On the other hand, there exists 7 € kerd N L¥2(A2T*M) such that n* = w
(as in the proof of Proposition 2.2.17). This shows w = 0. Now set @ = 0 in
(2.2.20) so that

0= / (D b, &) dv, = / (W, D d)dvy, Vi € LS.
M M
This implies

(2.2.21) D46 = 0.
We can now conclude from (2.2.20) that

(2.2.22) / (c(ia)y), pydvy = 0, VYa € LFL2(AYT*M).
M

Above, by density, we can assume the equality holds for all L?>-forms a. Fix
a point mg € M such that 1)(mg) # 0. Since 1 is at least C? we deduce that
1) stays away from zero on an entire neighborhood of mg. Using the explicit
description of the Clifford multiplication given in §1.3.1 we deduce that the
map
AYTEM > a— c(a)p(mg) €SS |m

is a bijection for any m in a small neighborhood U of mg. We can use this
map to produce a continuous 1-form @ supported on U such that

c(ia(m))(m) = ¢(m), Ym e U.
Using this equality in (2.2.22) we deduce

| 1wtmyas, o

Thus ¢ = 0 on U and by unique continuation (see [16]) we deduce ¢ = 0 on
M. Fact 1 is proved.

Using the genericity theorem, Theorem 1.5.19, we now obtain the fol-
lowing important result.



2.2. The structure of the Seiberg-Witten moduli spaces 133

Theorem 2.2.20. Suppose b > 0 and fir k > 4.
(a) If d(o) < O then MEHL (g, n) = O for generic n.
(b) If d(c) > 0 then the set of good parameters n € N¥ is generic. For

such a parameter the moduli space 93?’5.“(9,77) is either a compact, smooth
manifold of dimension d(o) or it is empty.

The last result raises a natural question. Can the moduli spaces be
empty if their virtual dimension is > 07 We will show that this is a frequent
occurrence and in fact it happens for most spin® structures except possibly
finitely many of them.

Proposition 2.2.21. Fix k > 4 and Cy > 0. Then there exists a finite set
F C Spin®(M), depending on the metric g and the constant Cy, such that
for any o € Spin®(M) \ F and any perturbation parameter n such that

[7llk2 < Co

the moduli space MET1 (g, n) is empty.

Proof Suppose o € Spin®(M) is such that d(o) > 0 and 7 is a perturbation
parameter such that ||n||z2 < Cp. In the sequel we will use the same letter
C to denote constants depending only on Cy and the geometry of M. The
condition d(c) > 0 implies

(2.2.23) 2 > 2x + 37

If C = (1, A) € @2 is an 17- monopole then using the Key Estimate in Lemma
2.2.3 we deduce

(2.2.24) 9]los < C.

Since C is a minimum of the energy functional €, we deduce from Proposi-

tion 2.1.4 that
(2.2.23)
¢, (1, A) = 4|n*|5 —dn?cl <

Using the description of €, we deduce

C.

o 1 ., (2224)
IFa+ 23 <C+ 5 [ 1sl- oo, < C.

This implies
I[Falll2 < C

where we recall that [«] denotes the harmonic part of the form «. Thus
the cohomology class ¢, sits in a ball of radius C' > 0 and in the lattice
H?(M, 27iZ). Thus ¢, belongs to a finite set. Since only finitely many spin®
structures o determine the same class ¢, € H2(M, 27iZ) the proposition is
proved. W
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The bijection ¥ introduced in (2.1.3) interacts nicely with the additional
structures on the moduli spaces. Observe that if C € €, is a (¢, n)-monopole
then we have an induced isomorphism between deformation complexes

£c SW

0 Tlga TCGU — ya 0

(2.2.25) —id 9 o
00— T; g —— 15 ea u 0

15 S MO sw, Y

In particular, this proves the following.

Proposition 2.2.22. If n is a good parameter for the spin® structure then
—n 1s a good parameter for the spin® structure ¢ and the map

0 My (g,m) — M5 (g, —n)

s a diffeomorphism.

2.2.4. Orientability. Suppose now that bJ > 0 and n € N¥, k>4, is a
good parameter. For brevity, when no confusion is possible, we will write
M, (1) instead of ME*1(n), etc. Then, if nonempty, the moduli space M, (1)
is a compact smooth manifold of dimension d(c). It is very natural to inquire
whether it is orientable.

To understand what such a problem entails, observe that the family of
finite-dimensional vector spaces

ker T := {kerch; Ce Zg(n)}

defines a smooth vector bundle over the infinite-dimensional Banach mani-
fold Z,(n) and more precisely, it is the pullback via the natural projection
T Zo(n) — My(n) of the tangent bundle T9M,(n) . If we could prove
that ker T admits an orientation preserved by the action of G, then the
orientability of M, (n) would be clear. Note first that the bundle det ker T
can be formally identified with the determinant line bundle detJ because
the elliptic operators T¢ are surjective for C € Z,(n). This is only a for-
mal identification because the base Z,(7) is an infinite-dimensional manifold
and determinant line bundles were defined only in a compact context. For-
tunately Remark 1.5.10 provides a way out of this trouble.

Consider the space My, of smooth maps
ZET () — LFTY2(Hom (ST @ iT*M |, S; @ iALT*M @ iA'T*M)).

We leave it to the reader to verify the following fact.
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Lemma 2.2.23. Fach ® = (®¢) € My, defines a morphism of Hilbert vector
bundles

vk Wk
where V¥ denotes the Hilbert vector bundle

(Lk“’Q(S;L ST M) x 25 = z§+1(n)) = TN | i)

while W* denotes the vector bundle
(Y* @ LP2GAT M) ) x 255 (n) — 257 (n).
Moreover, for every C € ZE+1(n) the linear operator
dc : VE - WE
1§ compact.

The group G5*2 acts on WF¥, trivially on the factor L¥2(iA°T*M). We
denote by M, the subspace of M, consisting of §,-equivariant maps. For
example the map P = Pc, C = (1, A), defined by

b } ge(ia)y

(2.2.26) [ i@
belongs to Mk

The bundles V¥ and W* descend to Hilbert vector bundles over M, (1)
which we denote by [V]¥ and [W]*. The family T¢ descends to a morphism
Ty of these bundles over M, (n). Moreover, for every [C] € DM, (n) the
induced linear operator Jicj : [V]fc] — [W]’[“C] is Fredholm. We can now use
Remark 1.5.10 to deduce that there is a determinant line bundle det T
satisfying

det TN, (’17) = det(‘.T[c]).
To assign an orientation to M, (n) (if any) we have to describe a trivialization
of det(T[c] ).

Now define ‘3'8 := Tc — Pc. More precisely
¥ Pav
Te [ y ] = | dtia
“ —2id*q
Because of equivariance we deduce that ‘J?: descends to a morphism from

[V]F — [W]¥. Now set rJ'[tq = ‘.T{[)C] + tPi), t € [0,1]. Note that for all
[C] € M,(n) and t € [0, 1] the operator

Tl : W]]fq — [W]]fq
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is Fredholm and ‘T[IC] = J|¢}- The morphism (T[)q) can be written as a direct
sum

(P.) & (4 —2d7).
The first summand is complex and thus it is equipped with a natural ori-
entation. The second summand is independent of [C] € M,(n) and thus
an orientation is determined by fixing orientations on ker(dt — 2d*) and
coker (dt — 2d*). Observe that

ker(d™ — 2d*) = H' (M, g)
and
coker(d™ — 2d*) = H2 (M, g) © H(M, g).
Observe that H°(M, g) is canonically isomorphic to R. Thus, we can fix an
orientation on det(d* — 2d*) by fixing orientations on H2 (M,R), H'(M,R)
and then agreeing to equip coker (d* — 2d*) with the orientation induced by
ordered direct sum decomposition
coker (dt — 2d*) = H°(M) @ H3 (M).
With these conventions in place, we obtain an orientation on det(‘]’?c]) and,
via the homotopy T%, an orientation on 79, (n).

Definition 2.2.24. If M is a compact, closed, oriented smooth 4-manifold
then a homology orientation on M is a choice of orientations on H'(M,R)®
H?(M,R).

We have thus proved the following result.

Proposition 2.2.25. There is a canonical procedure to assign to each ho-
mology orientation € on M an orientation o = o(e) on My (n).

Let us trace the effect of the involution 9 on the orientations. For each
C= (v, A) € M, it induces maps

ker T2 — ker ‘Jg(C) and coker T¢ — coker 7151(@'

These act as complex conjugation on ker®, and coker®, while on
ker(d™ — 2d*) and coker(d™ — 2d*) they act as multiplication by (—1). Thus
the induced map det‘Jg — det r.Tg © changes the orientation by a factor
(_1)V07

v, = indc@, + ind(d* — 2d*) = d, — indcD,.
We have thus proved the following result.

Proposition 2.2.26. The involution U induces an orientation preserving
diffeomorphism

19 . mo — (—1)""93?5.
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2.3. The structure of the Seiberg-Witten
invariants

2.3.1. The universal line bundle. We have seen that if b; > 0 then, for
generic 1 € ./\/Z~C , the moduli space M, (n) is a smooth, compact, oriented
submanifold of By of dimension d(c). The Banach manifold By is
cohomologically nontrivial. More precisely we have the following result.

Proposition 2.3.1. There exists an isomorphism of Z-graded commutative
rings with 1

H*(Byirr, Z) = Zu) ® A*HY (M, Z)

where degu := 2.

Proof Observe that Cs ;. is a contractible space since it is the complement
of an affine subspace of infinite codimension. Thus B, ;- is homotopically
equivalent to the classifying space of the gauge group G,. Its topology is
described in [4, Sect. 2]. More precisely BS, is homotopically equivalent to
one connected component of the space Map (M, BS'). Since

BS! = CP* = K(Z,2),

we deduce from a result of R. Thom that we have the homotopy equivalence
2
Map(M, K(Z,2)) = [ [ K(H(M,Z);2 - q)
q=0
~ H?(M,Z) x K(Z",1) x K(Z,2).
The components of this space are parameterized by the first Chern class
c1 € H*(M,Z) and are all homotopic to
K(Z" 1) x K(Z,2)

The proposition is now obvious. B

We will construct several integral cohomology classes on B, which
upon integration along the moduli space M, (n) will lead to the Seiberg-
Witten invariants.

First, recall that if X and Y are two metric spaces there is a natural
operation

/: HY(X X Y,Z) x Hy(X,Z) — H (Y, Z), (c,a)— ajc
called the slant product, defined dually by the equality
(afe,d) = (a,c x dy, Ya € H (X xY,Z), (¢,d) € H(X,Z) x H.(Y,Z).

(Our definition differs by a sign, (—l)k(”*k) to be precise, from the definition
in [29, Chap. 5] or [126, Chap. 6]. We prefer this choice since it agrees
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with the “fiber-first” convention in [105, §3.4.5] which has certain mnemonic
advantages.)

Now consider the trivial line bundle C over M x Cy . It is equipped
with a natural free G, action. More precisely, for any (m,C) € M X Cyipr
an element v € G, defines a linear map

7 Concy = Comycyy 2 (m) 1z,
This §,-equivariant line bundle defines a complex line bundle on the quotient
M x B irr. We call this the universal Seiberg- Witten bundle and we denote
it by U,.

We can now use the slant product to define the p-map
ot HJ(M X BG,iTTaz) - H2_j(80,i7"7"7 Z)a a— :U‘(a) = Cl(UU)/a“
Set Qp 1= pu(1) € H?(Byirr)-

There are more intuitive ways of viewing these cohomology classes.

1st interpretation Fix mg € M. Then U, defines by restriction a line
bundle Uy (mg) over {mo} X By irr. This bundle can be alternatively de-
scribed as follows.

Consider the short exact sequence of Abelian groups

VmO

€ 1
1‘_>90(m0)<_>9<7 — S =1
where ev,,, is the evaluation map
S5 37— y(mo) € 5!

and G,(mo) is the kernel of ev,,,. Then the quotient

BU7iTT(m0) = Ba,irr/go(mo)
is equipped with a residual free S 1>~ G, /G, (mg)-action so that the projec-
tion By irr(Mmo) — Bgirr defines a principal S Lbundle. The bundle U, (my)
is associated to this principal bundle via the tautological representation
St — Aut(C). Then §, is the first Chern class of U, (myg).

2nd interpretation The second interpretation adopts a dual point of
view. In other words, we want to regard c¢;(U,) as the “Poincaré dual”
of the zero locus of a generic section of U,. The Poincaré duality in this
infinite-dimensional context should be understood as follows. A codimension
2 submanifold Z of M X By i will be called a Poincaré dual of ¢;(U,) if,
for every finite-dimensional, compact, oriented smooth submanifold X —
M x By iy which intersects Z transversally, the restriction ¢;(Uy) |x is the
Poincaré dual of Y := X N Z with respect to the duality on the finite-
dimensional manifold X.
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Clearly, to produce Poincaré duals to ¢1(Uy) is suffices to indicate a
procedure for constructing large quantities of sections of U,. The zero loci
of these sections when smooth will be the sought for Poincaré duals.

To construct sections of U, it suffices to produce §,-equivariant sections
of

C— M x Ca,irr‘
These will be smooth functions s : M x Cy i — C such that
s(m, - C) =~(m)"! - s(m,C), ¥y € Gy, (m,C) € M X Cor.
There exists a very cheap way of constructing such functions. For every
¢ € C™(S,) define s : M X Cyirp — C by
(m; ¥, A) = (d(m), Y (m))m.
It clearly satisfies the required equivariance properties since we agreed that
a Hermitian metric will always be conjugate linear in the second variable.

Suppose there exists mg € M such that 3;1(0) intersects a moduli space
{mo} x M, transversally along a codimension-two submanifold Yy ,,. We
now see that the restriction of €2, to the moduli space is the Poincaré dual
of Y mg-

Exercise 2.3.1. Suppose b > 0 and fix an integer k¥ > 5. Show that for a
generic choice of m € M, ¢ € LFT12(S}) and 1 € N, the set

Yom = s, (0) gt (m)

is either empty or a submanifold of dimension d(o) — 2.

The involution 9 : Cy — Cs reverses the S'-action and we thus deduce

(2.3.1) 0*Qy = —Q,.

2.3.2. The case b; > 1. Suppose now that (M, g) is a compact, oriented
Riemannian 4-manifold such that 192+ > 1. A spin® structure o is said to
be feasible if d(o) > 0. If o is not feasible we define the Seiberg-Witten
invariant of the pair (M, o) by the equality

swy(o) :==0.

If o is feasible then the definition of this invariant requires additional work
and we need to distinguish two cases.

Case 1 d(o) = 0. We want to mention here that this condition already im-
poses restrictions on the topological type of M. More precisely, this implies
that the equation 22 = 2y + 37 has a solution z € H?(M, Z) and, according
o [55], this implies that the tangent bundle of M can be equipped with
an almost complex structure. In fact, all the spin® structures o such that
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d(o) = 0 are the spin®-structures determined by almost complex structures
on T'M. With this topological aside behind us, let us choose a generic
n € N, so that M, (g,n) is a finite collection of irreducible solutions. We
will show that a choice of orientations on H'(M) and H? (M) canonically
determines a map

€: Mo (g,m) — {£1}.
Here are the details.

For [C] = [(v, A)] € M, (g, n) the operator ¢ is Fredholm, of index zero,
with trivial kernel. Thus det 7¢ is equipped with a canonical orientation
Ocan(C). Now, as in Sec. 2.2.4, set T? := Tc — Pc. Then

ker 70 = ker® 4 @ H' (M) and coker 70 = @% @ H? (M) @ HY(M).

Since ker @ 4 and ker®? are complex spaces they are equipped with natural
orientations. The space HY(M) is canonically isomorphic to R. Once we
have fized orientations on H'(M) and H2 (M) we deduce that det7? is
equipped with a natural orientation.

We want to remind the reader (see §2.2.4) that the space H2 (M) &
H°(M) is oriented by the ordered direct sum
H°(M) @ H (M).
We will consistently use this ordering throughout the book.

We now transport this orientation on det 7° using the deformation
18 :=Tc + sPc, s€[0,1],
to an orientation O;,4(C) on det7Zc. The two orientations O..,(C) and
0;r4(C) differ by a sign +1 which we denote by €(C). Observe that in the
notation of §1.5.1 we have
(2.3.2) e(C) = e(Tc, Tc + sP, 10).

Now define
swa(a,9,m) =Y _ €(C).

C

Remark 2.3.2. We want to point out an equivalent definition of €(C). First
observe that

¥ P At
7 [ ;. ] — | dtia
1 —9id*a
where C = (¢, A) and
sc(ia)y
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Both TCO and P¢ are defined irrespective of whether C is a monopole or not.
If we now pick an arbitrary configuration C’' = (¢', A’) then the orientation
transport along the affine path

(1—-t)78 +t7¢

is always positive because the only fashion in which the kernels of these
operators change is through the path of Dirac operators @ (;_) /444 Which
are complex and thus with no effect on the orientation issue. Thus we can
define ¢(C) as the orientation transport along an arbitrary path connecting
an operator 7Y to the operator 7c.

Case 2 d(o) > 0. Again we choose a generic n € N, so that M, (g,n) is
a smooth, compact orientable manifold of dimension d(c). We can fix an
orientation on the moduli space by choosing orientations on H2 (M) and
H!(M). Now define

swar(0,9,m) = (1= 20) ™", M (g,m)])

where (o, ) denotes the Kronecker pairing between cohomology and ho-
mology while (1 — ,)~! stands for the formal series

1-Q) =14, +02+....
We see that swy(o,g,17) = 0 if d(o) is odd while if d(o) = 2k then

swar(o,9,m) = / Qb
Mo (g9,m)

In the remainder of this subsection we will show that the quantity
swys(o,g,n) is in fact independent of the additional data g and n provided
that b (M) > 1. Ultimately we will have to distinguish between the two
cases d(o) = 0 and d(o) > 0 but we will begin by describing a general set-up,
which applies to both situations.

Suppose we have two sets of parameters (g;,n;), ¢ = 0, 1, which are good
with respect to the fixed spin® structure o. Choose a smooth path of metrics
g(s) on M such that

g(s)=g; for |t—i| <h, i=0,1,

where £ is a fixed very small number. Fix the integer k > 4. We can organize
the family
{ch,g(s)7 s € [07 1]}
as a bundle
N —[0,1]
whose fibers are connected when b;r > 1. In particular, the total space N

is connected. A smooth path s — 7 € Nfg(s) can be viewed as a smooth
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Figure 2.1. A 2-dimensional cobordism

section of the bundle N. Given such a section we get a family of moduli
spaces

M = Mo (g(s), ns)

which can be thought of as defining a deformation of M, (go, 70) to My (g1, 171)-
Clearly, some of the spaces s = M, (g(s),n(s)) may not be smooth but
the whole family may be organized as a smooth manifold with boundary
Mo UMy (see Figure 2.1). More rigorously, we hope the family M forms a
cobordism from My to Iy inside B;,.-. We will show that we can choose the
path ng wisely so that the family M does indeed form a cobordism. In fact,
this cobordism will be oriented and we will have an orientation preserving
diffeomorphism
oM = M U =M.

The existence of such a good path will be achieved using again the Sard-
Smale transversality theorem. First we need to define an appropriate set of
paths. We think of 75 as an object over I x M. More precisely it will be a
L¥+12_ gection of F*AiT*M. Since k£ + 1 > 5 we deduce from the Sobolev
embedding theorem that such a section will be of class at least C? so that
its restrictions 75 to {s} x M are well defined and C? (in fact they are at
least L*2 on M according to the trace theorems of [79]). We will denote by
P the subspace of such objects which additionally satisfy

ns =mn; for |s—i| <h, 1=0,1,
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and
Ms € Ngk(s)70'7 Vt € [O, 1]
P is a Banach manifold modeled by the Banach space of L**1:2_sections of
7* A2 T* M which are identically zero on the closed set ([0, A]U[1—7,1]) x M.
Consider now the new configuration space GkH = [0,1] x C5¥*1. Each
path 77 € P defines a new map SW = SW Gkﬂ — Y* given by
SW(S, C) e SWg(S) ~(s)(C)

The gauge group continues to act on Gy in an obvious fashion and the
map SW is Gs-equivariant. The desired cobordism M can be alternatively
described as

~ 1

M=SW (0)/G,.
The structure problem for 90 is very similar to that of 9. It is in great
measure determined by the deformation complexes at configurations C =
(s, C) satisfying SW(C) = 0. More explicitly, these are

~ fom ~ SW

(2.3.3) (Ke): 0—TiGy 5 TeCy Z5Y, — 0
where the linearization SW is given by

S . g d .
S—W(S) C) = a |t=0 SWg(s+ts'),ﬁ(s+tg)(C + tC)

This deformation complex is Fredholm because for every (s, C) € M we have
an obvious short exact sequence of complexes

0—>/Cc—>/f€(s7c)—>7€—>0

where the residual complex R is finite dimensional and has index 1. The
space M is a smooth manifold if Hwe"(lC ) =0 for all C € M. Since

7i(s) € Ny(s),0 we deduce HO(K,c) = HO(Kc) = 0 so we only need to worry
about H?. To deal with this issue we use the same approach as in §2.2.3,
based on the Sard-Smale transversality theorem.

Define
Z _{( ,C) e P xCyp; SW; (C):o}.

Again, it suffices to prove that the map
P xCy 3 (7,C) — SWiH(C) € Y,
is a submersion at the points in Z. Then the induced map
7:2/Gy — P
will be Fredholm of index indg(K(s ) = indr(Kc) + 1 = d(o) + 1.
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To establish the submersion condition we have to show that if
SWo(s),i()(C) = 0
then the linear map

Ti.s.0)(P X I % Co) 3 (77,5,C) =
(2.3.4) J _
= lt=0 SWosisa), (44) (s44) (C + 1C) € ToYo

is onto. Arguing exactly as in the proof of Fact 1 in §2.2.3 one can show
that a stronger statement is true, namely the map

L d .
(2.3.5) T(;LS,Q (P X Cg) = (ﬂ, C) — % |t:0 SWg(SMﬁjL@(S)(C + tC) (S T(]HU

is onto. Observe that (2.3.5) is obtained by setting $ = 0 in (2.3.4).

Remark 2.3.3. The map in (2.3.5) has a major computational advantage
over the map in (2.3.4). More precisely, the map in (2.3.4) requires an
explicit understanding of how a Dirac operator and the Hodge operator
vary with the metric. While these variations are known (see [18, 37]) their
concrete descriptions are by no means pleasant. By setting § = 0 we have
eliminated this computational nightmare and, remarkably, this restricted
differential continues to be onto.

We conclude that for a generic choice of 77 € P the parameterized moduli
space M, (7) is a smooth manifold with boundary

OMy(7) = My (g0, m0) L Mo (g1,m)-

To study the orientability of this parameterized moduli space we need to

understand the family of Fredholm operators’j'(&c), (s,C) € S/VV,; 1(0) de-
scribed by

Tis.0)(I % Cogs) 2 (3,C) = T(5.0)(3,C)

=SW(5,C) @ 2?(0 € ToYs ®T1Y,.
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More explicitly, if C = (), A) and C = (), i) then

(2.3.6) '
@Ay(s)w + %Cg(s)(ia)w
$
Tsoy: | ¥ | = | dh©ia— L4, 0W,0) |+
ia

—2id*9() a — 1Tm(e, ¥) 4(s)

(% lt=0 D A, g(s+))¥ + %% lt=0 Cg(s44)(i@)
§ | 55 li=0 *g(ss0)Fa+ ( li=o 17960 (s + 1)) = 5(5 li=0 Gg(stt)) (%)

0

where a sub/superscript g(s) attached to an object signifies that object is
constructed in terms of the metric g(s). The second term in the right-hand
side of the above formula can be computed quite explicitly (see [18, 37])
but its exact expression is quite nasty. On the other hand, we will only use
a few facts about this term. First of all, observe that this term vanishes
for |s —i| < h, i = 0,1, since for such s the metric g(s) is independent of
s. Second, this term involves no derivatives of ia and d) so that, as far as
Fredholm properties are concerned, it is irrelevant. In fact, we will deform

it to zero by considering the family ’T(Z oy 0 <7 <1, described by
; @A,g(s)w %cg(s)(id)d)
o | = | dtwia | +7 L. |+
ia _.QQg(s) W, ¢)
_2id*g(s)a *lJm<¢7¢>g(s)

(2.3.7)
(& =0 P ag(s40)¥ + 35 l1=0 Co(srey (i)

75 | (4 |i=o *g(s+)) Fa + (4 |i—g o6+ (s + 1) + 2(4 =0 Qg(s+1)) (V)

0

For s fixed, the operator ’ZN’((; o) restricted to the subspace $ = 0, coincides

with the operator TCO considered in §2.2.4. More accurately, if we set
(2.3.8) Ho(s) := L*(Sgg(s) @ 1T M, g(s)) (“ ="TcCq)
and

(2:3.9)  Hi(s) = L*(S, () @AY, T*M, g(s)) & L*(IA°T*M, g(s))
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then 70 is an unbounded Fredholm operator Hy(s) — Hi(s) while ’j'(g o) s
an unbounded Fredholm operator R @ Hy(s) — Hi(s). Moreover, we have
the block decomposition

(2.3.10) T°=10 7° : R® Hy(s) — Hi(s).

Observe that if |[s—i| < h, i = 0,1, then for every 7 € [0, 1] we have a similar
block decomposition

(2.3.11) T7=[0 T7] : R@ Ho(s) — Hy(s).

We have seen that the family det 7° is orientable and we can specify an
orientation by choosing an orientation in H'(M) @® H2(M). Since ker 70 =
R ® ker 7' we deduce that det7° is also orientable. The component R
is naturally oriented and the positive orientation is given by the tangent
vector %. Thus, by fixing an orientation on H*(M) & H?2 (M) we induce
an orientation on det 7 which induces an orientation on detZ, via the
homotopy 77. This last orientation induces an orientation on 9, (7). At
this point we have to discuss separately the two situations d(c) = 0 and
d(o) > 0.

e d(o) > 0. The above considerations show that if we equip My (7)
with the induced orientation (outer-normal-first convention) then 90, (7]) =
My (n1) U —IM,(no) as oriented manifolds. This follows from the fact that
% coincides at s = 1 with the outer normal along 91, while at s = 0 this
vector field is the inner normal.

Now we can regard 93?0(77) as an oriented cobordism inside B, ;. between
My (1) and My (11). From Stokes’ theorem we deduce

(1= 00) 7" e (m)) = (1= )", Mo (o)) = (1 - 2,)7", 0901)

(d = exterior derivative)

:[ d(1—-9Q,)" 1 =0.

M
This shows that sws (o, go,m0) = swar(o, g1,m1)-

e d(o) = 0. In this case M is a compact, oriented one-dimensional mani-
fold with boundary so that it consists of a finite family of embeddings (see
Figure 2.2)

pj = p;(1) : [0.1] = B = {(5,0); s €[0,1], CECoirpla(s))/},
) — 1, ,V, SUCh that
si(0),s;(1) € {0,1}, Vj=1,--- 1.
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1§=1

Figure 2.2. A one-dimensional oriented cobordism

Above, s; denotes the composition

muﬁ@mimu
The integer (—1)%(O+5(1) ¢ {41} is called the parity of the path p; and
will be denoted by 7;. The path p; is called even/odd if m; = +/—.

The end points of the path p; are irreducible monopoles Cg, le and, as
such, they come with signs attached e? = e(C']Q), ejl- = e(le») e {£1}.
Lemma 2.3.4. For every j =1,--- ,v we have (see Figure 2.2)

e?ejl- +m; = 0.

Assume for the moment Lemma 2.3.4. Set sw; := sw(M, 0, g;,n;), i =
0,1. Then (see Figure 2.2)

v

SWo — SW] = Z( (—1)81'(0)6? + (—1)81'(1)631- )
j=1

—z SO (O 4 7)) =0,

Proof of Lemma 2.3.4 Fix j = 1,- ,1/. Lift p; to a path p;(t) =
(5;(t),Cj(t)). Cj(t) € Crisa (g s]( ) ;(t)))-monopole. Denote by 7;



148 2. The Seiberg-Witten Invariants

the operator

T = SWo(, ) ¢, + L)
described by (2.2.18) in §2.2. Denote by 7,0 the restriction of the operator
’];ja) () (described in (2.3.7) with 7 = 0) to the subspace § = 0. Clearly,
the two families 7; and 7,° are homotopic. The proof of the lemma will be
carried out in two steps.

Step 1

ei = €(T1, T, To)

where on the right hand side we have the transport along the path 7; defined
as in §1.5.1.

Step 2
6(7—177;776) = _7Tj'

Proof of Step 1 For t € [0,1] 7 set P; = T; — 7,°. Then according to
(2.3.2) we have

= (T, T+ uP;, T2, 0<u<1), i=0,1.

Denote by h the path of Fredholm operators which starts at 7, goes along
7,° to 7 and then to 7; following the path 7, + uP;. Then

(ﬂuh TO) - 6 (71 77;0770)

The path h is homotopic to the path A which starts at 7y, goes along
’]60 + uPy to Ty and then to 7; along 7;:

TO
760 _) TO

(2.3.12) oJ J1
Ty T’ T
We have (see (2.3.12))

6(,]—laha 760) = 6(7—17)\7%0) = 6(7—177;776) . 6]0

Hence

6363 - 6(7—177;5776) (71077;0;760)'

Now observe that each operator 7, is the direct sum of the anti-self-duality
operator of the metric g(s;(t)) and a complex spin® Dirac operator. The
anti-self-duality operators have oriented kernel and cokernel of constant di-
mensions so they have no contribution to the orientation transport. The
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Dirac components also have no contribution since we can use complex sta-
bilizers for this family so that the parallel transport will be a complex map,
thus preserving orientations. Hence €(7;°,7,°, 7) = 1 establishing Step 1.

Proof of Step 2 We will use Proposition 1.5.15 of §1.5.1. First, for ¢ € [0, 1]
define the operators

SR H()(t) — Hl(t), L;: R — Hl(t)
described by (s = s;(t))

@A,g(s)zﬁ %Cg(s)(id)¢
I .
ol | aneis | 4| —lie@d) |+
ia ;
—9id*e(9) ¢ —1Tm(y, ¥)g(s)

(2.3.13)
(& om0 D agst2)¥ + 52 |20 Cy(sp2) (1d)

H %(diz |z:0 *g(s+z))FA + i(diz |Z=O ﬁ+g<s+z)(5 + Z)) - %(diz |Z=0 Qg(s-l—z))(w)

0

and
R>p— Li(p) =

(diz ‘zzO @A,g(s—i—z))w + %% ’z:() cg(s+z) (la’)
5 om0 Hg(srn) ) Fa + (L |amo 796+ (s 4 2)) — 5(E |20 Gg(s12)) (V)

0

Observe several things.

L] St = 7;,Cj(t) (deﬁned in (2.3.6) )
[ St = Lt + ’Z;
e [,; =0 for ¢ near 0 and 1.

e The operators S; have index 1 and the bundle £ = ker .S, is oriented as
the tangent bundle of the oriented path p;(t).

The above observations show that we are precisely in the conditions of
Proposition 1.5.15. We need to understand the orientations w; and ¢; in
this special case.

Observe that ker'S; = R® 0 C T, (0)Cr so that ker S; is tautologically
isomorphic to R. The orientation w; is the tautological one, given by the
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vector 1 € R. The orientation ¢; is the orientation induced from the ori-
entation of ker S, as tangent bundle of the oriented path p;(t) and thus is
given by the vector

de | )
dt "=
Thus the parallel transport along the path 7 is
de
dt

de
dt
This number is clearly equal to —m;. B

sign (—=[i=0 -—= [¢=1)-

The following theorem summarizes the results established so far.

Theorem 2.3.5. Suppose M is a compact, closed, oriented and homology
oriented smooth 4-manifold such that b (M) > 1. Then the correspondence

Spin°(M) 3 o+ swyr(o,g9,m) =:swy(o) € Z

is independent of the metric g and the perturbation n and is a diffeomorphism
invariant of M. More precisely, for every orientation preserving diffeomor-
phism f we have

swa(o) = e(f)swa (7o)
where £(f) = +1 depending on whether f preserves/reverses the homology
orientation of M.

If M is as in the above theorem then the Seiberg-Witten invariant is the
map
swyys : Spin“(M) — Z.
Denote by Bj; the support of sw. The elements of By, are called basic
classes . Observe that By, is finite since, according to Proposition 2.2.21,
for all but finitely many o € Spin®(M) the moduli space M, is empty.

Definition 2.3.6. A smooth manifold M with b5 > 1 is said to be of
SW -simple type if for every o € By we have d(o) = 0.

All known examples of smooth 4-manifolds with b > 1 are of SW-
simple type. This prompted E. Witten ([149]) to state the following

Conjecture. All smooth 4-manifolds with b;r > 1 are of SW-simple type.

Presently (January 2000) the validity of this conjecture has been estab-
lished for very large families of 4-manifolds but a general argument is yet to
be discovered.

Denote by I'js the set of path components of the diffeomorphism group
of M. T'p is itself a group. It acts on Spin®(M) and |sw| is I'j/-invariant.
(sw may change signs under the action of I'y; which can affect the chosen
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orientations of H*(M) or H2.) In particular, we deduce that By is a finite
I'js-invariant set. Note that By is also invariant under the natural invo-
lution o +— &. Moreover, using Proposition 2.2.26 of §2.2.4 and (2.3.1) of
§2.3.1 we deduce after some simple manipulations

(2.3.14) sw(5) = (=112 e gw (o) = (1) swyr(o)
where kK = k) 1= %(b; +1—0bp).

Remark 2.3.7. For many smooth manifolds M (with b5 > 1) the group I'y/
is infinite and thus one expects that many of the orbits of I'y; on Spin®(M)
are infinite. The above observations show that only the finite ones are
potentially relevant in Seiberg-Witten theory. Observe that if o belongs to a
finite orbit of I'j; then the stabilizers of o in I'j; must be very large (infinite)
and thus we deduce that the basic classes live amongst very symmetric spin®
structures.

Using Corollary 2.2.6 in §2.2.1 we deduce the following remarkable con-
sequence.

Corollary 2.3.8. Suppose M is a smooth 4-manifold with b; > 1 which
admits a metric go with positive scalar curvature. Then By = 0, i.e.
swy(o) =0 for all o € Spin(M).

Proof To compute the Seiberg-Witten invariants we can use the metric gg
and a small 7 such that there are no reducible (go, n)-monopoles. According
to Corollary 2.2.6 if 7 is sufficiently small there are no irreducible ones as
well. B

The above corollary shows that in dimension four the Seiberg-Witten in-
variant is an obstruction to the existence of positive scalar curvature metrics.
It is known (see [50], [130]) that in dimensions > 5 the existence of such
a metric is essentially a homotopy theoretic problem. As we will see later,
the Seiberg-Witten invariant is a smooth invariant, i.e. there exist (many)
homeomorphic smooth four-manifolds with distinct Seiberg-Witten invari-
ants (thus nondiffeomorphic). The corollary shows another “pathology” of
the 4-dimensional world: the existence of a positive scalar curvature metric
is decided not just by the homotopy type of the manifold but it depends in
mysterious ways on the smooth structure.

2.3.3. The case b;r = 1. Suppose now that M is a compact smooth
4-manifold with b; = 1. In this case Nf g 18 not connected. Its connected
components are easy to describe. Recall (see §2.2.3) that

NE, = {77 € LP*(N*T*M); dn=0, [n]} # 277[00};}
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where [e], denotes the g-harmonic part of a differential form. When b5 = 1
the space H? (M, g) of harmonic, self-dual 2-forms is one-dimensional. Fix
an orthonormal basis w of this space. Then

My = (n,w)w

(n,w) = /M(naw)gdvg = /Mn A *w = /Mn Aw.

Thus the condition []} = 27[c,]} is equivalent to

(n,w) =27 (cy,w).
The above equation describes a hyperplane in the linear space of closed 2-
forms and its complement is precisely ./\/ZC g+ We see that it consists of two

connected components called chambers. The above hyperplane is called the
separating g-wall and we will denote it by W 4.

where

Fix a spin€ structure o on M and a Riemannian metric g. We can still
pick a generic € Ny 4 such that 9, (g,n) is a smooth, compact, oriented
manifold of dimension d(o) and define as usual

SWM(079777) = <(1 - 90)717 [ma(gvn)D

(or a signed count if d(o) = 0). When trying to imitate the argument in
§2.3.2 establishing the independence of this number on (g,7) we encounter
an obstacle. The correspondence

Nog 21— g € Met(M) = the space of Riemannian metrics on M
defines a fibration

NE .= Nyg — Met(M).
gEMet(M)

Since the fibers J\/’U,g are not connected the total space No is not connected.
It consists of two components separated by the wall

We= |J Wog
gEMet(M)

This means that if we pick (g;,7:) € N, (i = 0,1) in different connected
components then any smooth path

[0,1] 3t +— (g, m¢) € (Metrics on M) x {n € Q*(M); dn =0}

connecting the (g;,n;) will, at certain instants 7, cross the wall W,. This
means there are reducible (o, g, 7, )-monopoles and by putting together all
the (o, g, n:)-monopoles for ¢ € [0,1], as we did in the previous section,
we can never get a smooth cobordism. The reducibles are at fault. To
salvage something we need to understand how the wall crossing affects the
cobordism. We will do this in a special yet quite general situation. More
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precisely, in the remaining part of this subsection we will assume
M is simply connected.

To define the Seiberg-Witten invariants we had to fix an orientation on
(H'@® H?%)(M). In this case this is equivalent to fixing an orientation on the
one-dimensional space Hi(M ,g). This orientation canonically determines
an orthonormal basis.

Remark 2.3.9. Suppose (M,w) is a symplectic 4-manifold satisfying b; =
1, and g is a metric adapted to w (see Exercise 1.4.2 of §1.4.1). Then w is
g-self-dual and since it is also closed it is harmonic. In particular, it defines
an orientation on H2 (M, g). In the symplectic case we will exclusively work
with this orientation.

Suppose we have fixed an orientation of H?(M). For any metric g
we denote by w, the oriented orthonormal basis of Hi(M ,g9). The two
components of N 4 are

NE, ={ne LF*(N’T*M); dn=0, +(n—2mcs,wy) > 0}.
We will refer to them as the positive/negative chambers. We get a corre-
sponding decomposition
N, =N} UN;.
The above discussion shows that the map

N 2 (g,m) > sw(o,g,m) €Z

is continuous and thus it is constant on each of the two chambers. We will

denote by Sch/[(a, g,m) the value on the + chamber.

Before we enter into the details of wall crossing let us first observe that
we can make certain simplifying assumptions. Suppose (g;,7;), ¢ = 0,1, are
in different chambers of NV,. To study what happens when crossing a wall we
can assume go = g1 because we can find 7jy such that the pairs (go,79) and
(g1, ) live in the same chamber so that the corresponding Seiberg-Witten
invariants are equal, as proved in the previous sections.

Let us now take 41 € Nfg. We will consider paths (1(s))|sj<1 such that
n(£1) = n+1, crossing the wall W, only once and we will study the singular
cobordism

Eﬁto = U M, (g,m(s))

from M, (g,n-1) to Ms(g,m1). We can assume that 14, are good perturba-
tions so that 9, (g, n+1) are compact, smooth oriented manifolds of dimen-
sion d(o) > 0. In this case we have

X=bp+by+bs=3+0b;,, T=1-0by
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so that

d(o) = 1 — (2 +37)) = H(& 9+ b5).

Observe also that the index of a Dirac operator associated to the spin®
structure o is

(2 —7) = 3@3— 1 4b5) = d(o) + 2.

=

(2.3.15) indg @, =

The local structure of the parameterized moduli space 9, at C = (s,C),
C e M,(g,n(s)) is again described by the deformation complex (2.3.3)

~ £ ~ SW
(Ke): 011G, =5 TeCr 25y, — 0.

Arguing exactly as in §2.3.2 we can slightly perturb the path n(s) (keeping
its endpoints fixed) such that for every C € 9, (n(s)) the second cohomology
group of this complex vanishes, that is,

(2.3.16) H*(Kg) =0, YC € M, (g,7(s)).

The perturbation of 7(s) (which we will continue to call n(s) can be chosen so
that it crosses the wall W, at a single point as well. Suppose for simplicity
that this happens at s = 0. Since the path n(s) goes from the negative
chamber to the positive chamber we deduce

(2.3.17) %]520 (n(s),wq) > 0.

At this point it is wise to break the flow of the argument to point out a
significant fact. The above condition H? = 0 is equivalent to

coker ’]E “f coker (SW & £e) = Ho(lzé)

where 7 is defined as in (2.3.6) with g(s) independent of s, more precisely

) $ Pavh+ sc(ia)y
Too: | ¥ | = | dHia—3q(@,4)
ia —2id*a — iIm (1, )
0
(2.3.18) +5 | i l=o)nT (s +1)
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At a configuration (s,C) with C reducible, C = (0, A) this has the form

' 0
. 8 D At
T(s.0) ° O | = | dtia | 48| H(G o)t (s +1)
ia —2id*a
0

We see that H?(K(0,4)) = 0 if and only if P 4 is surjective and the har-
monic part of (% li=o 7T (s +t)) is a nonzero multiple of the generator
wgy of H2 (M, g). This contrasts with the similar, unparametrized situation
described in Exercise 2.2.5 of §2.2.2. That exercise shows that when b; =1
no reducible can be regular. However the reducibles can be regular in the
parameterized moduli space!!! Observe that (2.3.17) can be improved to

d
(2.3.19) I ls=0 (n(s),wy) > 0.

S
If (5,C) € M, and s # 0 then C is a (g,7n(s))-monopole and, since 7(s) €
N g, it must be irreducible. This implies the 0-th cohomology of the com-
plex k(sﬁ) is trivial and thus (s, C) is a smooth point of the parameterized
moduli space.

The configurations (0,C) € M, arising when the wall is crossed require
special considerations. If C is irreducible then, again, (0, C) is a smooth point
of the parameterized space. If C is reducible then using the Kuranishi local
description as in Proposition 2.2.16 of §2.2.2 we deduce that a neighborhood
of (0,C) in M, is homeomorphic to the quotient B /SY, where B is a small

ball centered at the origin of H 1(IC(07C)) and S! is the stabilizer of C. The

“cobordism” 9M, has singularities, one for each reducible (0, C). Figure 2.3
illustrates such a singular cobordism.

To proceed further we need to know some more about the structure of
the singularities of the “cobordism” M,. Observe first that there exists a
unique reducible point (0,C) = (0; (0, 4)) € M,. Indeed C = (0,4) is a
(9,m(0))-monopole iff

(2.3.20) Fi+in(0)" =o0.

Since M is simply connected the group G, is connected and thus every
v € G, can be written as exp(if), f : M — R. This means that, up to gauge
equivalence, there exists a unique connection Ag such that Fiu, = —2mi[c,],.
Arguing as in the proof of Proposition 2.2.17 of §2.2.3 we deduce that any
connection satisfying (2.3.20) has the form

A:Ao—ia
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Reducible The link

near a reducible

>

Figure 2.3. A singular cobordism

where « is any 1-form such that 7(0) = [(0)]; + do. Again, since M is
simply connected A is uniquely determined up to a gauge transformation.

The singularity of 9, at the unique reducible point (0,C) = (0; (0, A))
is now easy to describe. Observe first that

Hl(lz(o’c)) = ker ’ZN'(OQ =V :=kerP,.

It is a complex vector space of dimension
2.3.15) 1
inde@, “&? 5d(0) + 1.
The stabilizer S' C C acts on this complex vector space tautologically, by
complex multiplication. If B is a small ball in V' centered at the origin then

B/S! is a cone on the projective space CPU?)/2 where CP° = {pt.}. The
boundary L of B/S' is called the link of the singularity (see Figure 2.3).

Denote by X the manifold 9, with a small neighborhood N of
the reducible point removed, X = M, \ B/S'. The orientation on
(H'@® H%)(M) = H2 (M) induces an orientation on X. As in the previous
subsection, the induced orientation on the boundary component 9, (g, n+1)
of X is 4+ the orientation as a moduli space. Understanding the induced
orientation on the link 90X is a considerably more delicate issue. We have
to distinguish two cases.

e d(o) > 0. Let us first point out the source of complications when un-
raveling the orientation of the link. Denote by (0,Cp) the unique reducible
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point along the cobordism. As we have already indicated ker 7~'(07C0) is a
complex space of dimension d(0)/2 4+ 1 and the cokernel is the oriented
one-dimensional space H°(M, g). Thus

E() = det ,jEO,Co)

is naturally oriented. We will refer to this orientation as the tautological
orientation. On the other hand, this line is a fiber of the line bundle

{L(S,C) := det ’jﬂ(svc); (s,C) € iﬁto}

and, as indicated in the previous subsection, this line bundle is equipped
with a natural orientation, induced by an orientation on (H' & HZ)(M).
In turn, this induces an orientation on Ly which we will call the Seiberg-
Witten orientation. We will denote by Lo the line bundle equipped with the
tautological orientation and by L£{* the line bundle Ly equipped with the
Seiberg-Witten orientation. These two orientations differ by a sign e € {£1}.

Similarly, the neighborhood N =2 B/S! of (0,Cp) has two orientations:
the Seiberg- Witten orientation, O4,, as a subset of the moduli space, and the
tautological orientation, @, as a quotient of a complex vector space modulo
the action of S. (To orient such quotients we use the fiber-first conven-
tion: orientation of total space = orientation orbit A orientation quotient.)
These two orientations differ exactly by the same sign e.

Observe that the induced orientation on L = 9(N, (5) is precisely the
opposite orientation of CPU9)/2 a5 a complex manifold. (This follows after
a little soul-searching using the fiber-first and outer normal-first orienta-
tion conventions.) Thus, the orientation of L as a boundary component of
(X, O4p) is ex { the canonical orientation on CP¥“)/2}. To compute € we
have to recall in detail the constructions of £§" and ﬁo.

e Constructing £§”. Consider the one-parameter family of Fredholm op-
erators

T ROT(SFaTM) - T(S; @ A2 @ A°T*M), 7€[0,1]

given by
_ 0
5 D A,
(2.3.21) P | - dta +75 | 7t
a —2d*a
0

where 7 := dils |s=0 m(s), and Cy = (0, Ap). Notice that, up to an obvious
factor of i, we have 71 = ’ZN’(O,CO).

To obtain the Seiberg-Witten orientation on £y we proceed as follows.
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1. Orient ker 70 = ker® 4, and coker 70 = ker@%, & (H3 & H)(M, g)
to obtain an orientation on det 7". The spinor components are canonically
oriented as complex vector spaces while H%r ®H?Y is oriented by the ordered
basis 1 A w, € det(H & HO).
2. Transport the above orientation along the path 77 to obtain the Seiberg-
Witten orientation on £ = det 7.

The orientation transport at Step 2 above is performed concretely as in
Example 1.5.11 in §1.5.1. To begin with, observe the following fact.

ker7° =R @ ker® 4, ker 77 = ker® 4, V7€ (0,1]

(the component R corresponds to $) and

coker 7° = ker@%, & H*(M) & H(M),

coker 77 = ker@% @ H(M), Vr € (0,1].
Since the components ker® 4, and ker®’ are even-dimensional, oriented
and stay unchanged along the deformation, they have no effect on the ori-
entation transport so we can neglect them. To simplify the presentation we
redefine 77 to denote the operator

TR QY(M) — Q2 (M) @ QO (M), (5,4) — (dTa+TsnT, —2d%a).
With this new convention we have
ker 79 =R, ker77 = {0}, 7€ (0,1],
coker 7° = H2 (M) @ H(M), coker7”™ = H*(M), 7€ (0,1].
We can now perform the orientation transport.

2a. Choose an oriented stabilizer V for the family 77. In this case V =
H° ® H? , with orientation 1 A wg, will do the trick.

2b. Determine the compatible orientation on ker 7"9 by describing an or-
dered basis. We follow the prescriptions in §1.5.1. In the notations of that
section we have

Vo =cokerT° =H @ H2 =V
and V —the orthogonal complement of Vy in V— is trivial. We have a
natural isomorphism

ker 79 = ker 0, v+ (v,0).
More precisely, the one-dimensional space ker 70 is oriented by the vector
up = (1,0) c R Q!
so that the one-dimensional space ker ’j"% is oriented by the vector

g = (1,0,0,0) e R® Q'(M) o H’ © HY.
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2c. We now parallel transport the orientation on ker ’]~}9 to an orientation
on det 7;}. Observe that

7 R QY(M)oV — Q2 (M) @ Q°(M)
is given by
(3,a,v,uwy) — (dTa+ 7801 + uwg, v).
To determine the kernel of ’j"} observe that the harmonic part of n* is a
scalar multiple of wy:
[ﬁﬂg = [g.
According to (2.3.19) we have p > 0. Denote by @ the unique 1-form such
that

(2.3.22) dtag=—(nt —[n"],), d*a=0.
We can now describe
L. :=ker Ty = {(3,75a0,0,uw,) € R® QU (M) e H* ® H% ; s +u = 0}.

The orthogonal projections of these lines to the plane R & Hi can be visu-
alized as a family of lines in the plane (u, $) described by the equations

Tus +u =20

as in Figure 2.4. The line L,—g projects to the horizontal axis and the
projection of the vector 4y induces the canonical positive orientation. The
projection of the line L,—; has negative slope —u and the parallel transport
equips it with the “downhill” orientation.

e Constructing Lo. Recall that Lo is the line det 7 equipped with the nat-
ural orientation induced by the canonical orientations on ker 7' = ker® Ao
and coker 7! = ker®%, & HY(M). To compare it with £§* we need to
describe the canonical orientation in terms of the stabilizer V' used above.
Again we can neglect the spinor components in the definition of 7' and we
will think of 7! as an operator

T R QY(M) — QL (M) @ Q°(M).

We use the notation and orientation construction in §1.5.1. In this case
Vp := coker 7' = HO and its orthogonal complement in V = H° @ H%r is
V = H?(M). We see that the orientation on V compatible with 1 A w,
determined by the split exact sequence

is the orientation defined by the basis w,. Denote by
Ry, : Q2(M) @ Q°(M) — (ker Tj )t c R QY(M) & H°
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Figure 2.4. Orientation transport

the canonical right inverse of the surjective operator T‘}O The compatible
orientation on ker ’j"} is determined from the split exact sequence
0— ker'ZN"}o — T} — (V/Vo) =V —0.
More explicitly, it is given by the basis
(0®0®0) Dwy — Ryy(wy) @0 € (R QY(M) o H?) @ HA.
To determine Ry,w, observe that
Ty Ro QY(M) @ H® — Q% (M) & Q°(M)
is given by
(5,a,v) — (da+ s0", —2d*a +v).

A simple computation shows that
11
RVOWQ = (;a ECLO)O) ER® QI(M) @ HO

where g is defined by (2.3.22). Thus, the oriented basis of ker 7;} is

1 1
V= (_;7_;&“0707(‘}9) € R@QI(M) @HO @Hi

By looking again at the projection onto the plane R & H%r we see that the
canonical orientation of L,—1, defined by the above vector, is the opposite
of the Seiberg-Witten orientation discussed before. (The projection of v is
the “uphill” vector in Figure 2.4.) This shows ¢ = —1.
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Using Stokes’ theorem we deduce

0— / d0d@)/2 _ / Q)2
X 0X

_/ Q(le(a)/Q_/ chl(a)/2+6/ QZ(U)/Q
Mo (g:m) M (91-1) Cpie)/2

= SWyr (Ua 9, 771) - SWM(Ua g, 770) + <le_(0’)/2, (de(o—)/2>'
To compute the last integral observe that the restriction of U, to the link
L is the tautological line bundle over CP?)/2. We conclude that

+ d(0)/2.

swy (o) —swy (o) =swu(o,9,m) —swu(o,g,m0) = (1)

e d(0) = 0. We make the simplifying assumption that ny; are very close to
the wall so that we have the approximation

(2.3.23) I(s) = (1(0) + s1) k2 < s?[17(0)

The above inequality is a very fancy way of saying that, modulo negligible
errors, we can assume the path 7(s) is affine, very very short and crosses
the wall transversely only once, at s = 0, coming from the negative chamber
and going to the positive one.

k2, Vs € [—1,1].

In this case, the singular cobordism M, is a finite union of smooth
oriented arcs in B,

pj:[—1,1] = [=1,1] X By, t+— (sj(t),C;(¢)) j=0,1,---,n,

where

Cj(t) € Mo (g,m(s;(1)))-
Again there is a unique reducible point (0,Cy) and a neighborhood N is
homeomorphic to C/S! (see Figure 2.5).

Suppose that the path is pg so that pp(1) = Cy. As in the previous
subsection we set

e;-—L =€(Cj(£1)), j=1,...,n,

and
€0 = €(Co(—1)).
We have

n

sw(o,9,m) —swy(o,g,m—1) = Z(sﬂ—l)e} + sj(l)ej) + s0(—1)eo.
j=1

The arguments in the previous subsection show that the first sum, corre-
sponding to the smooth part of the cobordism, is zero. We claim that

(2.3.24) coso(—1) = 1.
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Figure 2.5. A singular one-dimensional cobordism

The proof of this equality requires a refined perturbation analysis. Suppose
s0(—1) = —1 (the case sp(—1) = 1 is analyzed in a similar fashion).Since

(so(t),Co(t)) — (0,Cp) as t — 1
then, modulo gauge transformations, we can write
(so(1 = h), Co(1 = h)) = (0,Co) + h(3, Co) + h*(8, Co) + O(h?)
= (0, Co) + (s, 9, 1a) + h*(3, ¢, id) + O(h®)
where Cy, Cy are vectors in the local slice at Cy and §, § are scalars. More-

over, we can assume (§, CO) # 0. Differentiating twice with the respect to h
(at h = 0) the equality

SW(s(1-r))(Co(L = h)) =0
we deduce

(2.3.25) D, =0, idta+ syt =0,

w1 : e e iy . 1 . .
(2.3.26) D 4,0 + §C(ia)¢ =0, idta+is" + 532-77(0)+ - 5‘1(% P) =0
Since Cy and Cy belong to the local slice at Cy we deduce
(2.3.27) d*a = d*i = 0.
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Recall that @ 4 has index 1 and is onto. w is a vector in its one-dimensional
kernel. On the other hand, since [1)]" # 0 the second equality in (2.3.25) is
possible iff $ = 0 and @ = 0. (In drawing this conclusion we have used the
fact that a is co-closed and b1 (M) = 0.) Thus ¢ must be a nontrivial vector
in ker® 4,. The equalities in (2.3.26) further simplify to

(2.3.28) Dy, =0, c(idti+is7T(0)) - %q(% ) =0.

In particular, taking the inner product with c(iwy) we deduce

(V) 45 = /M< c(iwg) , q(1), ) Ydvg = / <C(iw)¢,¢>dvg

M

where we recall that the positive number 1 was determined by the equality
[(0)]F = pew,.

Observe that since we assumed the wall crossing takes place coming
from the negative chamber and going towards the positive one, and since
the oriented path so(t) ends at the reducible we conclude so(t) < 0 for ¢ < 1.
This implies § < 0. Using this in the last equality we conclude

/ (e(iw)dh, 9 )dvy < 0
M

since p > 0.

At this point we need the following generic nondegeneracy result whose
proof will be given later on.

Lemma 2.3.10. In the very beginning we could have chosen the path n(s)
so that besides the conditions (2.3.16), n(0) € Wy g, (2.5.19) and (2.3.23) it
also satisfies

(2.3.29) /M(c(iwg)¢,¢>dvg <0
where (s = 0;1p = 0, Ag) is the unique reducible on My(n(s)) and 3 €
ker® 4, \ {0}
From the lemma we deduce
(2.3.30) —1=s9(—1) = signé.
Now consider the path of configurations
C(t) = Co(—t), te[-1,1].
Denote by 7; the linearization of SW . (—y)) at C(2), i.e.
Tt = SWy 1 (50(-0) © e
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The explicit form of 7; is
Day + ze(ia)y

hSS

Ty : | ddTa - 3d(, )
—9id*a — iIm (1, )
where ¢ € T'(S¥), a € T(A'T*M) and
Ct) = (¥, A4) = (¥(t), A1) := (¥ (s0(—1)), A(so(-1)))-

Observe that with the above notation

Co= Ll v, Co= Ly c
0 — dt t=—1 ) 0 — dt2 t=—1
so that
b= Ll b, a= L A) =0
T t=—1 y 1a 1= dt t=—1 =U.
We set
P
C=
ia
and we define p
7C:= 7 li—1 T:C.

Observe that

—iIm(¥, ¥)

Let us now point out several things.

e The assumption that ny; are very close to the wall so that (2.3.23) holds
implies that the zero index operators 7; are actually nondegenerate (i.e.
invertible) for ¢ # —1.

e According to Remark 2.3.2 the sign ¢ is exactly the parallel transport
(N, Ty, T-1).
Using the above remarks and (1.5.9) of §1.5.1 we now deduce that
€0 = (—1)%ign R

where d = dimg ker 7_1 and if we denote by P the orthogonal projection
onto coker 7_1 then

R:kerT_; — cokerT_q, C+— PT le=—1 C.
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Recall that sign (R) = £1 depending on whether R preserves/reverses ori-
entations.

Now observe that ker 7_; = ker® 4, and an oriented real basis is given
by e; := ¥, ey 1= 1¢ Moreover, coker 7_1 = HY ® Hi and an oriented basis
is given by fo =1i-1, fo 1= iw,.

Using (v') we deduce

Rey = —5piw,
and
Rey = —i0m(4), i) = il|]*.
Since § < 0 we deduce sign (R) = —1. On the other hand, d = 2 so that

eo = 1. Using the equality so(—1) = —1 we reach the desired conclusion
that epso(—1) = 1.

We can now formulate the main result of this section.
Theorem 2.3.11. (Wall crossing formula) Suppose M is a compact,

oriented smooth 4-manifold such that by = 0 and b; = 1. Then for every
o € Spin(M) such that d(o) € 27 we have

+ (—1)do)/2,

swy, (o) —swy,(0) =

Sketch of proof of Lemma 2.3.10 We will use the Sard-Smale theorem.
Consider the smooth map

PG — 1R x B P ) = (a0 [ (el v, ).
M
Now set
Z=F"0,-1).
Arguing as in §2.2.3 we deduce that for all (¢, A) € Z the differential
Dy F : Ty aCEY — To 1) L*2(S;) x R

is onto, so that Z is a smooth manifold. Denote by 7 the natural projection
CHH1 — AF+L Tts restriction

T Z — AR

is Fredholm and has the same real index as the map

LFH12(S) 3 4h v (D 40, /M<c(iwg)¢, P)dv,) € LP4(Sy) x R.

The above map has real index 1. Thus by Sard-Smale for “most” A € A,
the map 7 is a Fredholm submersion along the fiber W4 = 771(4) N Z.
In particular, this shows that the fiber ¥4 is a smooth one-dimensional
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manifold. If (i), A) € ¥4 then dimc®P 4 = indeP 4 = 1 so that P 4 is onto.
Moreover, ¥ 4 can be identified with the circle

{verans: [ (el vt = -1},

Now pick (¢, A) as above and let 19 € W, be defined by F{ +ing = 0.
We will find the path 7(s) by looking amongst the paths

n=mn(s): (=&,¢) = Nog,
at least C? in s, such that
n(s) GNfg if +£s5>0,

n(0) = no
and

/ 0) Awy > &
M

where § is a fixed small positive constant. The path is detected using the
Sard-Smale theorem, where as space of parameters we take the space of
paths n(s) with the properties listed above. B

Remark 2.3.12. There is a wall crossing formula in the case b1 (M) > 0 as
well. However, both the formulation and its proof are much more involved.
For more details we refer to [23, 76, 112, 119].

2.3.4. Some examples. We interrupt in this subsection the flow of general
theoretical results to illustrate on two simple but revealing examples the
power and the limitations of the wall crossing formula. The importance of
these examples is not just purely academic.

Example 2.3.13. (Seiberg-Witten invariants of CP?) The complex
projective plane CP? is a complex manifold, so that its tangent bundle is
naturally equipped with an integrable almost complex structure. In par-
ticular, this canonically defines a spin® structure oy whose associated line
bundle det(og) is isomorphic to K~! = K* — the dual of the canonical line
bundle of CP?. Any other spin® structure o on CP? has the form
oc=09® L

where L is a complex line bundle. Moreover

det(o) =2L — K
where we use additive notation for the tensor product operation on line
bundles and where —K := K~! = K*. In this case

Pic™(CP?) = H?(CP?,Z) = 7
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so that Spin®(CP?) is a Z-torsor. To determine the chamber structure we
need to understand the cohomology class ¢;(K). Since we will need it later
and it requires no additional effort, we will solve this problem for all projec-
tive spaces CP". We will follow the approach in [17].

We will freely use Poincaré duality to identify

H?*(CP™,Z) = Ha, »(CP", 7).
The positive generator of H2(CP",Z) is represented by the homology class
carried by a hyperplane in CP" and we will denote it by H. Denote by 7 the
tautological line bundle over CP". Since any hyperplane can be represented
as the zero set of a holomorphic section of 7* we deduce

c(r)=—H.

To follow the tradition of algebraic geometry we will denote 7* by H when
no confusion is possible. (This amounts to identifying 7* with ¢} (1*) =
H.) Observe that we have the following exact sequence of complex vector
bundles:

(2.3.31) 0— C— H®") _ TCP" — 0.
To see this, consider the exact Fuler sequence
(2.3.32) 0—-717—-C"" - Q:=C""/r -0

The tangent space to CP™ at ¢ € CP" consists of infinitesimal deformations
of the line ¢ C C™"*!, which can be described as linear maps ¢ — C"*1//.
Thus
TCP" =2 Hom(7,Q) = 7" ®Q = H® Q.
Thus, by tensoring (2.3.32) with H we obtain (2.3.31). This implies
c(HOHDY = ¢,(C)ey(TCP™) = ¢ (TCP")

where ¢;(E) denotes the Chern polynomial 14 ¢y (E)t+co(E)t?+---. Hence

(2.3.33) ct(TCP™) = (¢, (H))"™ = (1 + Ht)" ™, H"! = 0.
Hence
(2.3.34) c1(K) = c1(—detcTCP") = —c1 (TCP") = —(n + 1)H.

In particular, we deduce
1 1
d(o0) = (c(00)” = (2x +37) = 19— (64 3)) = 0.

Now consider CP? with the Fubini-Study metric go. This metric has positive
scalar curvature and moreover, up to a positive constant, the symplectic form
wp associated to the Kihler structure on CP? is harmonic and carries the
cohomology class of H.
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Thus
Woogo ={n € Noo 5 /CIPQ(n —2mc(0p)) Awp = 0}

and since ¢(og) = —K = 3H we deduce
szio,go = {n € N, i/c 277/\w0 > +67}.
P

In particular n = 0 belongs to the negative chamber. Since gy has positive
scalar curvature the (go,7 = 0) monopoles must be reducible and since
n = 0 belongs to the negative chamber there are no such monopoles. Hence
My, (g0,m1 = 0) = () so that
sw_(og) = sw(oo, 90,7 =0) =0.
Using the wall crossing formula we deduce
sw (0p) = 1.

If L,, denotes the line bundle with ¢;(L,) = nH (n € Z) and 0, = 09 ® L,
then
c(on) = c(detoy,) = (2n+ 3)H
and
d(o,) =n? + 3n € 2Z.
We have to exclude the cases n = —1,—2 which lead to negative virtual
dimensions and thus to trivial invariants.

Next observe that
Wongo = {n € Noys / nAH = 2(2n+3)7r/ H/\H}
cp? M
Thus
—0e o, i n>-—1
= NF it n< -1
Arguing as before we deduce

o) 0 if n<-1
swy (o) = (_l)n(n+1)/2 if n>-—1

Example 2.3.14. (Seiberg-Witten invariants of (CIP’2#I<:@2) The smooth
manifold

M = CP?#kCP"
is a smooth realization of the algebraic construction known as the blow-up

at k points (see the next chapter). It is simply connected and by = k4 1. If
we denote by H the generator of Hy(CP?,Z) = H?(CP?,Z) and by E; the

generator of Hy of the i-th copy of TP’ in M then the collection
{HE i = 1k}
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Figure 2.6. The cone of vectors of nonnegative self-intersection in H?*(M,R)

is a Z-basis of H%(M,Z). Observe that
H-H=1, H---E;=0, E;-Ej = —6;

so that the intersection form has signature (1,%). The intersection form
defines a cone C' in H?(M,R) consisting of real cohomology classes of non-
negative self-intersection. The space C'\ {0} has two connected components.
An orientation on H _% (M, R) is equivalent to declaring one of the components
as the positive cone, Cy. In this case we denote by Cy the connected
components containing the class H.

A metric g on M produces two things on H?(M,R). First, it equips
it with a Euclidean metric via the isomorphism with H?(M, g). Second, it
selects a linear subspace H? (M, g) C H*(M, g). The form w, is defined as
the unique vector of length 1 in H2 (M) N C; (see Figure 2.6).

In contrast to CP?, there is no natural, unique way of defining a metric
on M but there are a few metric choices which we would like to discuss
because of their future relevance.

e The 1st choice. Think of CP? and each copy of TP as equipped with
the Fubini-Study metric. Now delete a small ball from each copy of CP” and
k small balls from CP? and connect the resulting holed manifolds by short,
thin tubes (see Figure 2.7, k = 2). As explained in [50], this construction
leads to a metric g of positive scalar curvature.

Denote by w; the unique self-dual harmonic form of length 1 in Cy. If
we let the sizes of the connecting necks go to zero then in the limit w; will
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converge to self-dual harmonic forms on the summands of M. Since CP
does not support such forms we see that the part of w; on the summands

@2 is very small. Hence we can approximate w; with the restriction to
H on CP? which is the symplectic form supported on CP? induced by the
Fubini-Study metric. Hence in cohomology we have

(2.3.35) wi ~ H.

The manifold M is equipped with a complex structure (which is by
no means compatible with the above metric). Again this defines a spin®
structure o¢ with det(og) = —Kjs, where again —Kj; denotes the dual of
the canonical line bundle on M. One can show that (see Exercise 3.1.1)

Ky =-3H+> E;
i
Since xpr =3k +3, iy =1 —k and Ky - Kpy =9 — k we deduce
d(O'()) =0.
Using (2.3.35) we deduce

/ c(oo) Awy ~ (3H — Y E;)-H=3>0
M i

which shows that n = 0 € N, ;.
deduce

(2.3.36) sw_(0g) =0, swi(op) =0.

Arguing as in the previous example we

e 2nd choice ([71]). Let us assume k is a perfect square k = d* and d > 3.
Consider first a smooth embedded curve

¥ — CP?
such that [¥] = dH in Hy(CP? Z). Hence
Y-Y=d®=k.

Now blow-up CP? in k points. The surface ¥ sits in M. Each of the
homology classes —F; is represented by an embedded 2-sphere which we
continue to denote by —F;. Denote by ¥ the surface obtained by connecting
> with each of the —FE; by very thin tubes carrying no homology so that in
Hy(M,7Z) we have the equality

X]=dH - ) E;.

In particular we deduce

».-N =0
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Figure 2.7. CP2#2@2

so there exists a small tubular neighborhood U of > < M diffeomorphic to
D? x ¥ where D? denotes the unit disk in R?. Hence

N:=0U =S x 3.

Now choose a metric g, on M (L > 1) so that a tubular neighborhood of
N — M is isometric with

[~L,L) x S* x (%, h)

where h is a constant curvature metric on . Denote by wy the unique
gr-harmonic self-dual form in C such that

wL-H—/ wiANH=1.
M

Observe that
lwrllp2(g,) < 1.

Indeed, if we pick an orthonormal basis wg,w1, -+ ,w, with wg self-dual, of
norm 1 and in C; then

wr, = rowo, H = howy + Zhiwi, xo, ho, h; € R.
i
Then
wy, - H = x()ho =1
so that ||wg|| = 2o = 1/ho. On the other hand, 1 = H - H = h3 — ", h? so
that ho > 1.
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Figure 2.8. Stretching the neck

We want to figure out the sign of

e(L) := / wr, A ¢(o)
M
for L — oo. First observe that

c(og) =3H - E;=%-(d-3)H.

The hypersurface N divides M into two parts My as in Figure 2.8 where
M_ is the part containing the surface 3 (hence M_ 2 U). Denote by w4 (L)
the restriction of wy, to My. As L — oo, since [lwr|lf2(,) < 1, the form
w_ (L) converges to a L?-harmonic, self-dual form w_(co) on M, with a half-
infinite cylinder attached. According to the results of [6] (see also Section
4.1), the cohomology class carried by w_(o0) belongs to the image of the
morphism
H?*(U,0U;R) — H*(U,R).

This image is trivial since H?(U, OU;R) = R is generated by the Thom class
of the trivial line bundle C x ¥ — 3. In particular, wy (c0) = 0 and

LILH;OWL 2] = /iw_(oo) = 0.

We conclude that

Llirgoc(ao)wL = Lh—{rolo([z] cwr, — (d—=3)H -wp) = —(d—3) <0.
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Hence, for large L, the trivial closed 2-form lives in the positive chamber
Noy.q, because
1
(0 — ——wr, 2mc(0p)) > 0.
lwz |
Since sw (0g) # 0 the above conclusion implies that for all large L there
exist (g, 0)-monopoles.

2.4. Applications

The theory developed so far is powerful enough to produce nontrivial topo-
logical and geometric applications. The goal of this section is to present
some of them. More precisely we will present Kronheimer and Mrowka’s
proof of the Thom conjecture [71] for the projective plane and a proof of
Donaldson’s Theorem A on smooth, negative definite 4-manifolds [28, 29].
Because of its relevance in this section and later on as well, we have also
included a separate technical subsection describing a few properties of the
Seiberg-Witten equations on cylinders.

2.4.1. The Seiberg-Witten equations on cylinders. Suppose (V,g)
is a compact, oriented, Riemannian 3-manifold. We want to describe a
few particular features of the Seiberg-Witten equations on the 4-manifold

N = la,b] x N equipped with the product metric.

Some conventions are in order for this subsection. We will denote by
t the longitudinal coordinate on N and we will identify N with the slice
{b} x N of the cylinder N. To distinguish objects of similar nature on N
and N we will use a hat “"” to denote the objects on the 4-manifold. Thus
d will denote the exterior derivative on N while

d=dtNd +d

will denote the exterior derivative on N. The metric on N will be denoted by
g and the corresponding Hodge operator by %. Denote by _; the contraction
by the tangent vector 0.

Any differential form w on N can be uniquely written as
w=dtANf+a, f:=_hw, a:=w—dtAf.
Above, f and a are paths of forms on N. Observe that

(2.4.1) d(dt A fO+a') = dt A (o' — df°) + da'
and
(2.4.2) fw? = %(dt A f +a?) = dt Axa® + oS!

where the dot stands for t-differentiation. Then

d(dt A fO 4 a) = é(m 2d)(dt A 10+ ab)
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1 1
= Sdt A (a* — df° + xda') + 5" (a* — df’ + da')
and
d*(dt A fO+a') = —xdi(dt A fO 4 ab) = —(f° — d*at).
Fix a spin® structure on N. It induces by pullback a spin® structure & on
N with associated bundle of complex spinors

S, = wb
Denote by ¢ the Clifford multiplication on S,. We set .J := ¢&(dt) : S} — S

Observe that J produces an isomorphism between the restrictions of Sff to
N. We set

Se = Sj‘Ng S;‘N .
The bundle S, is equipped with a Clifford structure given by the Clifford
multiplication
c(a) = Je(a) : ST |n— SF | .
S, is precisely the bundle of complex spinors associated to the spin® struc-
ture on the odd-dimensional manifold V.

For any 2-form & on N we have (@ — *xa) = 0 on Sj so that, using
(2.4.2), we deduce

(2.4.3) cla) = c(xa), Ya € QY(N)
and
(2.4.4) c(dv(g)) = —1.

Set det(o) = det S, = det(d) |y and fix a smooth Hermitian connection
Ap on det(o). It induces by pullback a Hermitian connection on det(é) which
we denote by Ap. A Hermitian connection A on det(5) is called temporal if

Jt(A — AO) = 0,

that is,
A= Ay +ia(t)

where a(t) is a path of 1-forms on N. We set A(t) = Ag + ia(t) so that A
can be regarded as a path of Hermitian connections on det(o). Using the
identities (2.4.1) and (2.4.2) we deduce

(2.4.5) FA =idt Na+ FA(t)
and

(2.4.6) 27 = dt A (16 + +F ) + *(a+ «Fap)-
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Lemma 2.4.1. If A is a smooth Hermitian connection on det (o) then there
exists a smooth map

f N >R
such that the connection exp(if) A=A —2idf is temporal.
Proof We write
A=Ay +idt A g(t) +1ia(t)
where g(t) @ a(t) is a path of sections of (A° @ AY)T*N. Any function
f: N — R can be viewed as a path f(t) of O-forms on N. The condition

Ji(exp(if)(A = Ag)) =0
is equivalent to
i(g(t) - 2/(t) =
We can define

t
ft,x) = /g(s,x)ds, Vt € [a,b], x€ N. B

1
2

Suppose now that C = (1&,/1) is a g-monopole on N. Modulo a 55,—
change we can assume A is temporal so we can identify it with a path A(t)

of connections on det(s). The spinor 9 can be viewed as a path ¥(t) of
sections in S,. The connection V4 induced by A on S; has the form

VA = dt ® 8, + VA®

where VA® is the connection induced by A(t) on Sg|n= So & Sg. If () is
a local orthonormal frame on N and (e!) denotes is dual coframe then we
have

\@>

é(dt)o, + Z Hva® = <at = c(ei)vg‘}ﬂ)
= J (9 = Daw)
where D 4(;) denotes the geometric Dirac operator induced by the connection

A(t). Using the above identity, (2.4.3) and (2.4.6) we deduce that C =
(1(t), A(t) = Ap +ia(t)) satisfies the “evolution” equations

L = DynY(t)
(2.4.7)

ia = 3¢ (q(t)) — *Faq
To proceed further we imitate the four-dimensional situation and consider

Cy = D(Sy) X Ao
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where A, denotes the affine space of Hermitian connections on det(o). Now
define
Er:Chr — R,
by
1 1
(248) ga(wv A) = 5 / (A - AO) A (FA + FAO) + 5 / %d@Awa ¢>dv9
N N

We claim that the gradient of this functional (with respect to the L2-metric
on C,) is given by precisely the right-hand side of (2.4.7).

The proof of this claim relies on the following technical result.
Exercise 2.4.1. Prove that for any real 1-form o on N we have
20a(@)? = 2|+ a(@)? = |e(a(@))[? = —tr (c(a(2))?), Va € N.

(Note the factor of 2 and compare to the analogous identity in Lemma
2.1.5 in §2.1.1 concerning self-dual forms.)

To verify this claim set ia := A — Ay € iQ'(N) (so that D4 = D, +
Le(ia)) and write £,(v, a) instead of &, (1), A). We have

3
d . N
%|t:0 E;(p 4+ tah, a4 ta) = 5/

1
ia A (ida + 2F4,) + 5/ ia A dia
N

N

1

. /N (5 (eliays, v) + 2Re (D 40, ) do

(use Stokes’ theorem in the second integral)

1 1
:—/iéL/\(ida+2FA0)+—/i(z/\ida
2 )N 2 /N

i /N Re(D s, )y + /N (c(ia), )dv,
(use (c(ia)y,y) = Retr (c(ia)q(¥)) := (q(¥), c(ia))
— [aanFa+ [ mel@av i+ [ telia)aw)de
N N 4 Jn ’

:—/N<ia, *FA)dvg—l—/]V%e(@Azﬂ,lﬁ)dvg—i—%/N@(id),q(w»dvg

(* denotes the complex linear Hodge operator, and we use Exercise 2.4.1 in
the last integral above)

AU ;
= [t ge o)~ #Faddey + [ Rel@av,d)d,

The functional &, is not G, = Map (N, S')-invariant. In fact Vy € G,
and C € C, we have

Ea(v-C)ZEU(C)—/Nd%A(FAJrFAo)
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1 dy i
&, Q) —4n? | — N L (FatF
&-(Q) F[\42Wi7A2F(A+ 'Ao)

(2.4.9) — £,(C) — 82 /N degy A e1(det (o)

where degy € H'(N, Z) is the cohomology class ’y*(%d@). In particular, we
deduce that &, is Gy-invariant if and only if ¢;(det o) is a torsion class.

Definition 2.4.2. The critical points of the functional &, are called g-
monopoles on N corresponding to the spin€ structure o.

Remark 2.4.3. We want to point out a curious and somewhat confusing
fact. More precisely, observe that the energy functional &, is orientation
sensitive. By changing the orientation of N respecting the normalization
(2.4.4) the energy function changes to —&,.

 Inspired by the results in §2.1.1 we define the energy of a configuration
C=(y,A) on N by

B(Q) = [ (9497 + S0 + §lath) + Faf)av(a)

where § denotes the scalar curvature of . If A is temporal, A = A(t) =
Ap +ia(t) then using (2.4.5) and the identity |q(¢)|> = 3|1|* we deduce

A~ A b .
B, A) = / di /N (92 + af?)dv(g)

b S
+ [ ATAOROR + S0 + o1+ Fao ot

where s denotes the scalar curvature of g. (Observe that on the cylinder N
we have s = §.)

Lemma 2.4.4. (Main energy identity) Suppose C = (¢, A) is a mono-
pole on N such that A is temporal, A = A(t) = Ao + ia(t). Then

[t [ (w0 + o) at

b
_ A2 1 S22 2l 2
[t [ (9AO00 + S0P + Fglolt+ 1 Fa ) ot

1 . .
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Proof For brevity, we will write A instead of A(t) and 1 instead of 1 (t).
Using the first equation in (2.4.7) we deduce

[ titavte) = [ @avkan

(use the Weitzenbock formula for © 4 and integration by parts )

= [ (1940 + S0P + 5ol e(Fayin ) ) do).

Using the second equation in (2.4.7) and Exercise 2.4.1 we deduce

2 [ JaPautg) = [ let@)Pavio) = [ 15at0) - e(Fn)Pinto)

— / ( %qw)l? + |e(F) 2 — Re( q(1p), e(Fy)) )dv(g)
N

(use Exercise 2.4.1 again )

= /N( éw +2|Fal* — (e(Fa),v) )dv(g)-

The energy identity is now obvious. H

Remark 2.4.5. We want to point out a nice feature of the main energy
identity. Its right-hand side is manifesly gauge independent while the left-
hand side is apparently gauge dependent since the configuration (1&, A) was
chosen so that A is temporal.

The functional &, has nice variational properties, reminiscent of the
Palais-Smale condition.

Proposition 2.4.6. Suppose C,, = (¢, Ay,) is a sequence of smooth config-
urations such that

(2.4.10) |n]lec = O(1), as n — oo
and
(2.4.11) IVE(Cpn)llr2 = o(1), as n — oo.

Then there exists a sequence v, € G, such that -y, - C,, converges in any
Sobolev morm to a critical point Coo of E4

VE,(Coo) = 0.
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Proof The condition (2.4.11) implies

(2.4.12) 1D A, %nll2 = o(1)
and
1
(2.4.13) 1Ea,ll2 = 159(@n)ll2 + o(1).

Using the sup-bound on 1, in the last inequality we deduce
[1Fa,ll2 = O(1).

Modulo changes of gauge, which can be used to reduce the size of the har-
monic part of Fy, below a fixed, geometrically determined constant, the
last inequality leads to L?-bounds for ia,, := A, — Ay.

Throw this information back in (2.4.12) to obtain

D Ay n = —c(iap)n + o(1).

The elliptic estimates coupled with the sup-bound on 1, and the L*?-bound
on ay, lead to L'2-bounds on v,,. Bootstrap to obtain bounds on (a,, ) in
arbitrary norms. These coupled with compact Sobolev embeddings allows
us now to conclude that a subsequence of C,, converges in any Sobolev norm
to some smooth C,, € C,. The conclusion in the proposition now follows
using (2.4.11) once again. W

The last proposition has an important consequence.

Corollary 2.4.7. Suppose C = (1,@,121) 18 a smooth finite energy monopole

on Noo := R x N such that A is temporal and

1]loo < 0.

Then there exists a sequence t, — oo such that, modulo G, the configura-
tions (Y(tn), A(ty)) converge in any Sobolev norm to a critical point of E,.

Proof Using the main energy identity we deduce

Tt [ (16 +1a(0) ) du(g) < oo
[ o]

so that there exists a sequence t,, — oo such that

= /N(WW + [a(t)[?) dv(g) = o().

The desired conclusion now follows from Proposition 2.4.6.

| vea (wita), Atta))
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2.4.2. The Thom conjecture. To put the Thom conjecture in the proper
context we begin by recalling a classical algebraic-geometry result. We will
denote the tensor multiplication of line bundles additively, by +.

Proposition 2.4.8. (Adjunction formula) Suppose (X, J) is an almost
complex manifold of dimension 2n andY C X is a submanifold of dimension
2(n — 1) such that the natural inclusion

TY - TX|y
is a morphism of complex bundles. Then
Ky = Kx |y +Ny

where Ny denotes the complex normal line bundle, Ny := TX |y /TY
determined by the embedding Y — X, and K denotes the canonical line
bundle, Ky = det(T*M)10 = det(T%1 M).

Proof Along Y — X we have the isomorphism of complex vector bundles
TXYW|y=TY0 ¢ Ny.

By passing to determinants we deduce

—Kx |y: —Ky +Ny.

Suppose now that (X, w) is a Kdhler manifold of complex dimension two
and X — X is a smooth complex curve on X , i.e. a compact, connected,
complex submanifold of X. Using the adjunction formula we deduce

Ky, = Kx |y +Ns.
Again we identify the complex line bundles with their first Chern class .

Integrating (=Kronecker pairing) the above equality over ¥ we deduce
(Ky,Y) =(Kx,X)+%X-%

since, according to the Gauss-Bonnet theorem, the pairing (Ny, ) is the
self-intersection of ¥ < X. Using Gauss-Bonnet again we deduce

(K, %) = 29(%) — 2

where g(¥) is the genus of the Riemannian surface . This yields the genus
formula

(2.4.14) 9(D) = 1+%(KX-E+E~E).

We specialize further and we assume X = CP? and ¥ — CP? is a
smooth complex curve of degree d, i.e.

[¥] = dH, in Ho(CP* Z).
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Using the equality Kp2 = —3H established in §2.3.4 we deduce

d(d—3
(2.4.15) g@):1+ijfl.
Kervaire and Milnor (see [56, 62]) have shown that if the homology class
dH € Hy(CP?,Z) is characteristic for the intersection form (i.e. d is odd)

and can be represented by an embedded sphere then

1=7(CP?*)=d* mod 16.
In particular this shows that the class 3H cannot be represented by an
embedded sphere.

To connect this fact with the genus formula (2.4.15) we introduce
Gmin + Ha(CP?,Z) — Zy

where gmin(dH) denotes the minimum of the genera of smoothly embedded
Riemann surfaces ¥ < CP? carrying the homology class dH. The above
result of Kervaire and Milnor implies

Imin(dH) > 1, d=3.

The equality is optimal for d = 3 since according to (2.4.15) the curves of
degree 3 on CP? have genus 1. In particular this shows that

d(d — 3)

2

A famous conjecture, usually attributed to R. Thom, states that the above
equality holds for all d > 0. Using the genus formula we can rephrase this by
saying that the complex curves are genus minimizing amongst the smoothly
embedded surfaces within a given homology class. The methods developed
so far are powerful enough to offer a solution to this conjecture.

gmin(dH) =1+ ., d=1,2,3.

Theorem 2.4.9. For every d > 0 we have the equality

d(d—3
Gmin(dH) =1 + %

Proof We follow closely the ideas of Kronheimer and Mrowka [71]. The
above observations show that it suffices to consider only the case d > 3.

Suppose ¥ < CP? is a smoothly embedded surface such that [¥] = dH,
d > 3. Then

YY=ki=d
We blow up CP? k times CP? --» CPQ#/{:WZ and denote by 7 the natural
projection

M := CP2#kCP° — CP2.
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As in Example 2.3.36 denote by F;, i = 1,--- , k the homology classes carried
by the exceptional divisors. Consider the proper transform 3 in the blow-
up in the sense of algebraic geometry. Topologically this means ¥ is the
connected sum with the & spheres representing the classes —F;. Thus

2.-¥=0.
We now follow closely the geometric situation in Example 2.3.14. Denote by
U a small tubular neighborhood of ¥ — M diffeomorphic to D? x ¥ and set

N = 9U = S! x . Equip ¥ with a metric go of constant scalar curvature
s9. The Gauss-Bonnet theorem implies

ﬁ /2 sodv(go) =2 — 29(2) = 2 — 2g(%)

so that
8
(2.4.16) so=—=—(1—9g(%)).
VOIQO (E)
When no confusion is possible we will continue to denote by go the product
metric on N = S x X,

Now consider again the metric g,, n > 1, of Example 2.3.14 so that a
tubular neighborhood of N < M is isometric to the metric dt? + df? + go

on [-n,n] x S' x ¥. Set N, := [-n,n] x N. Again denote by 6y the
spin® structure induced by the natural complex structure on M so that
det(60) = =Ky = 3H — ), E;. Denote by o¢ the restriction of 6¢ to

N. We saw in that example that there exist (smooth) (6¢, gn,0)-monopoles
Cn = (Yn, Ayp) for all n > 1.

Lemma 2.4.10. There exists a constant C' > 0, such that ¥Yn > 1 we have

(2.4.17) [4hnll o (ar) < C
and
(2.4.18) E(C.lg,) <C.

Proof Denote by s, (z) the scalar curvature of the metric g,. Along the
long neck s, (z) is comparable to sg while away from the neck it is bounded
above by a constant independent of n since the metric g, varies very little
in that region. The inequality (2.4.17) is thus a consequence of the Key
Estimate in §2.2.1.

To prove the second inequality denote by R the complement of the neck
in M and let E,, denote the energy of C,, on M. Since C, is a (09, gn,0)-
monopole we deduce from Proposition 2.1.4 that

E, = —27r2/ cz, = —2m’K3; = 27%(k — 9).
M
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We deduce

E(Cn|Nn)_En_E(C”‘R)SETL—/RSn(:C)

(o) v ()

Since s,(z) and |¢,(z)| are bounded independent of n and R has finite
volume, independent of n, we deduce that the right-hand side of the above
inequality is bounded from above by a constant independent of n. This
concludes the proof of the lemma. W

Modulo a gauge transformation we can assume C,, = (@n, An) is tempo-
ral so that we can write

Bl = Ya(t) and Ay = Ag + ian(D).

Since
E(C,

Nn) <C
there exists |k, | < n such that
E(Cp |y nt1x ) < C/2n.

Using the main energy identity we deduce

kn+1 .
[ dt [ 1o + an(oPdoten) < C/n
kn N
Thus there exists t,, € [kn, kn + 1] such that

(2.4.19) /N [ ()2 + lin (t) P (g0) < C/.

Set
Cn = Cn(tn) = (Yn(tn), Ao + ian(tn)).

Lemma 2.4.10 and (2.4.19) show that the sequence C,, satisfies all the as-
sumptions in Proposition 2.4.6. This leads to the conclusion that

o there exist go-monopoles on N = St x )y corresponding to the spin® struc-
ture o) = (3'0 ’N-

To conclude the proof of Theorem 2.4.9 we will show that the existence

of monopoles on N imposes restrictions on g(3).
Observe first that any spin® structure o on ¥ induces by pullback via
p: N — X a spin® structure p*o on N. Next observe that
oo = 6o|N=D"00 5,
so that
det(og) = p*(det(6ols)) = p* (—Kumls).
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The surface ¥ can be naturally viewed as a submanifold in N which is the
total space of a trivial S'-bundle over ¥.. The above equality implies
(2.4.20)

k k
/~cgo =Ky S =(H -3 B (dH -3 E) =3d—k=d(3— d),
> i=1 i=1
If C = (¢, A) is a go-monopole on N
Dayp = 0
(2.4.21) { c(+Fa) — %q(w)

then arguing exactly as in the proof of the Key Estimate in §2.2.1 we
deduce

4612 < —2minso(x)

where 50(x) denotes the scalar curvature of the metric gy on N. Now observe
that since N = S! x ¥ is equipped with the product metric the scalar
curvature 5y at (f,z) € S' x ¥ is equal to sg(z) and using (2.4.16) we
conclude

167
2.4.22 < ——(g9(2) - 1).
(2.422) VI, < o7 0 =
Using Exercise 2.4.1 and (2.4.22) in the second equation of (2.4.21) we
deduce

VBIFA| = leteF)] = 5la0)] = st < S o) - 1)
so that

47
(2.4.23) [Fal < m(g(z) - 1).

Using (2.4.20) and the assumption d > 3 we deduce
(2.4.23)

[ < 5 [ 1Faldotan) "< 2o(m) - 1),

This is exactly the content of Theorem 2.4.9. B

d(d—3) =

Remark 2.4.11. (a) Presently the validity of the genus minimizing conjec-
ture of Thom has been established in its full generality in the more general
context of symplectic manifolds; see [97, 114] or the discussion at the end
of §4.6.2. In this case the genus minimizing surfaces in a given homology
class are precisely the symplectically embedded ones.

(b) In [97, 101] one can find a detailed and explicit description of the
monopoles on S' x ¥. For the more general case of circle bundles over a
Riemann surface we refer to [106].
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2.4.3. Negative definite smooth 4-manifolds. To help the reader bet-
ter enjoy the beauty and the depth of the main result of this subsection we
begin by surveying some topological facts. For more details we refer to [29,
Chap. 1], [51, 87].

The world of topological 4-manifolds is very unruly and currently there
is no best way to organize it, and not for lack of trying.

The fundamental group, which does wonders in dimension two and is
sufficiently powerful in dimension three, is less effective in dimension four
for a simple reason: every finitely presented group is the fundamental group
of a smooth manifold (even symplectic, according to [51]). This shows that
the algorithmic classification of 4-manifolds is more complicated than that
of finitely presented groups, which is impossible. It is thus reasonable to try
to understand first the simply connected 4-manifolds and in this dimension
we have to be very specific whether we talk about topological or smooth
ones.

The intersection form of simply connected topological 4-manifolds is a
powerful invariant: it classifies them up to homotopy equivalence (according
to J.H.C. Whitehead [147]) and almost up to a homeomorphism according to
the award winning results of M. Freedman [38]. Recall that the intersection
form of a closed 4-manifold is a symmetric, unimodular, bilinear map

q: 7" x 7" — 7.

Unimodularity in this case means that the matrix describing ¢ with respect
to some integral basis of Z™ has determinant 1.

To each intersection form one can associate three invariants: its rank,
n in this case, its signature and its type. The signature, 7(q), is defined as
the difference between the number of positive eigenvalues and the number
of negative eigenvalues of the symmetric matrix representing g with respect
to some basis of Z". The intersection forms are of two types: even, if

q(x,x) =0 mod 2, Yz €Z

and odd, if it’s not even. Observe that ¢ is even if and only if the matrix
representing g with respect to an arbitrary basis of Z" has even diagonal
entries. A quadratic form ¢ is called positive/negative if T7(q) = +rank g and
indefinite otherwise.

Two integral quadratic forms ¢, g2 of the same rank n are isomorphic
if there exists T' € GL(n,Z) such that
Q1(Tx7Tx) = Q2(x>$)> Va € Z".

The quadratic forms over Q or R are completely classified up to isomorphism
by their rank and signature. The situation is considerably more complicated
in the integral case.
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Example 2.4.12. The diagonal definite form of rank n is the quadratic
form ¢ = (1), whose matrix with respect to the canonical basis of Z" is
the identity matrix. More generally, a quadratic form is said to be diago-
nal(izable) if it is isomorphic to the direct sum (1), ® (—1),,. The form
Ej is the positive definite quadratic form of rank 8 given by the symmetric
matrix

21000000
12100000
01210000
00121000

(2.4.24) E=1loo0012101
00001210
0000O0T1?2 1
0000T1GO0T12

A more efficient and very much used way of describing this matrix is through
its Dynkin diagram (see Figure 2.9). The o’s describe a basis v1, - - - , vg of Z2.

2 2 2 2 2 2 2

Figure 2.9. The Dynkin diagram of Eg

The 2’s indicate that ¢(v;,v;) = 2 and the edges indicate that ¢(v;,v;) =1
if and only if v; and v; are connected by an edge. FEjg is even and positive
definite. Fg is not diagonalizable over Z. We also want to point out that
often Fjg is described by a matrix very similar to the one in (2.4.24) where the
1’s are replaced by —1’s. The two descriptions are equivalent and correspond
to the change of basis v; — (—1)%v;.

Another important example of quadratic form is the hyperbolic form H
given by the matrix
0 1
e (00).

It is even, indefinite, has zero signature and it is not diagonalizable.

The examples presented above generate a large chunk of the set of iso-
morphism classes of integral, unimodular, quadratic forms. More precisely,
we have the following result, whose proof can be found in [121].

Theorem 2.4.13. (a) Any odd, indefinite quadratic form is diagonalizable.
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(b) Suppose q is an even form. Then
7(¢) =0 mod 8.
(c) If q is even, indefinite and 7(q) > 0 then

qgaEgEBbH::(Eg@‘--@Eg)@(H@...@H)
a b
where 7(q) = 8a and 8a + 2b = rank (¢). (When 7(q) < 0 use —q instead.)

The classification of definite forms is a very complicated problem. It
is known that the number of nonisomorphic definite quadratic, unimodular
forms of rank n goes very rapidly to co as n — oo (see [121]). The diagonal
one however plays a special role. To describe one of its special features we
need to introduce a new concept.

Suppose ¢ is a quadratic unimodular form of rank n. A vector xg € Z™
is called a characteristic vector of ¢ if

q(x0,y) = q(y,y) mod 2, Vy e Z".

If we represent ¢ by a symmetric matrix .S using a basis of Z" then a vector
x is characteristic if its coordinates (x;) with respect to the chosen basis
have the same parity as the diagonal elements of S, i.e.

i =8 mod2, Vi=1--- n.
We see that ¢ is even if and only if 0 is a characteristic vector.

Example 2.4.14. (Wu’s formula) Suppose M is a closed, compact ori-
ented smooth 4-manifold with intersection form qp;. A special case of Wu'’s
formula (see [93]) shows that the mod 2 reduction of any characteristic vec-
tor x of gy is precisely the second Stiefel-Whitney class wo(M). In particu-
lar, this implies that any smooth 4-manifold admits spin® structures (since
any such structure corresponds to an integral lift of we(M)) and moreover,

(wa(M),a) = qum(a,a)  mod 2, Ya € Ho(M,Z).

As explained in [51, Sec. 1.4], the last identity should be regarded as a mod
2 version of the adjunction formula.

The congruence (b) in Theorem 2.4.13 admits the following generaliza-
tion (see [121]).

Proposition 2.4.15. If q is an integral, unimodular, quadratic form and x
is a characteristic vector of q then

q(x,x) =7(q¢) mod 8.
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Following [32] we introduce the Elkies invariant ©(q) of a negative def-
inite quadratic form ¢ as

O(g) := rank (¢) + max{q(x,x); x a characteristic vector}.

Observe that since ¢ is negative definite ©(q) < rank(q) = —7(¢) with
equality if and only if ¢ is even. Moreover, by Proposition 2.4.15 we have
O(q) € 8Z. We have the following nontrivial result.

Theorem 2.4.16. (Elkies, [32]) For any negative definite quadratic form
q we have
©(q) = 0

with equality if and only if q is diagonal.

Roughly speaking, this theorem says that if ¢ is not diagonal then the
positive form —q has short characteristic vectors.

We now return to topology. Michael Freedman’s classification theorem
states that given any even quadratic form there exists a unique, up to home-
omorphism, simply connected (s.c.) topological 4-manifold with this inter-
section form. Moreover he showed that given any odd quadratic form there
exist exactly two nonhomeomorphic topological s.c. 4-manifolds with this
intersection form and at most one of them is smoothable (that is it admits
smooth structures). We deduce the following remarkable consequence.

Corollary 2.4.17. Two simply connected smooth 4-manifolds are homeo-
morphic if and only if they have isomorphic intersection forms.

In the early 50’s, Vladimir Rohlin ([118]) has showed that if the even
form ¢ is the intersection form of a smooth s.c. 4-manifold then

7(¢) =0 mod 16.

According to Michael Freedman’s classification, there exists a unique s.c.
topological 4-manifold with intersection form Eg. The signature of Eg is 8 =
rank (Eg). This topological 4-manifold cannot support smooth structures!!!

In the early 80’s, Simon Donaldson ([28]) showed that this surprising
fact is not singular.

Theorem 2.4.18. (Donaldson, [28, 29]) If M is a smooth, compact,
oriented 4-mamnifold with negative definite intersection form qps then qur is
diagonal.

This theorem shows that of the infinitely many negative definite qua-
dratic forms only the diagonal ones can be the intersection forms of some
smooth 4-manifold. Thus any negative definite topological 4-manifold with
nondiagonalizable intersection form does not admit smooth structures !!!
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Proof of Theorem 2.4.18 We will argue by contradiction. Assume qps
is not diagonal. We distinguish two cases.

e Assume first that by(M) = dim H'(M,R) = 0. Then x(M) = 2 + by,
T(M) = —by so that for all o € Spin®(M) we have

d(o) = i(cg +by—4) = %(qM(ca,cg) + rank (qpr)) — 1.

By Wu’s formula ¢, is a characteristic vector. Since gps is not diagonal we
deduce from Elkies’ theorem that ©(gas) > 0 and we can find o € Spin®(M)
such that d(c) = 10(qa) — 1 > 0. Since O(qas) € 8Z we deduce d(o) €
2Z + 1.

For any closed 2-form 1 on M and any metric g there exist reducible
(g,m)-monopoles corresponding to the o. They are determined by the con-
dition
(2.4.25) Fi+int =o.

As in §2.2.3 we write n = [n] + da and fix a connection Ay such that
[Fa,] = —2mi[co].

Any solution of (2.4.25) can be written as A = Ay — ia + i where [ is a
closed 1-form. (Observe that such an A satisfies Fiy = Fy4, — ida. Since
M is negative definite it automatically satisfies (2.4.25) because there are
no self-dual harmonic 2-forms.) On the other hand, since b;(M) = 0 any
closed 1-form is exact so that 0 = —2df. This shows that all the solutions
of (2.4.25) are G, equivalent.

Using the Sard-Smale theorem as in §2.2.3 we can pick n so that any
(g,m)-monopole C is regular, i.e. the second cohomology group H% of the
deformation complex at C is trivial. Denote by Cy = (0, Ap) the unique (mod
Gs) reducible (g,n)-monopole. In this case, using the Kuranishi picture we
deduce that away from Cy the moduli space is a smooth manifold while a
neighborhood of Cy in the moduli space 9, (g,n) is homeomorphic to

He, /St
In this case H(l:O = ker® y,. Since coker® , = H%O = 0 we deduce
AmeD s, = indeP., = £(& — (M) = £0(gar) = Z2TL
Thus, if d(0) = 1 near Cy the moduli space is homeomorphic to the segment

d(o)—1

[0,1) while if d(¢) > 1 it looks like a cone over =CP~ 2.
If we chop out a small neighborhood of Cy in 9,(g,n) we obtain a

d(o)—1
smooth, compact, orientable manifold X with boundary £CP™ 2
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If d(o) = 1 then X is a smooth, compact oriented one-dimensional man-
ifold with boundary consisting of only one component. This is plainly im-
possible.

If d(o) > 1 observe that the restriction of the universal line bundle U, to
0X is £ the tautological line bundle over :I:(C]P’dw2)71 and thus is nontrivial.

More precisely (2, = ¢1(Uy))

d(o)—1
/ Qs 2 =4£1.
0X

The last equality is impossible since U, extends over X and by Stokes’

theorem we have
d(o)—1 d(o)—1
/ Q7 —/dQUZ ~0.
X X

This contradiction completes the proof of Theorem 2.4.18 in the case by (M) =
0.

e b1 (M) > 0. We will reduce this case to the previous situation by a simple
topological trick.

Choose a basis ¢y, - -+ , ¢, of Hi(M,Z)/Tors and represent each of these
cycles by smoothly embedded S'’s. We can “kill” the homology class carried
by each of these cycles by surgery (see [51]). This operation can be briefly
described as follows.

Observe first that a tubular neighborhood N of a smoothly embedded
St «— M is diffeomorphic to D? x S! where D* denotes the unit ball in
R*. Fix such a diffeomorphism so that ON = S? x S'. Now remove N to
obtain a manifold with boundary S? x S' to which we attach the handlebody
H = S? x D? (which has 0H = 5% x S1). This operation will kill each of
the classes ¢; but will not affect Hy/Tors and the intersection form of M
since the classes ¢; are not torsion classes (use the Poincaré duals of ¢; to see
this). In the end we obtain a smooth manifold with the same intersection
form but with b; = 0. This places us in the previous situation. The proof
of Theorem 2.4.18 is now complete. B

Exercise 2.4.2. Prove that the above sequence of surgeries does not affect
the intersection form, as claimed.

Remark 2.4.19. Donaldson’s theorem states that a smooth, simply con-
nected, negative definite 4-manifold X cannot be too complicated arithmeti-
cally: its intersection form is the simplest possible.

If we remove the negativity assumption, so that the intersection form
gx is indefinite, then ¢x has a much simpler from. If X is not spin then gx
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is odd and thus diagonal.! If X is spin then gx is even and thus it has the
form

1
gx = aFBs+bH, a= gT(q), 8|a| 4+ 2b = rank (q).

In this case the integers (a, b), b > 0, represent a measure of the complexity of
¢x. Rohlin’s theorem states there are restrictions on (a,b). More precisely,
a must be an even integer. The celebrated 11/8-th conjecture states that
there are even more drastic restrictions in this case, more precisely

11
11la| = §|T(q)| < rank (¢x) = 8|a| + 2b.

This inequality is optimal because equality is achieved when X is the K3
surface (see the next chapter). Using Seiberg-Witten theory M. Furuta has
proved a 10/8-th theorem (see [45], or the simpler approach in [22]). More
precisely, he showed that

10ja| 4+ 1 < rank (¢) = 8|a| + 2b.

IThe example mCPQ#n@Q shows that any odd form is the intersection form of a smooth,
s.c. 4-manifold.






Chapter 3

Seiberg-Witten
Equations on Complex
Surfaces

Anybody who is not shocked by this subject has failed to
understand it.

Niels Bohr

The Seiberg-Witten equations are very sensitive to the background geom-
etry. In this chapter we study some of the effects a complex structure has
on the Seiberg-Witten equations and, in particular, on the Seiberg-Witten
invariants.

We will see that, very often, the complex structure leads to information
so detailed about monopoles that we will be able to explicitly describe all of
them and, in particular, count them.

3.1. A short trip in complex geometry

This section surveys some basic facts of complex geometry which are ab-
solutely necessary in our study of monopoles. This survey is by no means
complete or balanced but it is targeted to the applications we have in mind.
It should motivate the reader not familiar with this subject to consult the
references [9, 10, 39, 49, 54, 59] which served as sources of inspiration.

3.1.1. Basic notions. Suppose M is a, compact complex n-dimensional
manifold without boundary and £ — M is a holomorphic vector bundle as
defined in Section 1.4. We denote by Ojs(E) the sheaf of local holomorphic

193
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sections of E, by O the sheaf of holomorphic local sections of APOT*MQFE
and by H*(M,O%,(E)) the Cech cohomology of the sheaf O}, (E). When
p = 0 we will write H4(M, E) instead of H1(M,Oy;(E)) and when FE is the
trivial holomorphic line bundle we will drop E from the notation.

A divisor on M is intuitively a codimension-1 complex subvariety. More
rigorously a divisor is defined by an open cover (U,) of M and nontrivial
meromorphic functions f, : U, --+ C (i.e. holomorphic maps f, : Uy —
CP') such that f./fs is a nowhere vanishing holomorphic function on Uag-
The loci ord(f,) := f51({0,00}) patch-up to a codimension-1 subvariety in
M called the support of the divisor and denoted by supp (D).

We consider two descriptions (Us, fo) and (Vg,g4) to be equivalent if
there is a cover (W;) finer then both covers (U,) and (V,) with the following
property. For every i, a,a such that W; C U, NV, there exists a nowhere
vanishing holomorphic function h : W; — C so that f, = h - g,. We denote
by Div (M) the space of divisors on M.

The previous definition captures the subtle notion of multiplicity. For
example, if the divisor D is given by the collection (f,) then the collec-
tion (f2) defines (in general a different) divisor, denoted by 2D, which has
identical support.

A divisor described by the cover of M by itself and a (nontrivial) mero-
morphic function f : M --+ C is called principal. We will denote this divisor
by (f) and by PDiv (M) the subspace of principal divisors.

If D is a divisor given by a collection (U,, fo) then we can regard the
collection of holomorphic functions

9a = [p/fa 1 Uap — C*

as a gluing cocycle for a holomorphic line bundle over M. Two equivalent
descriptions of the divisor D lead to isomorphic line bundles. We will denote
this isomorphism class by [D]. With this interpretation, we can regard the
collection (f,) as a meromorphic section fp of [D]. Two equivalent descrip-
tions lead to meromorphic sections which differ by a nonzero multiplicative
constant. We see that the converse statement is true: any divisor can be
viewed as described by a meromorphic section of a holomorphic line bundle.

We can define an operation on Div (M) as follows. If D;, i = 1,2,
are divisors given by the same cover (U,) (this can always be arranged by
passing to finer covers) and meromorphic functions f,; : Uy --» C then
D1 + D> is the divisor given by the cover U, and functions fqo1fa,2. We let
the reader check that (Div (M), +) is an Abelian group.

One can give a more geometric description of the notion of divisor. First
define a hypersurface of M to be a closed subset V' locally defined as the zero
set of a holomorphic function. A hypersurface may or may not be a smooth
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Singular and reducible

Singular and irreducible

Figure 3.1. Singular hypersurfaces

manifold. A point p on a hypersurface V is called smooth if there exists a
holomorphic function f defined in a neighborhood U of p such df(p) # 0
and UNV = f~1(0). We denote by V* the set of smooth points of V. V is
said to be irreducible if V* is connected (see Figure 3.1).

Let us point out a subtlety of this definition. The line zo = 0 in C?
can be defined by many equations: zo = 0, zg’ = 0 etc. These equations
define different divisors. The origin (0,0) is not a smooth point for the
defining equation z3 = 0 but according to the definition it is a smooth
point of this hypersurface since there exists a defining equation, zs = 0, for
which the origin is a smooth point. In modern language, when we think of
a hypersurface as a subscheme, we assume it is reduced. In less rigorous
terms, we do not consider defining equations of the type

=0

We will always “reduce” them to f = 0. For more details we refer to [31,
49]. The hypersurfaces behave in many respects like smooth submanifolds:
the compact ones carry nontrivial homology classes and have finite volume.
Moreover, we have the following important fact ([75]) .

Proposition 3.1.1. Suppose V' is a hypersurface in a compact Kahler man-
ifold M of complex dimensionn. Then V defines a nontrivial homology class
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in Hop_o(M,7Z) which is not torsion and, moreover,

(W1 V) = /Vw”_l = (n—1)!vol (V) > 0.

Putting together the (reduced) local equations of V' we obtain a divisor
on M which we continue to denote by V. We have the following result (see
[49]).

Proposition 3.1.2. The group Div (M) is isomorphic to the free abelian
group generated by the irreducible hypersurfaces in M.

Thus we can think of a divisor as a collection of irreducible hypersurfaces
with attached multiplicities. The divisors on a curve (complex dimension
1) are finite collections of points with multiplicities while on a surface the
divisors are finite collections of curves with multiplicities. (A curve on a
surface is by definition an irreducible hypersurface.)

If f: M --» C is a meromorphic function then the divisor associated
to the hypersurface f~1(0) (resp. f~!(oc0)) is called the zero divisor (resp.
the polar divisor) of f and is denoted by (f)o (resp. (f)so). The difference
(f) == (f)o = (f)oo is called the divisor determined by f. All principal
divisors have the form (f) for some meromorphic function f.

Two divisors D1 and Dy are said to be linearly equivalent, and we write
this D; ~ Da, if the corresponding holomorphic line bundles [D;]| and [Ds]
are isomorphic. We let the reader check that this agrees with the classical
definition Dy ~ Dy < Dy — Dy € PDiv (M)

If we introduce the Picard group Pic (M) of isomorphism classes of holo-
morphic line bundles over M we see that we have constructed an injective
morphism of Abelian groups

Div (M)/PDiv (M) — Pic (M).
For a proof of the following result we refer to [49].

Proposition 3.1.3. If M is algebraic, i.e. it is a complex submanifold of
a projective space CPY then the morphism
Div (M)/PDiv (M) — Pic (M)

s an isomorphism.

The elements of Pic (M) are described by holomorphic gluing cocycles
and thus can be identified with the Cech cohomology group H'(M,O*)
where O* denotes the multiplicative sheaf of nowhere vanishing holomorphic
functions. The short exact sequence of sheaves

0-Z—-0—-=0"=0
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leads to a long exact sequence
- — Pic (M) = H'(M,0%) > HX(M,Z) — - - .

For any holomorphic line bundle L the class d(L) is precisely the topological
first Chern class ¢1(L).

A divisor D is called effective (and we write this D > 0) if the corre-
sponding section fp of [D] is holomorphic. Equivalently, this means that D
is described by an open cover (U,) and holomorphic functions f, : U, — C.
Any effective divisor can be written as a sum ), n;V; where n; are nonneg-
ative integers and V; are divisors associated to irreducible hypersurfaces.

Example 3.1.4. Suppose V is a hypersurface. Continue to denote by V' the
homology class in Ha,—o(M,Z) determined by V. The divisor V' canonically
defines a holomorphic section fi of [V] satisfying (fv) = (fv)o = V. The
Gauss-Bonnet-Chern theorem shows that the homology class carried by V is
the Poincaré dual of ¢ ([V]). That is why when no confusion is possible we
will simultaneously denote by V' both the line bundle [V'] and the cohomology
class ¢1([V]).

For any divisor D on M we denote by L£(D) the space of meromorphic
functions f such that (f) + D > 0. (By definition the identically zero
function is included in £(D).) Observe that we have a map

ip: L(D) — H°(M,[D])(= the space of holomorphic sections of [D])

described by

f—=f-fp.
This map is injective, on account of the unique continuation principle. It
is also surjective because for every holomorphic section s of [D] the ratio
s/ fp, defined in the obvious way, is a meromorphic section of the trivial line
bundle (hence a meromorphic function). Now observe that

(s/fo)+D=(s) = (fp)+ D =(s) 2 0.
We denote by |D| the projective space P(L(D)). Equivalently,
|D| = P(H"(M,[D])).

|D| is called the complete linear system generated by D. A projective sub-
space of |D| is called a linear system. A linear system of dimension 1 is
called a pencil. The complete linear system can be geometrically described
as the space of effective divisors linearly equivalent to D. The base locus of
a linear system L C |D| consists of all points p € M which belong to the
supports of all divisors in L. Equivalently, if we think of L as a subspace
of P( H°(M,[D]) ) then the base locus is the intersection of the zero loci of
the sections in L. We will denote the base locus by B(L).
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Any point p € M \ B(L) defines a hyperplane Hy, in L consisting of the
divisors containing p, or equivalently, of the holomorphic sections in L which
vanish at p. The correspondence p — H,, defines a holomorphic map

ir : M\ B(L) — L* = the dual of the projective space L.
Definition 3.1.5. A divisor D on a complex manifold M is called very

ample if B(|D]) = § and the map ip| : M — [D[* is an embedding. D is
called ample if kD is very ample for k£ > 0.

Example 3.1.6. Consider a hyperplane H in CPY. Its associated line
bundle [H] is the dual of the tautological line bundle. For every positive
integer d, the holomorphic sections of d[H| can be viewed as homogeneous
complex polynomials of degree d in N + 1 variables. Thus

d+N>

dim H*(M, d[H]) = ( J

so that

d

We can construct a pencil in |dH| by choosing two linearly independent
homogeneous polynomials A, B of degree d. The pencil is the projective
line L defined by the linear space

{aA+ BB; «,p € C}.

dim [dH| = (‘HN) Y

The pair [« : (] defines projective coordinates on L*. The base locus is the
variety

A7 0)nB~L(0) c CPV.
The map

iy, : CPY \ B(L) — CP!
is described explicitly as follows: ir(p) = [a : f] if and only if aA(p) +
BB(p) = 0. We can visualize the pencil as a “fibration” CPY --» CPL.

Suppose V' is a codimension-1 submanifold of M. The associated holo-
morphic section fy of [V] vanishes in a nondegenerate fashion precisely along
V. If V is a connection on [V] then we get an adjunction map

a:TM|y— [V]|lv, X — Vxfy

vanishing precisely along the tangent bundle of V' because fi is nondegen-
erate so that a induces an isomorphism of real bundles

ClINv—>[VHV
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where Ny denotes the normal bundle to V' — M. Since fy is holomorphic
the adjunction map preserves the complex structures so that we have an
isomorphism of holomorphic line bundles

(3.1.1) [V]|lv= Ny.
We can now rewrite the adjunction formula of §2.4.2 as
(3.1.2) Ky =Ky [V)|v.

where Kj; denotes the canonical line bundle of M, Ky = A™T*M.

A large amount of information about the embedding V <— M is con-
tained in the following structural short exact sequence:

0— Oy 2 0) (V) 5 Oy (V] ]v) — 0

where the last arrow is the restriction map. If L is a holomorphic line bundle
we can take the tensor product of the above sequence with the line bundle
L ® [-V] and we obtain

(313) 00— Ou(Ze[-V]) X8 0y(L) 5 Ov(Llv) -0
As in Sec. 1.4 set
OPUE) = C®(APIT*M @ F).
We can form the Dolbeault complex
0 — QPO(E) 22 qri(p) 22, .. 25 grapy o
whose cohomology is denoted by H g’*(M VE).
Theorem 3.1.7. (Dolbeault) There exist natural isomorphisms
Hq(Mv Og\)/[(E)) = ng(Mv E)a q= O> 17 N2
Fix a Hermitian metric g = gpy on T'M and a Hermitian metric h = hg
on E. Then we can form the formal adjoints of the operators

3g : QPUE) — QPatL(E).

The formal adjoint can be explicitly described in terms of the conjugate
linear Hodge operator

xp : QPI(E) — QU PNT(EY)
defined as in (1.4.20) of §1.4.2. More precisely we have (see [49])
Oy = — *p Op+ *p .
We can form the Laplacian
Ag = Ap, = 0pdy + 050p.
Since 0% = (0%)% = 0 we have

Ay = (@5 + 3
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and a simple integration by parts shows that
Ajw =04 dpw = 05w =0, weQ“*(M).

A differential form satisfying one of the equivalent conditions above is called
O-harmonic. We will denote by Hg’q(M ,E) the space of d-harmonic E-
valued (p, q)-forms. We want to emphasize that this space depends on the
metrics gps and gg. However, its dimension depends only on the complex
structure of M ! More precisely, we have the following important result.

Theorem 3.1.8. (Hodge) All the spaces H3? (M, E) are finite-dimensional
and the natural maps

H2(M, E) — H?(M, E)

are isomorphisms. In particular, the space of holomorphic global sections of
E is finite-dimensional since it is isomorphic to Hg’O(M, E).

We set
hPY(E) = h’j\’f(E) := dim¢ Hg’q(M, E), hP(E) := dimc H%’p(M, E)

and
Xp(E) =Y (=D)L (E).

When p = 0 we write x(E) instead of xo(£). When E is the trivial holo-
morphic line bundle, we write A/ instead of AL/ (E) and we set

Xnot(M) := xo(M, E) = > (=1)%hi{.
0

q=

The integer hg’j is denoted by ¢(M) and is called the irregularity. The
integer (—1)"(xpot(M) — 1) is called the arithmetic genus and is denoted by
Pa(M).
The numbers Py (M) = h°(M, K%,) are called the plurigenera of M.
Py (M) is usually denoted by p,(M) and is called the geometric genus of M.
Observe that

pg(M) = h™O(M).
Theorem 3.1.9. (Riemann-Roch-Hirzebruch)

X(E) = /M td(M) A ch(E)

where td(M) denotes the Todd class of the complex bundle T M while ch(E)
denotes the Chern character of E.
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In the above integral only the degree 2n part of the nonhomogeneous
form td(M) A ch(E) is relevant. We present a few examples particularly
important in the sequel. We consider only the case when F is a complex
line bundle. We will use additive notation for the tensor products and the
duals of line bundles and we will frequently identify a line bundle with its
(topological) Chern class or its Poincaré dual.

e dimg M = 1. Thus M is a Riemann surface of genus g. Then

1 1
td(M) =1+ sei(M) = 1= SKar, ch(E) =1+ ci(E)

so that
XO(M,E):/Mcl(E)+%/Mc1(M).

The first integral is an integer called the degree of E and denoted by deg
and the second integral is equal to (2 — 2g) by the Gauss-Bonnet theorem.
We conclude

(3.1.4) Xo(M,E)=degE+1—g.

e dimc M = 2. In this case

td(M) =1+ %q(M) + %(Cl(M)Q + c2(M)),
ch(E)=1+c(E)+ %cl(E)Q.

Identifying ¢;(M) with —Kj and ¢ (F) with E we deduce

Xo(M, E) = %E(E — Ky) + % /M c1(M)? + co(E).

Using the Gauss-Bonnet-Chern formula
/ co(M) = xp (= Euler characteristic of M),
M

the Hirzebruch signature formula

™ = %/Mpl(M)
and the universal identity
p1(M) = e1(M)? = 2¢5(M),
we conclude that
(3.1.5) K2, = 2xu + 37w
and
Xo(M, B) = 2 B(E = Ky) + xi (M)
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1 1 1 1
(3.1.6) = SE(E — Ku)+ 1—2(K2 +xm) = SE(E = Ku) + 3 (xm + 7).

(Above, the multiplication denotes the intersection pairing on the 4-manifold

Observe that there is a natural, complex bilinear pairing
(o,0) : Qo’q(E) x QUTUEY) — C
defined by

N u,wv) :/ (u,v)n N w,
M

Yu € C®(E), v € C®°(E*), n € Q¥(M), w € Q"""9(M). The above
pairing can be regarded as a pairing

<.7 .> . QOJI(E) % QO,n*q(KM ® E*) - C.
Clearly this map induces a bilinear pairing
(3.1.7) (o,0) : HY!(M,E) x HY" (M, Ky @ E*) — C
and thus natural complex linear maps

0, 0,n—
H)(M, E) — H)" (M, Ky ® E*)*
(3.1.8)
H)" (M, Ky @ E*) — HY' (M, E)*.

Theorem 3.1.10. (Serre duality) The pairing (3.1.7) is a duality, i.e.
the natural maps (3.1.8) are isomorphisms.

Using the natural metric on ng to identify

H%nfq(M’ Ky @ B*) = H%’niq(M, Ky ® E*)*,

0, ~ 1730, *
HYY(M, E) = HY(M, E)

we observe that the maps in (3.1.8) are precisely the complex linear maps
induced by *g,

gt HYY(M, E) —» HY" (M, Ky @ E*) etc.
Observe that Serre duality implies
(3.1.9) hoU(E) = B (K © EY).
If E is the trivial line bundle the above equality becomes
(3.1.10) RS = RSP (K ) = Wy

and in particular
0 0,
pg(M) = hyp = hyy'.
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Instead of the Cauchy-Riemann operators Jp : QP4(E) — QP4 E) we
can use their conjugates

Op : WPI(E) — QPTLI(E).

We can form similar complexes

O
Y5, .

0 — Q01(E) 25 oli(Ep) 28, qra(E) — 0.

Their cohomology spaces are denoted by Hg’q(M ,E). Again, by choosing
Hermitian metrics on TM and E we can form the Laplacian

Aoy = 050 + 050p = (0p + 0f)°

whose kernel we denote by HYY(M, E).

In the remainder of this section we will assume the metric on TM is
Kahler unless otherwise indicated.

Assume F is the trivial line bundle equipped with the trivial Hermitian
metric. Using the Kéhler identities of Sec. 1.4 we deduce

Aa = Ag on Qp’q(M)
which implies

H29(M) = HY(M) = HIP(M)

so that
(3.1.11) hbd = h%P, Vp,q.

If Ay denotes the Hodge-deRham Laplacian on (complex valued) forms on
M then

1
§Ad — Aé

so that any d-harmonic (p, q)-form on M is also a d-harmonic form of degree
(p + q). This implies

(3.1.12) Hj(M)eC= 5 HEI(M).
pt+g=k
If bi(M) denotes the k-th Betti number of M then the last identity implies

(3.1.13) (M) = > b
p+q=k
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The identities (3.1.10) and (3.1.11) lead to the Hodge diamond of a Kéhler
manifold. We describe it only in the case dim¢ M = 2.

h0,0
hO,l hl,O
R92 ... pLlooL.0 p20
h2’1 . h1’2
h2’2

The above configuration is symmetric with respect to the two diagonals,
vertical and horizontal.

The Kahler identities discussed in Sec. 1.4 introduce additional, finer
structure on the spaces Hg’q(M ). Instead of discussing the general situation,
presented beautifully in [54], we will consider only the case of interest to us,
namely dim¢ M = 2.

Fix a point p € M. Since M is Kéhler we can choose normal coordinates
(', y', 22, y?) near p so that dz' = da’ —idy’ form a local holomorphic frame
of AO’ITZ;k M. Denote by w the symplectic form determined by the Ké&hler
metric g = gy, i.e.

w(X,Y)=-0mg(X,Y), X,Y € Vect (M).
As shown in Example 1.3.3 the range of the restriction map
HY(M,R)®C— A°T;M ®C

is contained in the subspace Cw, ® AQ’OT;M D A0’2T;M while the range of
the restriction map

H? (M,R) ® C — A*T; M
is contained in the orthogonal complement of Cw, in ALLT » M. This or-
thogonal complement can be defined as the kernel of the contraction map
(the dual of L - the exterior multiplication by w)

Ay Al’lT;M — AOT;M.
The Kahler identities in Sec. 1.4 show that the direct sum

B
p,q

is an invariant subspace of A so that these pointwise inclusions lead to global
ones

H? (M,R)® C C HS (M) = ker( A : Hy' (M) — HY(M) )

and
,0 2,0 0,2
Hi(M,R)@CCLH% (M)@Hg (M)oH. (M)

0
= Cw e HZ(M) & HY?(M).
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From the identity
H(M,R) ® C = Cw & H5' (M) & H" (M) & HY*(M)

we deduce that the above inclusions are equalities:

(3.1.14) H? (M,R) ® C = Cw & H2'(M) & HY* (M),

(3.1.15) H? (M,R) ® C = H' (M).

Observing that py(M) = h?9(M) = h%2(M) we deduce from (3.1.14) that
(3.1.16) b (M) = 2py(M) + 1.

The identities (3.1.14), (3.1.15) have another important consequence. Ob-
serve that the space of (1,1)-forms is invariant under conjugation and we
can speak of real, harmonic (1, 1)-forms.

Corollary 3.1.11. (Hodge index theorem) The restriction of the in-
tersection pairing on the space of real, harmonic (1,1)-forms on a Kdhler
surface has signature (1,0 ).

In the case of algebraic surfaces the Hodge index theorem can be formu-
lated equivalently in more geometric terms.

According to the results of §1.4.2, given a Hermitian line bundle L — M,
we can describe the holomorphic structures on L in terms of Hermitian
connections A such that FZ’O = F2’2 = 0. Thus the first Chern class of a
holomorphic line bundle over a Kéhler surface is a real (1, 1)-class.

On the other hand, if M is also algebraic then the holomorphic line
bundles can also be described in terms of divisors, so that we have a map

(3.1.17) Div (M) — Hy'(M)r, D~ c1([D)).

Suppose now that ¢ € H?(M,Z) is such that its harmonic part lies in

Hg’l(M ). Then there exists a Hermitian line bundle L — M such that

¢ " .
¢;”P(L) = c¢. Now we can find a Hermitian connection on L whose curvature

is harmonic and thus must be a (1,1)-class. This shows that the image of
the map (3.1.17) is the lattice Hg’l(M) N H?(M,Z). Its rank, denoted by p,
is called the Picard number of M. Observe that p < h}\}}.

According to the Hodge index theorem the restriction of the intersection

form to this lattice has signature (1, p — 1). This implies the following.

Corollary 3.1.12. (Geometric version of the Hodge index theorem)
Suppose M is an algebraic surface. If D, E are divisors on M such that
D*:=D-D>0and D-E=0
then either
E*<0
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or E-D' =0 for any divisor D’.

Definition 3.1.13. A divisor D on an algebraic surface is said to be numer-
ically equivalent to 0, and we write D ~,, 0, if D - E = 0 for any divisor E.
Two divisors D1, Do are called numerically equivalent if Dy — Dy ~, 0. We
denote by Num (M) the space of numerical equivalence classes of divisors.

Observe that the principal divisors are numerically equivalent to zero.
The Hodge index theorem shows that the intersection form restricts to a
nondegenerate quadratic form on Num (M). Observe that Num (M) is a
free Abelian group. It coincides with Hg’l(M) N H?(M,Z) and thus its
rank is the Picard number of M. The restriction of the intersection form to
Num (M) has signature (1,p — 1).

Unraveling the structure of algebraic surfaces requires a good under-
standing of the “cone” Numy (X)), consisting of those divisors with positive
self-intersection.

Definition 3.1.14. A divisor D on an algebraic surface is called big if

D? > 0.

A big divisor is not far from being effective. In fact, we have the following
result.

Proposition 3.1.15. If D is a big divisor then there exists a positive integer
such that either nD or —nD is effective.

We present the proof (borrowed from [59]) since it relies on a simple but
frequently used argument in the theory of algebraic surfaces.

Proof For every integer n we have

x(nD) = h®(nD) + h®?*(nD) — K%' (nD)

1 1
= §nD -(nD - K) + Z(XM + 7).

Since D? > 0 we deduce x(nD) — oo as |n| — oo so that, using Serre
duality, we deduce

ho(nD) 4 h°(Ky; — nD) — oc.
If nD is not effective for any n # 0 we deduce from the above that
(3.1.18) hO(Kyr +£nD) — 0o, as |n| — oo,

is effective for any n > 0. Choose a nontrivial holomorphic section s, of
Ky — nD. This leads to an injection

HOO(M, Ky +nD) 23 HYO(M, 2K )
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so that
dime H*° (K 4+ nD) < dim H*°(2K), Vn > 0.

This is clearly impossible in view of (3.1.18). W

We see that there is a built-in positivity in the notion of effectiveness.
The reason behind it is essentially explained in the following simple observa-
tion: if the smooth complex curves C1, Co embedded in an algebraic surface
M intersect transversely then they have positive intersection number

Cq-Cy > 0.

A similar result is true without the smoothness and/or the transversality
assumption. More precisely we have the following result (see [10, 39]).

Proposition 3.1.16. Suppose Dy and Do are two effective divisors on an
algebraic surface such that their supports intersect in finitely many points.
Then

Dy -Dy >0

with equality iff their supports are disjoint.

To proceed further we need to introduce new notions.

Definition 3.1.17. A holomorphic Hermitian line bundle L — M on a
complex manifold M is called positive if there exists a Hermitian metric g
on T'M such that

iF 4= —Jm g
where F4 denotes the curvature of the Chern connection on L. L is called
negative if —L is positive.

Theorem 3.1.18. (Kodaira vanishing theorem) Suppose L is a negative
line bundle on a complex manifold M. Then

R%9(L) =0, Y0<q<n.

Theorem 3.1.19. (Kodaira embedding theorem) A complex manifold
M admits positive line bundles if and only if it is algebraic. More precisely,
L is a positive line bundle if and only if there exists an ample divisor D such
that L = [D].

It follows from the Kodaira embedding theorem that the self-intersection
number of an ample divisor F on an algebraic surface M is always positive.
In fact, given any effective divisor D we have

D-E>0

To see this observe that the divisor nF is very ample for n > 0 and so it
defines an embedding
f:M — |nE|".
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Then f(supp (D)) contains at most finitely many lines in [nE|*. Now pick
a hyperplane H C |nE|* not containing any of these lines but containing
a point in f(supp (D)). This hyperplane intersects f(supp (D)) in finitely
many points. This hyperplane corresponds to a nontrivial section s of [nFE]
whose zero set intersects D in finitely many points. This implies

(s)-D > 0.
Now observe that (s) ~, nE so that
n(E-D)=nE-D > 0.

This extreme positivity of ample divisors characterizes them. More pre-
cisely, we have the following result.

Theorem 3.1.20. (Nakai-Moishezon) A divisor D on an algebraic sur-
face M is ample if and only if D*> > 0 and D-E > 0 for any effective divisor
E.

For a proof we refer to [53].

Definition 3.1.21. A divisor D on an algebraic surface M is said to be
numerically effective (or nef) if D - E > 0 for any effective divisor E.

Thus the ample divisors are both big and nef. However not all big and
nef divisors are ample.

Algebraic geometers are interested in a rougher classification of complex
manifolds, that given by bimeromorphisms. We present this notion only in
the case of interest to us.

Definition 3.1.22. Suppose M; and Ms are compact complex surfaces. A
bimeromorphic map

[ My - M,
is a surjective holomorphic map
[ My — Mo
such that there exist analytic proper subsets S; C M;, ¢ = 1,2, so that
fiMp\ Sy — M\ S

is biholomorphic. Two surfaces are called bimeromorphic if there exists
a bimeromorphic map between them. A surface is called rational if it is
bimeromorphic to CP2.

Example 3.1.23. (Complex blow-up) Suppose M is a complex surface.
Fix a point p € M and local coordinates (z1, z2) in a neighborhood U of p
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so that we can identify p with the origin of C? and U with the unit disk
D C C? centered at the origin. We can regard U \ {p} as an open subset of

U:={(z,0) e U xCP'; zet}cC?

where C2 is the total space of the tautological line bundle over CP' and U
is an open neighborhood of the zero section. There is a natural holomorphic
map

7:U—=U\{p}, (2,0)— 2

such that E := 771(0) coincides with the zero section. Moreover 7 : U\ E —
U\ {p} is biholomorphic. The blow-up of M at p, denoted by Mp, is the
manifold obtained by gluing U \ E to M \ {p} using the map 7. Observe
that m extends to a natural surjection

W:MPHM.

This map is bimeromorphic and it is called the blow-down map. Its inverse
(defined only on M \ {p}) is called the blow-up map. The zero section E is
a smooth rational curve (i.e. a holomorphically embedded CP! < M,,) with
self-intersection —1. F is called the exceptional divisor of the blow-up.

If C is a complex curve on M then the closure of 7=1(C\ {p}) is called
the proper transform of C' and is denoted by 7*(C). One can show that

™(C)? = C* — mult,(C).

The nonnegative integer mult,(C) is called the multiplicity of C' at p. It is
0if p € C, it is 1 if C' is smooth at p and, in general, it is equal to the order
of vanishing at p of a defining equation for C near p.

The blown-up manifold Mp can itself be blown-up and so on. Iterating
this procedure we obtain an iterated blow-up manifold X and a natural
surjection

T: X —->M

called the iterated blow-down map.

Exercise 3.1.1. Suppose M is a complex manifold and M is the blow-up
of M at some point. If 0 : M — M denotes the natural projection then

where E C M denotes the exceptional divisor.

In some sense, the above example captures the structure of any bimero-
morphic map. More precisely, we have the following important result (see
[10, 49]).
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Theorem 3.1.24. (Zariski) If My — My is a bimeromorphic map between
algebraic surfaces then there exist an algebraic surface X and surjective holo-
morphic w; : X — M; with the following properties.

(i) The diagram below is commutative.
X
T o
PN
M,y Moy

(i) X is an iterated blow-up of both My and Ms and both maps w1 and o
are iterated blow-down maps.

The above result shows that the blow-up operation plays a special role in
the theory of algebraic surfaces. It is therefore important to know if a given
surface is a blow-up of another. Example 3.1.23 shows that for an algebraic
surface to be a blow-up it is necessary that there exists a holomorphically
embedded CP! — X with self-intersection —1. The next remarkable result
shows that this condition is also necessary. For a proof we refer to [10, 49].

Theorem 3.1.25. (Castelnuovo-Enriques) Suppose X is an algebraic
surface containing a smooth rational curve with self-intersection —1. Denote
by E' the image of this embedding. Then there exist an algebraic surface M,
a point p € M and holomorphic maps

F:X—>J\~4p7 f: X—-M
such that the following hold.

(i) The diagram below is commutative.

X T 1,

NG

M

(ii) F is biholomorphic and f~'(p) = E'.
The manifold M is called the blow-down of X.

Definition 3.1.26. A complex surface is called minimal if it contains no
smooth rational curves (i.e. holomorphically embedded CP!’s) with self-
intersection (—1).

Thus, an algebraic surface is minimal if it cannot be blown down, i.e. it
is not the blow-up of any surface.

We conclude our short survey in complex geometry with an important
topological result due to S. Lefschetz.
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Theorem 3.1.27. (Lefschetz hypersurface theorem) Suppose M —
CPY is an algebraic manifold of (complex) dimension n and F is a hyper-
surface in CPN intersecting M transversely. Then the inclusion induced
morphisms

Hy(M N F,Z) — Hy(M,Z), (M NF)— my(M)

are isomorphisms for i <n — 1 and surjections for g =n — 1.

For a very nice presentation of this theorem we refer to [73].

Corollary 3.1.28. Any smooth hypersurface in CP", n > 3, is simply con-
nected.

Exercise 3.1.2. Suppose X is Kéhler manifold of dimension n > 3 and
L — X is an ample line bundle. Suppose there exists a holomorphic section
u of L with transversal zero set Y = «~1(0). Show that the inclusion

Y —- X

induces isomorphisms Hy(Y,Z) = Hy(X,Z) and 7 (Y) = 7 (X) for k£ <
n— 2.

3.1.2. Examples of complex surfaces. To give the reader a feeling about
the general notions discussed in the previous subsection, we will, for a while,
take a side road and present some beautiful algebraic geometric landscapes.
In the sequel we write P" for CP™.

So far, the only examples of complex surfaces we know are the projective
plane P2, its iterated blow-ups and the products of pairs of Riemann surfaces.
There is another unlimited source of examples: complex surfaces as zero sets
of families of homogeneous polynomials.

Example 3.1.29. (Quadrics in P?) The space of quadratic homogeneous
polynomials in four variables has dimension (g) = 10 and each such poly-
nomial can be viewed as a holomorphic section of the line bundle 2H on
P3.

If Q(zp,--- ,23) is such a polynomial, the implicit function theorem im-
plies that the zero set Q = 0 is a smooth submanifold of P? if and only if
@ is nondegenerate as a quadratic form. On the other hand, all complex
nondegenerate quadratic forms in four variables have the same canonical
(diagonal) form. This implies that all quadrics in P? are projectively equiv-
alent, meaning that any two are related by a projective isomorphism of the
ambient space P3. We thus have the freedom of choosing Q in any way we
want. Let

Q — ZQR3 — Z21%2.



212 3. Seiberg-Witten Equations on Complex Surfaces

The zero set S of ) is the image of the Segre embedding
Pl x P! — Pg, ([80 : 81], [to : tl]) — [Soto 1 sot1 @ s1tp - Sltl]

which shows that the quadric Q = 0 is biholomorphic to P! x P!'. This is
a special example of a ruled surface. Observe that S is spanned by two
families of lines: the A-lines

Aoy =P X [to : t1], [to: t1] € P,
and the B-lines
B[80!S1] = [So : 51} X ]P)l, [80 : 81] S Pl.

These lines have a nice intersection pattern. No two distinct lines of the
same type meet while any A-line intersects any B-line in a unique point.

The quadrics are rational surfaces. To see this consider again the above
quadric S CP3and p=[1:0:0:0] € S. The projective tangent plane to
S at p intersects the quadric S along the lines

by = [80 :0:81: 0] = A[110]7 [50 : 81] S Pl,
and

= B[I:O] = [to 217 :0: O], [to : tl] € P
Now project S from p onto a plane H C P3. This means that to each ¢ # p
we associate the point 7(q) € H, the intersection of the line pg with H. The
map 7 : S\ {p} — H is holomorphic but does not extend as a holomorphic
map S — H. Denote by ¢; the point where the line ¢; intersects H.

If we blow up S at p the points on the exceptional divisor correspond
to the lines through p tangent to S and each of these lines intersects H in
a unique point. This shows that the projection S\ {p} — H leads to a well
defined holomorphic map .

7S, — H.
Denote by ?; the proper transform of ¢; in the blow-up. Observe that 0; are
smooth rational curves of self-intersection —1. The restriction
7:8,\(l1Uly) » H

is one-to-one while 7(¢;) = ¢;. Using the Castelnuovo-Enriques theorem we
can blow down the curves ;. Denote by X the resulting surface. 7 descends
to a biholomorphism X — H. Thus we arrived at H = P? by blowing up
once and blowing down twice, which shows that S is rational.

Exercise 3.1.3. Show that any line on a quadric is either an A- or a B-line.

Example 3.1.30. (Hirzebruch surfaces) We have seen that a quadric
can be viewed as the total space of a holomorphic family of lines (P!’s) pa-
rameterized by P'. The Hirzebruch surfaces F,,, n > 0, are twisted versions
of such families.
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Define Fy := P! x P! and F; = F(¢) as the graph of the projection from
a point py € P? to a line £ C P? not containing py. More precisely

F, = {(z,y) € P* x {; z € poy}

where pgy denotes the line determined by the points pg and y. Observe
that Fy coincides with the blow-up of P? at py. We denote by E < F; the
exceptional divisor. There is a natural map

ﬂ:Fl(E)g]‘?)zDHEg]P)l

defined as follows. If p € E then set 7(p) = p. If p is not on the exceptional
divisor then it corresponds to a unique point on P? not equal to py; we
continue to denote by p this point on P?. The line pgp defines a unique
point on E which we denote by m(p). 7 is holomorphic and its fibers are
all lines, more precisely, the proper transforms of the lines through pg. The
proper transform of ¢ is a line ¢ on F; with self-intersection 1. We will
say that E is the O-section of the fibration 7 : F; — P! and that ? is the
oo-section.

More generally, for n > 0 consider the line bundle —nH — P!. We
denote by F,, the projectivization of the rank-2 vector bundle

E,=C® (—nH) —» P!

meaning the bundle over P; whose fiber over p € P! is the projective line
P(E,(p)). By definition, F,, is equipped with a holomorphic map

7Tn2Fn—>P1

whose fibers are projective lines. The section 1 & 0 of E,, defines a section
of F,, called the 0-section and denoted by Dy. Observe that if s is a section
of nH it defines a section of

P((nH) ® C) = P(C & (~nH))

called the oco-section and denoted by D... Dy and Dy, are divisors and we
will denote the classes they determine in Hy(F,,,Z) by the same symbols.
Also, we denote by F' the cohomology class carried by a fiber. Since Dy and
D, are sections we have

Do-F =Dy -F=1.

Clearly
F-F=0.
Since Dy comes from the zero section of —nH which has degree —n we have

D2 = —n.



214 3. Seiberg-Witten Equations on Complex Surfaces

The homotopy exact sequence of a fibration shows that F,, is simply con-
nected while Gysin’s exact sequence shows that H2(F,,Z) = ZF @ ZDy, so
that the intersection form of F,, is

o 1
qn_l—n'

The intersection form is even iff n is even, so that F,, is spinnable iff n is
even.

From a differentiable point of view the Hirzebruch surfaces are S2-
bundles over S? and these bundles are classified by 71(SO(3)) = Zy. This
shows that F,, is diffeomorphic to F,, if and only if n and m have the same
parity.

It is easy to compute the canonical class K of F,,. It can be written as

K=xF+yDy
so that
K- -F=y, K-Dy=2x—ny.

Using the adjunction formula we deduce
1
0=g(F) =1+ F (F+K)=1+2,

1 r—ny—n
0=g(Do) =1+ Do - (Do + K) =1+ — 21—
This shows y = —2 and x = n — 2 so that
K =(n—-2)F —2D,.

Let us observe that the zero section Dy is the unique smooth irreducible
curve on F, with negative self-intersection. Indeed, if D were another such
curve, D # Dy,
D =aF + bD(]
then
0<D-Dyg=a—nb, 0<D-F=b

and

0> D-D = —nb>+ 2ab = b(2a — nb).
The above inequalities are clearly impossible. Thus the Hirzebruch surfaces
F,, are minimal for n > 2 and F,, is not biholomorphic to F,, if m # n.

If we now blow up F,, at a point p not situated on Dy we obtain a surface
f‘n — F,.

The proper transform of the fiber F' through p is a rational curve E of self-
intersection —1 which can be blown down and we get a new surface F. The
pencil of fibers of F,, is transformed into a pencil of smooth rational curves of
self-intersection 0 which cover each point of F exactly once. This shows that
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F is also a ruled surface, i.e. a holomorphic fiber bundle over P! with fibers
P!. On the other hand, the curve Dy in F,, is mapped to a smooth rational
curve R in F with self-intersection R? = D(Q) 4+ 1 = —n+ 1. This shows that
F' is biholomorphic to F,_1 and all Hirzebruch surfaces are bimeromorphic,
and thus rational. One can show (see [49]) that any minimal rational surface
is biholomorphic to either P? or one of the Hirzebruch surfaces F,,, n > 2.

Example 3.1.31. (Cubics) Consider six points py, - -, pg in general posi-
tion in P2, meaning

¢ no three are collinear and

© no five are on the same conic.

The space of homogeneous cubic polynomials in three variables zg, z1, 22
is (g) = 10-dimensional. The above six points define a four-dimensional
subspace V consisting of polynomials vanishing at the p;. Each P € V
defines a cubic curve {P = 0} C P? containing all these six points.

Any point ¢ € P2\ {p1,--- ,pe} determines a hyperplane
H,={PeV; P(g)=0}
so we get a holomorphic map

fP2\{pla)p6}9qHHq€P(V*)

This map can be equivalently described as follows. Fix a basis Zy,- - , Z3
of V. Then f is the map
g [Zo(q): - Z3(q)] € PP

This map has singularities at the points p; but, by blowing up at these points
we hope to obtain a well defined map,
f : Ip)??l,"-,pe‘ — P,

We refer the reader to [10] or [49] where it is shown that this map is well
defined, its image is a smooth degree-3 surface S in P2 and f is a biholomor-
phic map P??h---p(s — 5. Conversely, one can show that any smooth cubic
in P3 is biholomorphic to the blow-up of P? at six points, not necessarily in

general position. For details we refer to [49].

The surfaces presented so far were all rational and it took some ingenuity
to establish that. Fortunately there is a very general method of deciding the
rationality of a surface.

Theorem 3.1.32. (Castelnuovo) If M is an algebraic surface such that
q(M) := hOY (M) = 0 and po(M) := h°(2K ;) = 0 then M can be obtained
by iterated blow-up from P? or one of the Hirzebruch surfaces. In particular,
M s rational.
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For a proof we refer to [10] or [49].

Example 3.1.33. (Hypersurfaces in P?) The homogeneous polynomials

of degree d > 1 in the variables zg, - - - , z3 form a vector space V; of dimension
d+3 d+3)(d+2)(d+1
dimc Vy = ( ;— > = (d+3)( —g J(d+ )

For a generic F' € V; the zero locus {F = 0} is a smooth hypersurface
X = X, of degree 3 in the projective space P3. According to Lefschetz’
theorem X is simply connected for each d. Hence

¢(X) = %bl (X) = 0.

To compute the main invariants of Xy we will rely on the adjunction formula.
X, can be viewed as the zero set of a section of the line bundle dH — P3.
The adjunction formula holomorphically identifies (dH) |x, with the normal
bundle of X; < P3 from which we deduce

TP |x,= TX @ (dH) |x,
a(P?) |x=ci(X) (1 + (dH)t) |x

where ¢; denotes the Chern polynomial. Using the computations in §2.3.4
we deduce

1+ tH)* | x= a(TX) (1 + (dH)t> Ix, H=o.
By setting Hx := H |x and observing that H% = d (= the number of
intersection points of a line with X) and H% = 0 we obtain
Lt ey (TX)t + o (TX)2 = (1 + Hyt)? <1+(dHX)t>_1
(1+ Hxt) (1 — (dHx)t + (2H2 )t2>

(1 + (4Hx)t + (6Hx)t ) (1 — (dHx)t+ d3t2)

=1+ (4—d)Hxt+ (d* — 4d* + 6)t*

Thus

KX = —Cl(TX) = (d— 4)HX
and

K% = (d—4)’H% = d(d — 4)°.
On the other hand, c2(T'X) is the Euler class of 7X and thus

x = d(d*> — 4d + 6)

where x denotes the Euler characteristic of X. Using the signature formula

K§:2x+37
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(17 = signature) we deduce

4 — 2
Tzd(?)d):b2+62

In this case x = b1(X) + ba(X) 4+ b4(X) = 2 + ba(X) so that
bo(X) =d* — 4d* +6d — 2 = b +b;.
Hence
(d—1)(d - 2)(d - 3)
3

by =1 (d-1
Po="— =\ 3 )

Observe that Kx = we(X) mod 2 and since X is simply connected we
deduce that the intersection form of X is even iff d is even. Equivalently,
this means X, is spinnable iff d is even. Using the Classification Theorem
2.4.13 of §2.4.3 we can now describe explicitly the intersection form of X.

+1

1
b = (bt 7) =

and

Observe that for d > 4 the line bundle Kx is ample so that according
to the Kodaira vanishing theorem

HI(X,nKx)=0, Yk,j>0.

Thus, using the Riemann-Roch-Hirzebruch formula we deduce

Pu(X) =h'(nKx) = xo(nKx) = %(x +7)+ %n(n —-1)K%

Y
= MY -+ L.

For d < 4 we deduce that Kx = (d — 4)Hx is negative, as the dual of
the positive line bundle (4 — d)H |x. Using the Kodaira vanishing theorem
we deduce that the line bundles nKx, n > 0, do not admit holomorphic
sections. Hence ¢(X) and P»(X) = 0. Castelnuovo’s Theorem 3.1.32 once
again shows that the hypersurfaces of degree < 4 in P? are rational.

The case d = 4 deserves special consideration and will be discussed in a
more general context in the next example. Observe only that

Py(Xy) =1, ¥n>0.
Example 3.1.34. (K3 surfaces) A K3 surface is a compact complex
Kahler surface X such that b;(X) = 0 and whose canonical line bundle
is topologically trivial.

Suppose X is a K3 surface. Then
1
q(X) = §b1 =0.

Also
pg = dim HO(Kx) =1 = h*%(X) = h"*(X)
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so that

by =2py+1=3.
Using the signature formula we deduce

2x +3r=K% =0

so that
2(2+ b3 +by) =3(b; —by).

Since by = 3 we deduce b, = 19 so that 7 = —16. The intersection form
gx of X is even since we(X) = Kx mod 2 so that, according to the
Classification Theorem 2.4.13, we deduce that

gx = 3H @ —2Fs.

M. Freedman’s theorem shows that all K3 surfaces are homeomorphic to
each other.

The smooth quartics (degree 4) in P3 are K3 surfaces. The space of
degree-4 homogeneous polynomials in variables zg,--- , z3 form a space of
dimension 35 and thus we get a 34-dimensional family of K3 surfaces. Not
all quartics in this family are different. The group PGL4(C) (which has di-
mension 15 = 16—1) acts by change of variables on this space of polynomials
leading to isomorphic surfaces. If we mod out this action we are left with
a 19-dimensional family of K 3-surfaces. We only want to mention that not
all K3 surfaces can be obtained in this manner (they form a 20-dimensional
family).

Remark 3.1.35. All K3 surfaces are diffeormorphic to each other although
not biholomorphic. In particular, all are simply connected. For more details
we refer to [9, 59].

Exercise 3.1.4. Suppose X is a K3 surface. Then Kx is also holomorphi-
cally trivial.

Example 3.1.36. (Elliptic surfaces) An elliptic surface is a triple
(X, f,C) where X is a complex surface, C' is a smooth complex curve (i.e.
Riemann surface) and f : X — C is a holomorphic map such that there
exists a finite set F' C C' with the following properties:

of: X\ fY(F)— C\F is a submersion.
o For any = € C \ F the fiber f~!(z) is biholomorphic to a smooth elliptic
curve (i.e. biholomorphic to a smooth cubic in P?).

We want to present two fundamental examples of elliptic surfaces. For
a detailed presentation of this important class of complex surfaces we refer
to [40].
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—)
%G

Vanishing cycle Singular fiber

in a nearby fiber

Figure 3.2. A node singularity

A. Consider two smooth cubic curves Ci,Cy C P? intersecting in nine dis-
tinct points, p1,---,pg. Thus C; are described as the zero sets of two ho-
mogeneous polynomials P;, i = 1,2, in the variables (zo, 21, 22). We get a
map

FP2\{p1, - ,po} = P, p— [Pi(p), Pa(p)]-
Observe that f(p) = [A: p if and only if uPi(p) + AP2(p) = 0. This map
induces a well defined map

. _ ™2 1
F:X =P, . p—P

whose generic fiber is a smooth elliptic curve (i.e. a biholomorphic to a
smooth cubic on P?). The discriminant locus Ap C P! i.e. the set of critical
values of F', is finite. In fact, the polynomials P;, P> can be generically
chosen so that the critical points of F' are nondegenerate, i.e. near such a
point F behaves like the function z;zp near 0 € C?. Such singular fibers
have a node singularity and look like Figure 3.2. The Euler characteristic of
such a singular fiber is 1 (see Figure 3.3 for a Mayer-Vietoris based proof).

It is an elementary exercise in topology to prove that if F' : S — C is
a holomorphic map whose fibers, except for finitely many Fi,--- , F,, are
smooth complex curves of genus g then

(3.1.19) X(S) = x(O)X(F) + Y _(x(F)) = x(F))
=1

where F' denotes a generic fiber. In our case x(F) = 0 since the generic
fibers are tori, so that
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Figure 3.3. Chopping the node

where v is the number of singular fibers of the fibration F : X — P'. Thus
v:=x(X) =12

The canonical class of X is Kx = —3H + Z?:l FE; so that, using the
Riemann-Roch theorem, we deduce
1
Xhot(X) = E(Kgc +x(X)) =1

Observe that each of the nine exceptional divisors intersects each of the
fibers of F' in exactly one point and thus they can be regarded as sections of
the fibration F': X — P!. Notice that the self-intersection numbers of these
sections are all equal to —1. We will denote by E(1) the smooth 4-manifold
supporting the complex manifold X.

B. Consider two homogeneous cubic polynomials Ay and A; in the variables
(20, 21, 22). The equation

tng(Zo, 21, 2’2) + t?Al(Zo, 21, 22) =0

defines a hypersurface V,, in X = P! xP2. For generic Ag, A; this is a smooth
hypersurface. The natural projection

P! x P2 — P!
defines a holomorphic map F, : V;,, — P!. Its fiber over the point [to : 1] is
the cubic
Cito:ty) = lz0 1 211 20] € P2; 18 Ag(20, 21, 22) + t1 A1 (20, 21, 22) = O}.

Hence V,, is equipped with a structure of elliptic fibration. To compute
some of its invariants we will use the adjunction formula. Denote by H; the
hyperplane class in H2(P*,Z), i = 1,2. The classes define by pullback classes
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in H?(X,Z) which we continue to denote by H;. The Kiinneth formula shows
that
H*(X,Z) = 7ZH, ® ZH,, H*(X,Z)=7ZH, - Hy ® Z.H3
and
H?=0=H;, H,-Hi=1.
We have
ct(TX) = ci(TPY) e (TP?) = (1 + Hit)*(1 4 Hyt)3.
The normal bundle Ny, to V,, — X is (nH1+3H2) |y, and thus it has Chern
polynomial

ci(Ny, ) = (1 v (nHy + 3H2)t) v .

Hence

—1
ct(TVy) = (14 Hit)? |y, (14 Hat)3 |y, (1 + (nHy + 3H2)t) v

- (1 + (2H1)t) lv., (1 + (3Ha)t + (3H22)t2) Vi

X (1 — (nHy + 3Ho)t + (nHy + 3H2)2t2> v,

= (1 + (2Hy + 3H,)t + (6H1 Hs + 3H22)t2> v,

X (1 — (nHy + 3Ha)t + (6nH Hy + 9H22)t2> v,
:1+(2_n)H1‘Vnt
+ ( (6n + 6)Hy - Hy + 12H3 — (2H) + 3Ha)(nH; + 3Ha) ) v, t°

=1+ (2-n)Hi|v, t+ (3nH Hy + 3H3) |y, t*.
Thus
co(TVy) = (3nHyHy 4 3H2) |y, = (3nHHy + 3H3) - (nHy + 3Hy) = 12n.
Moreover
Ky, = (n—2)Hily,
so that
K¢ =0.
Observe that the Poincaré dual of the cohomology class Hy |y, € H?(V,,Z)
is precisely the homology class carried by a fiber of F}, : V,, — P!. Using the
Riemann-Roch formula we deduce
Xhol(Vn) =n.

Let us now notice that V; is precisely the surface we considered in A since the
natural projection V,, — P? has 9 singular fibers F; = P x {p;},i=1,---,9,
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corresponding to the intersection points of the cubics Ay = 0 and A; = 0
on P2, Each of these fibers has self-intersection —1 (why?) in V,, and thus
can be blown down.

Denote by f, : P! — P! the natural branched cyclic n-cover given by
[to : t1] — [ty = tT].

The map f, x 1 : P! x P2 — P! x P? induces a holomorphic map
gn : Vi, — V1 such that the diagram below is commutative

VnLVl

Pl L IP)l
Thus, we can regard the fibration F}, : V,, — P! as a pullback of the fibration
Fy : V1 — PL. A simple argument involving Lefschetz’ hypersurface theorem
implies m(V,,) = 0 (see [40, Sec. 2.2.1] for a different explanation). In
particular, this shows Vs is a K3 surface. Moreover, using the equality

b1

Xnot (Vi) =1+ pg(Va) (a(Va) = 5= 0)

we deduce
pg(Vp) =n—1
so that
by (Vo) = 2pg(Vi) +1=2n — 1.

Using any section of F} : Vi — P! we obtain by pullback a section
Sy, : P — V,, which defines a holomorphic embedding of P! in V;,, that is, a
smooth rational curve S,, on V,,. Using the genus formula we deduce

1
0=g(Sp) =1+ §Sn (Ky, +55).

On the other hand, we have Ky, = (n —2)F where F' denotes the Poincaré
dual of the homology class of a fiber of F}, : V,, — P!. Observe that S,,-F =1
since 5, is a holomorphic section. Hence

1
so that
Sp - S, = —n.
In particular, on the K3 surface Vo we have Sy - So = —2. We will denote

by E(n) the smooth 4-manifold V,,. We refer to [51, Chap. 3,7] for different
(C*°-descriptions of these important examples.

Exercise 3.1.5. Prove the identity (3.1.19).
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Exercise 3.1.6. Show that the homology class F' carried by a fiber of F), :
V, — P! is primitive , i.e. it cannot be written as nF’, n > 1, F' €
Hy(E(n),Z). Use this information to describe the intersection form of E(n)
and then to conclude that F(n) is spin if and only if n is even.

Exercise 3.1.7. Prove that V,, is simply connected using Lefschetz’ hyper-
surface theorem.

Exercise 3.1.8. Suppose X is an algebraic K3 surface which contains a
smooth complex curve C such that C? = 0. Prove the following:

(a) Show that ¢g(C) = 0.

(b) Show that dim H°([C]) = 2 and the complete linear system determined
by C' has no base points.

(c) Conclude that X admits a natural structure of elliptic fibration.

(d) Show that a quartic X C P? which contains a projective line ¢ also
contains a curve C as above. What is the self-intersection number of £ — X7

3.1.3. Kodaira classification of complex surfaces. The Riemann sur-
faces (i.e. complex curves) naturally split into three categories: rational
(genus 0), elliptic (genus 1) and general type (genus > 2). This classifica-
tion is natural from many points of view. From a metric standpoint these
three types support different types of Riemannian metrics. From a com-
plex analytic point of view, the canonical line bundles of these three classes
display different behaviours.

A similar point of view can be adopted for complex surfaces as well.
Recall that the plurigenera P, (X) of X are the dimensions of the spaces of
holomorphic sections of the line bundle Kg?”.

It can be shown that for any complex surface X the sequence of integers
(P, (X)) displays one of the following asymptotic behaviors.

—00 P,(X)=0Vn>1.

0  There exists C' > 0 such that P,(X) < C Vn > 1 but P,(X) is not
identically zero.

1 There exists C' > 0 such that
%n < Po(X)<Cn, Yn>1.
2 There exists C > 0 such that

%n2 < Pu(X) < Cn?, Vn>> 1.

Accordingly, the surface X is said to have Kodaira dimension —o0,0,1 or
2. The Kodaira dimension is denoted by kod (X). A complex surface of
Kodaira dimension 2 is said to be of general type.
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The plurigenera are invariant under blow-up, so that they are bimero-
morphic invariants of a complex surface. In particular, the Kodaira dimen-
sion of a complex surface is a bimeromorphic invariant.

Example 3.1.37. (a) kod (P?) = kod (V1) = —oo. Since the Hirzebruch
surfaces F,, are rational, they too have Kodaira dimension —ooc.

(b) kod (V2) = 0. More generally, any K3 surface has Kodaira dimension
Z€ro.

(c) kod (V) =1, Vn > 3.
(d) Any hypersurface in P? of degree d > 5 has Kodaira dimension 2.

Exercise 3.1.9. Prove the claims (c) and (d) in the above example.

In the remainder of this subsection we will focus our attention on alge-
braic surfaces. For the proofs of the following theorems and for more details
we refer to [39, 59| and the references therein.

The Kodaira dimension contains a significant amount of information, as
witnessed by the following result.

Theorem 3.1.38. (a) If the algebraic surface X has Kodaira dimension
—o0 then it is bimeromorphic to P? or a geometrically ruled surface, i.e. a
surface biholomorphic to a product P! x C, C smooth complex curve.

(b) If an algebraic surface has Kodaira dimension 0 then P,(X) € {0,1},
Vn > 1.

(c) An algebraic surface of Kodaira dimension 1 is necessarily an elliptic
surface.

According to Theorems 3.1.24 and 3.1.25 each algebraic surface is bimero-
morphic to a minimal one called a minimal model.

A bimeromorphism class of surfaces may contain several, minimal,
nonbiholomorphic models. For example P2, F,,, n > 2 are all minimal
models of rational surfaces which are not biholomorphic.

The above example is in some sense an exception. More precisely, we
have the following result.

Theorem 3.1.39. An algebraic surface X has a unique (up to biholomor-
phism) minimal model if and only if kod (X) > 0.

There is a simple intersection theoretic way of deciding which minimal
surfaces have nonnegative Kodaira dimension. More precisely, we have the
following result.

Theorem 3.1.40. Suppose X is a minimal algebraic surface. Then
kod (X) > 0 if and only if the canonical divisor Kx is nef.
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Thus any minimal algebraic surface X with Kx nef can have Kodaira
dimension 0, 1 or 2. The exact value of the Kodaira dimension is also decided
by the intersection theoretic properties of the canonical divisor.

Theorem 3.1.41. Suppose X is a minimal algebraic surface with Kx nef.
Then Kg{ > 0 and the following hold.

(a) kod (X) = 0 if and only if Kx is numerically equivalent to zero.

(b) kod (X) =1 if and only if K% = 0 but Kx is not numerically equivalent
to zero.

(¢) kod (X) = 2 if and only if Kx is big, i.e. K% > 0. In this case
n(n—1)

Pa(X) = 20

Kg( + Xhol(X)‘

3.2. Seiberg-Witten invariants of Kahler
surfaces

The Seiberg-Witten equations simplify considerably in the presence of a
Kéahler metric. This section is devoted to the study of this interaction,
Seiberg-Witten equations «» Kahler metrics and some of its remarkable con-
sequences.

3.2.1. Seiberg-Witten equations on Kahler surfaces. Consider a Kéhler
surface M and denote by w the associated symplectic form. Observe that
the Kahler structure leads to several canonical choices on M.

e The complex structure on M defines a canonical spin® structure oy with
associated line bundle det(oo) = K;,;. K;; is naturally a holomorphic line
bundle equipped with a natural Hermitian metric. Moreover

S¢ = A"’T*M & A°°T*M = Co K}
and
Sy = AY'T* M.
This choice allows us to identify the spin® structures on M with the space
of complex line bundles via the correspondence

L+— oy® L.

Observe that
det(og ® L) = K @ L*.
Additionally, the associated bundles of complex spinors are

Sf=LoL®K,, S;=A"T"M® L.
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Thus, any even spinor ¢ € I'(S}) canonically splits as

(3.2.1) Yv=a®B, acl(L), BeT(L®K,).
In the new “coordinates” on Spin®(M) the involution o +— & has the form

e The Kahler structure on M produces a Chern connection on T'M which
induces a connection Ag on K]\_/Il compatible both with the canonical metric
and the canonical holomorphic structure.

e The metric and connection Ag on K ]\_41 canonically define a Dirac operator
Dy - S(J{ — S, which, according to the computations in Sec. 1.4, is none
other than the Dolbeault-Hodge operator

\/5(5+ 5*) . AO,evenT*M N AO’OddT*M.

Now observe that any Hermitian connection A on det(Sz) can be uniquely
written as a tensor product

(3.2.2) A:= Ay ® B¥?
where B is a Hermitian connection on L. Since
(3.2.3) Fy=Fp, +2Fp
we will use the less rigorous but more suggestive notation
A= Ay+2B.
The computations in 1.4.3 show that the Dirac operator induced by A is
(3.2.4) D= V2(0p @ Ip).

e Using the symplectic form w we can associate to any complex line bundle
L — M a real number deg_ (L) defined by

i
deg, (L) = %/M FaNw

where A is an arbitrary Hermitian connection on L. Observe that the above
integral is independent of L because w is closed and the cohomology class of
5-F4 is independent of A.

e The deRham cohomology space H'(M,R) is naturally equipped with a
complex structure.

To describe it recall that by Hodge duality there is a complex conjugate
linear isomorphism

Hy' (M) - Hy (M), ¢~ .

Since

H'(M,R) ® C ¢ HY' (M) & Hy" (M)
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there exists an R-linear isometry
0,1 .
T:Hy' (M) — iH'(M,R)
defined by
i
— —=(p +¢) € iH' (M).
T3l @) €I (M)

T induces a natural orientation on H'(M,R).

H%’l(M) S

e The Kihler structure defines a natural orientation on Hi(M ). More
precisely, observe that we have a natural R-linear isomorphism

iRw & HY? (M) — iH2 (M)

defined by the correspondences

iw i iw, HY? 58— —(B+ f) € iH2(M).

i
V2
The natural orientation on Rw@Hg’l (M) induces via the above isomorphism
an orientation on H2 (M).

Let us point out a very confusing fact. Denote by *. the Hodge operator
OPA(M) — Q2>7P274(M). Recall that x. is conjugate linear. A complex
valued 2-form 2 on M is said to be self-dual if

x.0 = Q
where the correspondence
OPI(M) > Q— Q € QPP (M)

is given by the Hermitian metric on T'M. For example the 2-form 2 = iw is
self-dual but

Now observe that any purely imaginary self-dual 2-form ® decomposes as

P = dow + ¢*? + 20

where
By € Q°(M,iR), @°? € Q"(M), B*° = —802 € 0*°(M)
and
1
(3.2.5) @ = Laa.

Recall that A is the adjoint of the exterior multiplication by w and Aw =
2 =dimc M.
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For any complex line bundle L — M and any ¢ = a® 3 € I'(S}) we can
regard the endomorphism ¢(¢) of Sz as a purely imaginary self-dual 2-form,
so that it has a decomposition

9(¥) = q(®)ow + a()*? + q(1)>°
as above. The identity (1.3.5) in Example 1.3.3 of §1.3.1 shows that

(326) o = (ol ~ |8?)

(3.27)  q()*? = %&ﬂ - %a ®BeT(L ® LKy~ (M).

e The Kéhler form on M also suggests a special family of perturbation
parameters 7. Fix u € H%Q (M) so that f is a holomorphic section of K.
For every t € R define

. t _
(3.2.8) e = ne(p) = 1iFa, + g¥ +2(p + ).

Now fix a spin® structure on M or, equivalently, a complex Hermitian
line bundle L — M. Denote by Cy, the space of configurations determined
by this spin® structure. Using the identifications (3.2.1) and (3.2.2) we can
alternatively describe Cy, as

Cr={(a,3; B) € T(L) x T(L ® K ') x A(L)}
so that
C=(,A) = (a® B; Ag+2B).
The n-perturbed Seiberg-Witten equations for C

{ Pap = 0
%

c(Fy +in') = 34(®)
are equivalent to
dpa+ 03 = 0
(3.2.9) AFp = g(laf = |8 1)

0,2 . _
Fpo+ip = %aﬁ
The first equation in (3.2.9) is clear in view of (3.2.4). Let us explain the
remaining two.

Observe first that

i
Fi+inp =2F} + g+ 2i(p + 1)
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and
AQ = AQT, VQ € Q*(M)®C.
Thus
AFS +int) =2AFp + it.
Using the identity (3.2.6) we deduce

Aq() = 5(af? ~ 18,

The second equation in (3.2.9) is precisely the equality A(F{ +in:) = Aq(v).
Next observe that

. . i .
(Fa+1n)"% = F42 4 2F* + 20+ g™ = 2F " + 21p

because w is a (1,1)-form and Fgf = 0 since Ag is the Chern connection
defined by a Hermitian metric and a holomorphic structure on K ;41. The
last equality in (3.2.9) is now a consequence of (3.2.7).

The virtual dimension of the moduli space corresponding to the spin®
structure L is

A(L) = (1L~ Kar)? — (2xas +370))

1
= Z{(4L2—4L-KM+K§4)—K%(J} =L -(L-K).
Remark 3.2.1. Suppose by (M) = 1 i.e. py(M) = 0. Then u can only be

0. To decide in which chamber n; lies we have to understand the sign of

1
/ (e —2mei(deto @ L) ) A —=w
M

V2

or, equivalently, the sign of

t
—/ w/\w—i—i/ Fuy Aw — 27 deg, (K, @ L?).
8 Jm M

Now observe that the second integral is precisely 2w degw(K;/[l) so we have

to decide the sign of
tvol (M)
4

We deduce that for ¢t > VO%%/[) deg,, (L) the perturbation 7 lies in the positive

chamber with respect to the Kédhler metric while for ¢ < VO}?’&) deg,, (L) it

—4mdeg, L.

lies in the negative chamber.
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Definition 3.2.2. A complex line bundle L — M is said to have type (1, 1)
with respect to the Kéahler metric if its first Chern class is of type (1, 1) with
respect to the Hodge decomposition

H?(M,C) = Hy' (M) & HY' (M) & HZ°(M).

Observe that if by (M) = 1 then all classes have type (1,1) since p, =
dim H2°(M) = 0.

We have the following vanishing result.

Proposition 3.2.3. If L — M is a complex line bundle over M which is
not of type (1,1) then the Seiberg- Witten invariant of M corresponding to
the spin® structure determined by L is zero,

swyr(L) = 0.

Proof  We consider the equations (3.2.9) corresponding to p = 0 and
t = 0. Applying dp to the first equation we deduce

d%a + 0pdpB =0
so that
Fg’QOz +0p05B = 0.
Take the inner product with § and integrate by parts to obtain

/<F1(§’2a,ﬁ>dv+/ 0502 =

Now use the third equation of (3.2.9) in the first integral above. We get

5/ 160k + [ joipla ~o.

This shows « - 8 = 0 so that Fg’Q = 0. Since Fé’o = 132 we deduce Fp is
a (1,1)-class so that L must be a (1, 1)-line bundle. This shows that (3.2.9)
has no solution in this case. B

3.2.2. Monopoles, vortices and divisors. As was observed from the
very beginning by Edward Witten in [149], the solutions of the equations
(3.2.9) are equivalent to the complex analytic objects called vortices. These
can then be described quite explicitly in terms of divisors on M. In partic-
ular, this opens the possibility of completely and explicitly describing the
moduli spaces of monopoles.

Since we are interested only in Seiberg-Witten invariants then, according
to Proposition 3.2.3, it suffices to consider only the case when L has type
(1,1). To obtain further information about the solutions of (3.2.9) we will
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refine the technique used in the proof of Proposition 3.2.3. We follow closely
the approach in [13].

Observe that since L has type (1,1) it follows from the third equation
of (3.2.9) that iy is the d-harmonic part of the (0,2)-form %o‘zﬁ. Denote by
[@3] the O-harmonic part of @3. Again, applying dp to the first equation in
(3.2.9) we deduce as in the proof of Proposition 3.2.3

1 o
(édﬂ - iu)a =0pdpf =0
or equivalently
1 — — a  ax*
é(aﬁ — [aB])a + Op0EA3 = 0.
Taking the inner product with § and integrating by parts we get

1

5 | (@9~ (asl,ap)do + 1512 =0,

Since [@3] is L?-orthogonal to af — [@3] we deduce

1 _ _ Ok
glas = [@Bl + 1951172 = 0.

Thus
38 =0, ap = [ap) = iy
and .
Fy* = S (@~ [af)).

Using the equality 5*Bﬁ = 0 in the first equation of (3.2.9) we conclude that
Jpa = 0.

We have thus proved the following result.

Proposition 3.2.4. Any solution («, 3, B) of (3.2.9) satisfies the conditions

(3.2.10a) Fp? =0,
(3.2.10b) Opa = 0583 =0,
(3.2.10¢) ap = iy,
(3.2.10d) AFp = %(|a|2 — 182 —t).

Definition 3.2.5. The solutions of the system (3.2.10a) — (3.2.10d) are
called (p,t)-vortices. When p = 0 we will call them simply vortices.
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Obviously, any (u,t)-vortex is also an 7m-monopole.

The condition (3.2.10a) shows that B induces an integrable complex
structure on L. The equalities (3.2.10b) show that « is a holomorphic sec-
tion of L (with respect to the above holomorphic structure) and f is an
antiholomorphic section of K, ' L = L — K. Hence 3 is a holomorphic
section of Kjs — L. The equality (3.2.10c) can be rewritten as

(3.2.11) af = —8if.

In the above new formulation, f is a holomorphic section of Kj;. To proceed
further we have to distinguish two cases.

A. The case p = 0. Thus, o3 = 0. Since both « and 3 are holomorphic
sections the unique continuation principle implies that at least one of them
must be identically zero.

Now let us observe that if a holomorphic line bundle £ — M admits a
nontrivial holomorphic section s then deg (E) > 0 because deg,(F) can be
interpreted as the integral of w over the (possibly singular, possibly empty)
complex curve s~1(0) on M. According to Proposition 3.1.1, this integral is
none other than the area of this curve . Thus,

a#0=deg,(L) >0 and §=0

while
B #0=deg,(Ky—L)>0 and a=0.
On the other hand, observe that

deg,(L) = 2;/ Fp /\w——/ AFB

i (3.2.10d) 1 9 9
= — AFgd = — t— dvpyg.
5 | AFpdun “2 o [ (182 44— faf)dow
If we fix ¢ such that
167
t # ————deg, (L

then the above equality shows that at least one of o or 8 must be nontrivial.
Moreover, when ¢ < 1?” 78] deg,, (L) then a = 0 and (3 # 0 because otherwise
we would obtain
1 9 tvol (M)
= - R S
50 and deg(0) = 1= [ (¢l < 50

Similarly, when ¢ > 16(” iy deg,, (L) we must have 5 = 0 and «a # 0. Using
Remark 3.2.1 we obtaln the following vanishing result.



3.2. Seiberg-Witten invariants of Kahler surfaces 233

Proposition 3.2.6. (a) If b (M) > 1 and swy(L) # 0 then
0 <deg, L <deg, K.
(b) If by (M) =1 and sw},(L) # 0 then
0 < deg, (L)
while if swy; (L) # 0 then
deg,,(L) < deg,,(Kwm)-

The above discussion also shows that for ¢ > 0 the vortices are found
amongst pairs (F,«) where F is a holomorphic line bundle topologically
isomorphic to L and « is a holomorphic section. The metric on L imposes
an additional condition on a through (3.2.10d) in which § = 0. The pairs

(holomorphic structure on L, holomorphic section of L)

are precisely the effective divisors D on M such that
ci([D]) = e (L).

Can we reverse this process? More precisely, given an effective divisor [D]
such that ¢1([D]) = ¢1(L), can we find a solution («, 8 = 0; B) of (3.2.10a)
— (3.2.10d) such that D is the divisor determined by a, D = a~1(0)? To
formulate an answer to this question let us first fix a Hermitian metric hg
on L.

Proposition 3.2.7. Suppose L — M has type (1,1) and deg,,(L) > 0. Fiz

167

(3.2.12) t> Vol (M) deg,,(L).

Given an integrable CR operator ¥ on L and a ¥-holomorphic section o of
L,

Ya =0,
there exists a unique function u € C°°(M) such that the following hold.
(a) If 9, := e"*Pe™ " then c,, = e « is Yy -holomorphic.

(b) If B, denotes the ho-Hermitian connection on L induced by the CR-
operator ¥, then

(3.2.13) AFp, = %(|05u’2 —1),

that is , (c, ® 0; By) satisfies (3.2.10a)-(3.2.10d) with p = 0.
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Proof Observe first that, for any u € C*° (M), the CR-operators 9 and v,
define the same holomorphic structure on L and that in fact the condition
(a) above is tautological. Denote by By the Chern connection determined
by ¥ and hg. Let u € C°°(M). As shown in Example 1.4.19 of §1.4.2 the
Chern connection B, determined by e“dJe™" and hg is

B, = By + 0u — Ou.
Its curvature is
(3.2.14) Fp, = Fp, + 00u — 80u.

We have to find u so that (o, B,) satisfy (3.2.13), i.e.
i
AP, = L(louf” ~1).
Using (3.2.14) we can rewrite this as an equation in wu:

) o y
(3.2.15) A& — 9du) — %\a\%me% - —lg — AFp,.

On the other hand, according to Corollary 1.4.11 of §1.4.1 we have

AD(du) = —15"Ou = —%Adu
and
A9Du = 10" 0u = SAq.
The equation (3.2.15) can now be rewritten as
1 t
(3.2.16) Agu + §|ayi062u = (g —iAFp,) =: f.

This equation was studied in great detail by J. Kazdan and F. Warner in
[61] (see also [105] for a different approach). They proved the following
result.

Theorem 3.2.8. (Kazdan-Warner, [61, Thm. 10.5]) Suppose k is a
positive real number and w(x) is a smooth function which is positive outside
a set of measure zero in M. Then the equation

Apru 4 w(z)ef = g € C°(M)

has a solution (which is unique) if and only if

/ gdupr > 0.
M
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Using the above existence theorem we deduce that the equation (3.2.16)
has a solution (and no more than one) if and only if

/ fdva > 0.
M

In our case this means

tvol (M) > 8/ iAFp,dvy = 167r/

L AFpduvy = 167 deg,, (L)
M M 27

which is precisely the condition (3.2.12). The proposition is proved. B

We have the two-way correspondences

t>0
nt(u = 0)-monopoles < effective divisors D such that ¢i([D]) = e1(L).

t<0

ne(u = 0)-monopoles « effective divisors D such that

c([D]) = ei(Ky — L).

Notation The symbol swg\j;)(a) will denote swi (o) if by (M) = 1 and
swr(o) if by (M) > 1.

From the above correspondences we deduce immediately the following
consequences.

Corollary 3.2.9. Suppose M is a Kdhler surface and L is a Hermitian line
bundle.

(a) If SWS\}F)(L) # 0 then L admits holomorphic structures with nontrivial

holomorphic sections.

(a) If swg\z)(L) # 0 then Ky — L admits holomorphic structures with non-
trivial holomorphic sections.

Corollary 3.2.10. Suppose M is a Kahler surface and L is a Hermitian
line bundle.

(a) If deg,, L = 0 and swg\}r)(L) # 0 then L is the (topologically) trivial line
bundle.

(b) If deg,(L) = deg,(Kn) and SW(_)(L) # 0 then L is (topologically)
isomorphic to K.

Proof We prove only (a). Part (b) follows from (a) using the involution
o +— & on Spin¢(M).
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We use the perturbation 7, with 4 = 0 and ¢ > 0. The condition
swg\})(L) # 0 implies that there exists a holomorphic structure on L admit-
ting holomorphic sections. If such a section does not vanish anywhere we
deduce that L is trivial. If it vanishes somewhere its zero locus defines an

effective divisor D and
deg,,([D]) = deg,,(L) = 0.

This contradicts Proposition 3.1.1, which states that deg, ([D]) is a positive
number expressible in terms of the area of supp (D). The corollary is proved.

Clearly, gauge equivalent monopoles lead to identical divisors, so that
the set of gauge equivalence classes of monopoles can be identified with the
above set of divisors. This identification goes deeper. The set of effective
divisors carrying the homology class Poincaré dual to ¢;(L) can be given a
(Hilbert) scheme structure. This structure can be described in terms of the
deformation complexes of the monopoles. If M is algebraic this allows one
to cast in an algebraic-geometric context the entire problem of computing
the Seiberg-Witten invariants. We will not follow this approach but we refer
the reader for details to [21, 41, 42].

B. The case p # 0. Suppose (a @ 3, B) is a (p,t)-vortex. Thus a defines
an effective divisor D such that

a([D]) = al(l)
and
D < ()

where (1) denotes the effective divisor determined by the zeroes holomorphic
section fi. More precisely, the effective divisor D is the divisor determined
by the holomorphic section 5. As in the case p = 0 we have the following
result.

Proposition 3.2.11. (O. Biquard, [13]) Suppose L is a complex line
bundle over M such that

0 < deg, L < deg,(Kn)-

Fixz o Hermitian metric hg on L. Suppose there exist an integrable CR
operator ¥ on L and holomorphic sections a € I'(L) and v € I'(Kp — L)
such that

ay = —8ij.
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Then there exists a unique function u € C°°(M) such that if B, denotes the
Chern connection determined by hg and v, = e“de™" then
(alu Bus Bu) = (eua’ €_u’7’ Bu)

is a (p,t)-vortex.

Observe that if ¥* is the CR operator induced by ¥ on L* then
(e"de™ )" = e “re".
This explains the definition of 3,.

Proof Clearly, for any smooth u the collection (v, 3y, By) defined as
in the statement of the propositions automatically satisfies the conditions
(3.2.10a) — (3.2.10c) in the definition of a (u,t)-vortex. Thus, it suffices to
find u such that (au, By, By) satisfies (3.2.10d).

Denote by By the Chern connection on L determined by hg and .
Arguing exactly as in the proof of Proposition 3.2.7 we deduce that v must
be a solution of the equation

1 1 _ t .
(3.2.17) Agu+ Zlaff, e = Slf,e ™ = = <§ - lAFBO).
We have to show that the above equation admits a unique smooth solution.

Existence We will use the method of sub/supersolutions. For an approach
based on the continuity method we refer to [13].

The method of sub/super-solutions is based on the following very general
result.

Theorem 3.2.12. Suppose F': M x R — R is a smooth function and there
exist two smooth functions u,U : M — R such that

(3.2.18) u<U on M,
(3.2.19) Apu < F(z,u(x)), Yo e M,
and

(3.2.20) ApU > F(z,U(z)) Yo € M.

Then there exists a smooth solution v of the partial differential equation
(3.2.21) Apv = F(z,v)
such that u < v <U.

The function u (resp. U) is said to be a sub-(resp. super)-solution of

(3.2.21). An outline of the proof of this theorem can be found in [105,
§9.3.3]. For complete details we refer to [1, 61]. The proof is based on a
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very important principle in the theory of second order elliptic p.d.e.’s which
will also play an important role in our existence proof.

Comparison Principle Suppose g : M x R — R is a smooth function
such that for all z outside a set of measure zero the function

u— g(x,u)
is strictly increasing. Then

Apru+ gz, u) > Apo + g(x,v) = u > v.

Exercise 3.2.1. Prove the comparison principle. (Hint: Consult [105,
§9.3.3].)

Using Kazdan-Warner’s Theorem 3.2.8 we deduce that for every s > 0
there exist smooth functions U, and vs; on M such that

1
Ay Us + §|a|2eQUS =f+s,

1
Apvs + §\7|2e2”s =3
where f is the function on the right-hand side of (3.2.17). Set

1 1
a =2 sup |a(x)]?, b= < sup |[y(z)[?
8 zeM 8 zeM

frmin = min f(z).
xeM
Observe that if cs is the constant function defined by
ae®s = frin + s

then
Apres + |al?e®s < fo = AU, + |af?e?Vs.

Using the comparison principle we deduce
(3.2.22) Us > cs — o0 as s — 00.

In particular, this shows that for s sufficiently large Us is a super-solution
of (3.2.17) because

1 1 ab
ApUs+ =lal?e®s — Z|yPe Vs > f4s—be 2 = f4s5— —— >
for s > 0. Similarly, if we denote by ds the constant function defined by

be?ds = g

we deduce .
Ad5+§|’y|2€2ds S s
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so that
(3.2.23) vs > d.
Set ug := —vs. Then
1 1
Barts + glafPe™s — Sy = —s 4 |af2e™
ab

< —sdae =54 —<f
S

for s> 0. Thus us is a sub-solution of (3.2.17). Using (3.2.22) and (3.2.23)
we deduce that for s > 0 we have
us < —ds < cg < Us.
Using Theorem 3.2.12 we conclude that (3.2.17) has a smooth solution «
such that
us < u < U

for s > 0.

Uniqueness It follows immediately from the comparison principle in
which g(z,u) = §|a(z)[>e*" — §|v(x)|*e~2". The proof of Proposition 3.2.11
is now complete. W

The above proposition has an immediate interesting geometric conse-
quence.

Proposition 3.2.13. Suppose M is a Kdhler surface such that pg(M) > 0
and Ky is not holomorphically trivial. Fiz p € H;’O(M) \ {0} and denote
by (n) the effective divisor determined by this section. Then for all t € R
there exists a bijection between the set of orbits of mi(u)-monopoles and the
set S, (M) of divisors D on M with the following properties.

0 0< D < (p).

o c1([D]) = e1(L) in H*(M,Z).

3.2.3. Deformation theory. Now that we have an idea of the nature of
monopoles we want to investigate whether the cohomology of the deforma-
tion complex associated to a monopole on a Kéahler surface can be described
in complex analytic terms.

Fix p € H%’Z(M), t € Rand L — M a type-(1,1) Hermitian bundle over
M. Suppose (o @® 3, B) is a (u, t)-vortex corresponding to L.

The corresponding monopole is C = (1), A) where
b=a®p, A:=Ayi2B.
The tangent space to Cr, at C is
TcCr =T(Sp @ iAT* M)
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where, for simplicity, we omitted the Sobolev labels. We will represent a
tangent vector C = (v,1b) (where ia = 2ib) in complex analytic terms. Thus
i

ib
V2

(p+@), pe Q™ (M),

and
Y=ad3e L) e (L).
Recall that (see §2.2.2)

. Dt c(ib)y
Tc [ 0 ] =| 2d%ib |+ | —id(v,4)
! —4id*h —iJm(e, )

We now proceed to express each of the objects in the above expression in
terms of ¢, & and f.

First, we have
2.4+ = VO 05 | § |+ sletie) <lig)- | § |

N %ca@)a T %c(iw)ﬂ

(use the computations in Example 1.3.3 in §1.3.1)
= V2(dpa+ 98) +i(p Aa— @ 1 3)
where @ denotes the contraction by a (1,0)-form.

~ Next observe that the self-dual part of a complex 2-form 6, defined by
0" = x0T, is explicitly given by

1
0" = fow + %% 4+ 620 = 5 Aw + %2 + 6*°,

In our case

0 = 2idb = ivV2d(¢ + ) = iV2(0 + ) (¢ + @)

so that .
2id b = %A(@gp + 0@)w + iV2(9p + 0p).
Since . .
a(¥) = gla ® B) = (I = 3w + (@5 — aB)
we deduce

6, ) = L (@Re(0,6) ~ Re( Ao+ S(68+ 6B — 6B~ af).
Next observe that
4d*b = 2v/2(8 + 0)* (¢ + @) = 2V2(0"p + 0" )
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and ‘ .
Jm (v, ¥) = Im{a, &) + Im(5, 3).
Thus .
if and only if
(3.2.24a) V2(0pé + 056) +i(p Ao — @ 1 8) =0,
(3.2.24b) A@p + ) = %(iﬁe(a, &) — RelB, ),
(3.2.24¢) i0p = ﬁ(dﬁ +ap),
(3.2.24d) 2V2(0*¢ + 0* @) 4+ Jm(a, &) + Im(3, §) = 0.

These equations can be further simplified using the Kéhler-Hodge iden-
tities in §1.4.1

Adp =i0%p, AO@ = —id*@, Yo € QUY(M).
Using these identities in (3.2.24b) we deduce

o~ % _1 % ook =\ 1 N\ ;

0m 3" = (0% — ) = — 15 (e ) — Re(, ).
The equation (3.2.24d) can be rewritten as

. ak i % * =) i ~ . ?

e = 5 (070 +0°p) = =5 (9m{ad) + Im(B, 5).

Thus (3.2.24b) + (3.2.24d) are equivalent to a single equation

g L :
(3.2.25) i = ﬁ(<a,a> (8.8))-
Proposition 3.2.14. (d,ﬁ, @) € ker 7c if and only if they satisfy the equa-
tions

(3.2.26a) dp =0,
(3.2.26b) B + %cp Ao =0,
(3.2.26¢) 856 — %@ 1B =0,
(3.2.26d) af+aff = 0,

and (8.2.25).
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Proof Clearly, if (&, (3, @) satisfy the equations (3.2.25), (3.2.26a) — (3.2.26d)
then they satisfy (3.2.24a), (3.2.24c) and thus they must lie in the kernel of
7Tc. To prove the converse statement we follow the approach in [13].

Rewrite (3.2.24a) as
_(\/§5EB —ip1p) = V20 +ip A

and observe that the operator —i | ¢ on Q**(L) is the adjoint of ipA. We
deduce

0> —||V2058 —ig 1 8|2, = / (V20p6 + ip A o, V2053 + (ioA)*B)duys
M
—/ <\/§830'4,\/§6]*3B>dvj\4+/ {ip A a, (ipA)*B)dvps
M M

+ / (V286 (ioN)* Byduns + / (i A o, V235, B) dunr.
M M

The first integral vanishes. This can be seen integrating by parts and using
the equality 0% = Fg’2 = 0 which follows from the fact that («, 3, B) is
a vortex. We deduce similarly that the second integral vanishes because
(ipN)? = 0. We conclude that

0> /M<icp A Opd, B)dvys + /M((?B(iga A ), B)dvy
(Opa = 0)
=2 /M@B(i@m), B)dvpr + V2 /M<(iéap)a,ﬂ>dw + /M<(i5so)a,ﬁ'>dw
(08 =0)

_ 3 /M< (10), B)dvag + V2 /M< (10¢)a, 3 )dvar

291 [ @9+ adas)don + 1 [ @9+ adaddow

4 M
1 - _ 19
=— [ |af+ ab| duy.

4 /M

Hence
aB+aB=0=v20pa+ipAha=V2056—ip 13
and using (3.2.24c) we deduce
Jdp=0. B
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3.3. Applications

The theory developed so far is powerful enough to allow the computation of
the Seiberg-Witten invariants of many and wide classes of Kéhler surfaces.
In this section we will present such computations and some of their surprising
topological consequences. We will conclude with a discussion of the Seiberg-
Witten invariants of almost Kéahler manifolds.

3.3.1. A nonvanishing result. Consider a Kahler surface M. We want
to compute the Seiberg-Witten invariant determined by the canonical spin®
structure og on M. In this case

So :Q@K]T;.

We will use the perturbation 7, introduced in §3.2.1 in which p = 0 and
t = A2 > 0 where A > 0. If b (M) = 1 then, according to Remark 3.2.1
the perturbation parameter n; lies in the positive chamber defined by the
Kéahler metric.

In this case the np-monopoles are t-vortices («a @ (3, B) where
« is a section of C,
0 is a section of K]\_j and
B is a Hermitian connection on C.

The discussion in §3.2.2 shows that for A2 >> 0 we have 8 = 0 and («, B)
satisfy

0,2
(3.3.1a) Fp?* =0,
(3.3.1b) AFp = %(|a|2 —2),
(3.3.1c) dpa = 0.

Observe that if By denotes the trivial connection on C and oy is the constant
section ap = A of C then (ap, Bp) is a solution of (3.3.1a) — (3.3.1c). Notice
also that the virtual dimension of the space of monopoles is 0 in this case.

Proposition 3.3.1. Modulo G,, there is a unique n;-monopole which is also
nondegenerate.

Proof To prove the uniqueness part we will rely on Proposition 3.2.7.
The set of orbits of m;-monopoles can be identified with the set of effective
divisors D such that

ci([D]) = e1(C) = 0.
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There is only one such divisor, namely the trivial divisor since, according
to Proposition 3.1.1 a nontrivial effective divisor carries a nontrivial homol-
ogy class. This establishes the uniqueness claim in the proposition. Thus,
modulo Gy, the configuration

Co = (a0 ® 0, A9+2By)

is the unique 7,-monopole. Observe that in this case we can write 0 instead of
Jp, Since the virtual dimension is 0 and Cy is nondegenerate (i.e. H(2Zo =0)
it suffices to show Héo =0, i.e.

ker 7c, = 0.

We will use Proposition 3.2.14.

Suppose (,ib) = (& @ B3,i(¢ + @) € kerTc,. Then (&, 3, ¢) satisfy
the equations (3.2.25) — (3.2.26d). These further simplify because of the
additional assumption B(= fy) = 0. More precisely, we have

(3.3.2a) 4V2i0%p = M@,
(3.3.2b) dp =0,
(3.3.2¢) V206 + idg = 0,
(3.3.2d) A3=0, 9" =0.

Applying 5%0 to (3.3.2c) we obtain

2

5324 959 + %a = Aprée+ N2

0 = 20" 9é + ivV2X9% ¢
Taking the inner product with & and integrating by parts we deduce in
standard fashion that & = 0. The equality (3.3.2c) now implies ¢ = 0. B

The above proposition shows that swyy(c¢) = £1if b3 > 1 and sw}, (o) =
+1 if b; = 1. To decide which is the correct sign we will use its definition
as an orientation transport. Form as usual

y Dav c(ib)y
ARG AR (N
! —4id*h —iJm (), ¥)

T E [0, 1], A= B0+2A0.

Then the sign is given by the orientation transport along the path 7 N
6(7&077—5077—(%)'

To compute the orientation transport we will rely on (1.5.9) in §1.5.1.
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~ Arguing exactly as in the proof of Proposition 3.2.14 we deduce that
(¢,ib) = (@ & B, ¢) € ker 77 if and only if

(3.3.3a) 4V2i0%* o = TAG,
(3.3.3b) dp =0,
(3.3.3¢) V20é + itAp = 0,
(3.3.3d) TA3=0, 0"3=0.

To see this, replace c(ib) with 7¢(ib), ¢ with 7¢ and Jm(ip, 1)) with 7Im (1), )
in the proof of Proposition 3.2.14 keeping in mind that o = A and 8 = 0.
Arguing exactly as in the proof of Proposition 3.3.1 we deduce ker 77 = 0
if 7 > 0. Moreover

ker ’]Z:OO
= {(@,4.¢) € T(C) x T(K3) x Q" (M); B =0 =88, € Hy' (M) }

~ (CoHY* (M) ) e HY (M)

The first summand corresponds to the spinor part of the kernel and the
second summand corresponds to infinitesimal deformations of connections.
The kernel is naturally oriented as a complex vector space.

To find the cokernel of ’Z'COO we use the representation

QO,O o w072(M) .
® 5 [ v ]

i00L(M) = 10 (M) ib
. QOL(M) = Sy
70 @Aw ¥
— | 2dFib | € iwe Qe QVH(M) 2i0% (M)
—4id*b ®
iQ0 (M)

and the computations in the beginning of §3.2.3. Recall that the isomor-
phism

iw® %@ 0% (M) =i (M)
is given by the isometric identifications

i - 1 _
W —ivw+ —(®+P) = —(1P —iD).
S(0+8) = (19 -10)
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This leads to the identification

02.(M) 5 Li(0, §) = 1(Re(a, a) ~ Re(, F)w

(3.3.4) +i(5zﬁ +a6f—af - aff)
1. . i . . 1 . .
= §q(¢7 V) Z(i)‘ie(cx, a) — Re(B, B))w & 2—\/§i(aﬂ + ap).
Consider a vector
Q0L (M) = Sy
¢ =
iuww @b | € iwe Qe 0% (M) = 1Qi(M)
if
iN°(M)

in the cokernel of TCOO. We deduce
¢ € cokerPy = H%’I(M),

iuw + (0 + 0) € iH3 (M)
and
if e H'(M) = iR.
Thus v must be constant and 6 € H%’Q(M ). We conclude
coker 78, = H' (M) & H)* (M) & H(M) & Rw.

The vector space in the right hand-side of the above isomorphism is naturally
oriented (here the order is essential) and it induces on coker 7¢, precisely
the orientation discussed in §3.1.1.

To compute the orientation transport we need to determine the reso-
nance operator

d
Pd_T lr=0 7¢, : ker ’TCOO — coker ’TCOO

where P denotes the orthogonal projection onto coker TCOO. Observe that

J . c(ib)y
E|T:O TCTO [ :i ] = —%Q(¢a¢)

where 1) = A® 0, ib = i(p + @) and ¢ = & & 3. Using the computations in
§3.2.3 and (3.3.4) we deduce
. Alp
d | Y i\ (o i/
A e R
iXdma
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Clearly, d% l7=0 ’TCTO maps ker ’TCOO bijectively onto coker TCOO and it does so
in an orientation preserving fashion. Formula (1.5.9) now shows that the
orientation transport is 1. We have thus proved the following result.

Theorem 3.3.2. Suppose M is a Kdhler surface and oqy is the canonical
spin® structure. If b; > 1 we have

swys(og) =1
while if b) =1 we have

swi,(op) = 1.

The above nonvanishing result has immediate geometric consequences.

Corollary 3.3.3. If M is a K3 surface then og = 0 is the only basic class
of M and swys(og) = 1.

Proof Suppose L is a Hermitian line bundle on M such that sw/(L) # 0.
Then

0 < deg,, (L) < deg,,(Km) =0
so that by Corollary 3.2.10 we deduce that L is the trivial line bundle. H.

Corollary 3.3.4. Suppose M is a Kdhler surface such that pg(M) > 0.
Then there exist no Riemannian metrics on M with positive scalar curvature.

Suppose M is a Kéhler surface such that p,(M) > 0 (so that by (M) > 1).
Using (2.3.14) of 2.3.2 we deduce

SWM(a'o) = SWM(KM) = (—I)RSWM(O) = SWM(O'())
where
1 1
K= §(b;+1—bl) = 5(2—bl+2p9):1—q+pg:Xhol(M).

Thus oo(= 0) and go(= Kps) are basic classes of a Kéhler surface with
pg > 0. If M is an algebraic surface of general type we can be even more
precise.

Theorem 3.3.5. Let M be a minimal algebraic surface of general type such
that py > 0. Then og and 6o are the only basic classes of M.

Proof Suppose L — M is a Hermitian line bundle such that swy,(L) # 0.
We want to show that (topologically) L = C or L = Kj;. According to
Corollary 3.2.10 it suffices to show

deg,, (L) € {0,deg,, Knr}.

We argue by contradiction. This means c¢1(L) and ¢i(Kjy) are linearly
independent in H g’l(M ) and we denote by V the two-dimensional space
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spanned by K); and L. We will show that the intersection form is positive
definite on V, thus contradicting the Hodge index theorem.

Since M is a minimal algebraic surface of general type we deduce

o K/ is nef and
) wa > 0.

According to Corollary 3.2.9 the condition swys(L) # 0 implies several
things.
o The virtual dimension d(L) = L - (Ky; — L) > 0 so that L? > Ky, - L.

¢ There exists a holomorphic structure on L which admits a nontrivial holo-
morphic section wu.

¢ There exists a holomorphic structure on Kj; — L which admits a nontrivial
holomorphic section v.

Observe that D := u=1(0) # () since L is not the trivial line bundle.
Hence D is an effective divisor.
Since Ky is nef we deduce
Ky-D=Ky-L>0.
In fact
Ky - L >0.

Indeed, if K - L = 0 then the conditions KJZW > 0 coupled with the Hodge
index theorem would imply that ¢;(L) = ¢1([D]) = 0. This is impossible
since D is an effective divisor. Thus

(3.3.5) L*> Ky -L>0.

Replacing L — Ky — L in the above arguments (which is equivalent to
using the canonical involution o +— & on Spin®(M)) we deduce

(3.3.6) Ky - (Ky—L)>0<= K3, > Ky - L>0.

We can represent the restriction of the intersection form to V' using the basis
(K, L). We obtain the 2 x 2 symmetric matrix
K%, Kuy-L
Q= 2
Ky - L L
Clearly tr(Q) = K3, + L?> > 0 and, using (3.3.5) + (3.3.6) we deduce

det(Q) > 0. Thus @ is positive definite, contradicting the Hodge index
theorem. W

The last proposition has a surprising topological consequence.
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Corollary 3.3.6. Suppose M is a minimal algebraic surface of general type
and f: M — M is a diffeomorphism. Then f*(Kp) = £Kyy.

Proof It follows from the fact that the set of basic classes of M is a
diffeomorphism invariant of M: for any o € By; we have f*oc € By,. B

Thus the pair of holomorphic objects (Kpr, —K ) of the minimal, general
type surface M is a diffeomorphism invariant of M!!!

3.3.2. Seiberg-Witten invariants of simply connected elliptic sur-
faces. The elliptic surfaces have a much richer structure than the surfaces
of general type. They have more complex curves and thus we can expect a
more sophisticated Seiberg-Witten theory.

We begin with a warm-up result showing that, as in the case of surfaces of
general type, the basic classes of a minimal elliptic surfaces lie on the segment
determined by the canonical classes oy and y. If we use the language of
line bundles this means the basic classes of such a surface lie on the segment
in H?(M,Z) determined by the trivial line bundle and K.

Definition 3.3.7. A proper elliptic surface is a minimal algebraic elliptic
surface M such that kod (M) > 0.

Proposition 3.3.8. Suppose M is a proper elliptic surface such that py(M) >
0. If L is a (1,1), Hermitian line bundle on M such that swps(L) # 0 then
there exists t € [0,1] such that

c1(L) = tey(Kyy) in Hy' (M),

Proof Since M is a proper elliptic surface we deduce that Kj; is nef,
nontrivial and KJQW = 0. Moreover, the metric w is defined by an ample
divisor H and thus, for any line bundle E, we have deg ,(E) = H - E.

Suppose L 22 C, Kp. It suffices to prove L = Ky — L and L are
collinear, for then the inequality

O0<H-L<H- Ky

will force L to lie on the segment going from 0 to Kj;. We argue by con-
tradiction. Suppose c¢1(L) and ¢1(K ) are linearly independent (as classes
in H-' (M)

5 .

Using Proposition 3.2.13 we deduce that there exist effective divisors D’
and D" such that

[D'] + [D") = Ky, c1([D']) = ¢y(L) in H*(M,Z).
Since K is nef we deduce

Ky-L=Ky-D' >0, Ky-L=Ky-D">0
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so that
Ky -L=0.
On the other hand, since d(L) = d(L) = L - L > 0 we deduce
L’>Ky-L>0, L?>Ky-L>0
so that L2, L? > 0. From the identity
0=K3=(L+L)?*=L*+2L-L+L*>0
we can now conclude L2 = L2 =L - L = 0.
Set
t:=(H-L)/H*>0,
s:=(H-L)/H*>>0

and

T:=tH-L, S:=sH-—L.
Observe that

H-T=H-5S=0.

The vectors H,S,T are linearly independent in H é’l(M ) and thus span a
three-dimensional space V. We can now represent the restriction to V of
the intersection form as a symmetric 3 x 3 matrix using the basis H, T', S.
An elementary computation shows this matrix is

1 0 0
Q=H*|0 —t2 —(t? + 5% + st)
0 —(t?+ s+ st) —52

The 2 x 2 minor in the lower right hand corner has negative determinant
and thus @ has two positive eigenvalues. This contradicts the Hodge index
theorem and completes the proof of the proposition. B

To get more detailed information about the Seiberg-Witten invariants
of an elliptic surface we need to have a deeper look into the structure of
these surfaces. This is a very fascinating and elaborate subject. We want
to present to the reader a few facts about elliptic surfaces which are needed
in the computation of the Seiberg-Witten invariants. For more details we
refer to [9, 40] or the original articles of K. Kodaira [65].

An important concept in the theory of elliptic surfaces is that of multiple
fiber.

Suppose w : M — B is an algebraic elliptic surface over the smooth
complex curve B. The fiber Fy of w at b € B is said to have multiplicity m

if there exists a holomorphic coordinate w defined on a disk neighborhood
A of b such that

o w(b) = 0.
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o There exists a holomorphic function g : 771(A) — A C C such that
7 =g"on 7 (A).

¢ The set Cy of critical points of g is finite.

The hypersurface F, = g~1(0) is called the reduction of the fiber 7=1(b).
The multiple fiber is said to have smooth reduction if Cy = () or, equivalently,
if F} is smooth. Using the open cover Uy = m~1(A), Uy = M \ F, and the
holomorphic function

fo=m:Up—-ACC, fi=1:U;—-C
we obtain a divisor M on M. Observe that
My = mFy.

The multiple fibers are not just theoretically possible. There is a simple way
to construct elliptic surfaces with multiple fibers having smooth reductions.
It relies on the logarithmic transform.

Let us first describe a simple procedure of constructing a smooth family
of elliptic curves. Denote by H. the half-plane {Jm7 > 0} C C. Each
7 € H; defines a lattice

A ={m+n7r; m,neZ}.

It is known that any elliptic curve is biholomorphic to a quotient C; :=
C/A;. If X is a complex manifold and 7 : X — H_ is a holomorphic map we
can form a holomorphic family of smooth elliptic curves C := (C/A;(;))zex-
More precisely, C is defined as the quotient

Cr=CxX/(ZaZ)
where (m,n) € Z® Z acts on (z,z) € C x X by
(m,n)(z,z) = (2 +m+n1(z), ).

We denote by 7, the natural projection C; — X.

Suppose 7 : M — B is an elliptic surface and b € B is a regular value
of 7 so that the fiber 771(b) is a smooth elliptic curve. Choose a small
neighborhood A of b € B and a local coordinate w on A such that w(b) = 0.
For simplicity we assume that w identifies A with the unit disk in C. Then
there exist! a holomorphic map 7 : A — H and a biholomorphic map

F:aYA) = C;

IThis claim needs a proof and we refer to [49] for details.
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such that the diagram below is commutative.

Ay L o,

1A

Define ¥ C C; x A by
B (e O wC €A, € Cry <= uh

More intuitively, ¥ is the pullback of the fibration n, : C; — A via the
m-fold branched cover

A—A (—w:="
The natural map
(:X—=A, (z,w,()— (€A

defines a structure of elliptic fibration on . The fibers over ¢ and e2™/™(
are biholomorphic to Cr(¢m) = Cr(). This means we have a commutative

diagram
CJ Jw:ﬂ}
w=¢™

A —— A

and we can also think of 3 as the total space of the family of smooth elliptic
curves (Cr(¢m))cea- We can now construct an automorphism ¢ : 3 — 3

(3.3.7)

CT(Cm) X A3 (z,()— ( (Z + M) mod AT(Cm)7 627ri/m<> S CT(CW) x A.

m

Observe that the iterates of ¢ generate a cyclic group with m elements which
acts freely on Y. We can form the quotient

2i=3/(9).

The natural map {™ : ¥ — A is invariant with respect to the action of this
cyclic group and thus descends to a holomorphic map

u=_"0% - A

It clearly induces a structure of elliptic fibration on & and the fiber over
0 € A is multiple, with multiplicity m. Its reduction is smooth and is



3.3. Applications 253

biholomorphic to Cr(g). The fiber over u € A\ {0} is smooth, it has multi-
plicity 1 and is biholomorphic to C7(,). Moreover, there is a biholomorphic
map

L, : ) \ ufl(O) — O \ C‘,—(o)

induced by the ¢-invariant map

by \ C_l(o) — C; \ CT(D)7 (Zv C) = ( (Z - log C) mod AT(Cm)v Cm )

Observe that the 2wiZ-ambiguity of log{ vanishes when we mod out the
A--action.

(")

271

The logarithmic transform can now be described explicitly as follows.

> Remove the fibered neighborhood set 7~ 1(A; s2) of the fiber of 7 over
w(b) = 0 where A; /5m denotes the disk with the same center as A but with
radius 1/2™.

> Glue back the elliptic fibration ¥ using the biholomorphism
Lp: % A\A, T AN Ay jom).

We will denote the resulting manifold by L,,M, or by L,,(b)M if the
point b where the logarithmic transform was performed is relevant. It is
often useful to have a C*°-interpretation of this operation.

The fibered neighborhood Y := 7~!(A) is a 4-manifold with boundary
diffeomorphic to T2 x A. Its boundary is a three-dimensional torus 72 x OA.
We will denote by w the complex coordinate on A and by &1, & the angular
coordinates on T?. When working in the C*-category we can assume that
the map 7: A — H, is constant 7(w) = i.

Denote by A another copy of A coordinatized by ¢ = rel? € C. We pull
back this T2-fibration using the m-fold branched cover

Pt A=A Crw=(n
and we obtain another T2-fibration ¥ = pi, Y — A. Set w := ¢*™/™ and
identify the cyclic group Z,, with the subgroup of S!' generated by w.

We can now define two Z,,-actions on Y:

wx (&1,82,¢) = (&1, &2, w()
and

wo (£1,82,¢) = (&1, wé2, w().
The o-action corresponds to the holomorphic action described by the map
¢ in (3.3.7).
These two actions are not isomorphic and lead to two quotients

Y 2V /(w,%)
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and

Y :=Y/(w,o0).
On the other hand, the restrictions of these actions to 7% = 9Y are isomor-
phic. To see this pick a matrix A € SL(3,Z) such that

0 0
A- 10| =11
1 1

This means the last column of A is the vector in the right-hand side of the

above equality. For example, we can pick
1 00

A=1|0 1

0 1

O =

Using the angular coordinates (&1, &2,6) on dY we can write the above
two actions as

[ & 0 [ &
2
wx | & =10+ & |,
o] 1] | o]
[ & ] 0] [&
2
wol& =201+ &
o] Mt ] e

It is now clear that
Alw*¥) =wo AV, Vi €R® mod (21Z)>.
Thus A induces a diffeomorphism
A:9Y — oY.
This diffeomorphism does not extend to a diffeomorphism Y — Y although
Y and Y are diffeomorphic.

We will produce a diffeomorphism Y — T2 x A by constructing a map
T :Y — T? x A whose fibers are precisely the orbits of the (w,o) action.
More precisely, set

T:YV - T?x A, (€1,6,C) — (61,65, 610).

To understand the effect of A we need to introduce angular coordinates on
dY and 0Y.

On 0Y a natural choice is given by

(€17 §27 53) = (517 €27 Cm)
while on Y a natural choice is suggested by the definition of T

(glv £27 53) - (517 €§n7 gQ_IC)
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The map A can be computed from the diagram

(€1,6,¢) —2— (£1,6(,€)

(€1,62,€3) (€1.€2,€3)
A

(§17§27<m) _____ > (517(€2<)m7£;1)
Thus A is given by
L=8&, L=, ="

or, in matrix notation,

Its inverse is

Thus, in the C*°-category, the logarithmic transform is obtained by remov-
ing a fibered neighborhood T2 x A of a smooth fiber and then attaching it
back in a new fashion, using the gluing map G,,.

We collect below some basic topological and geometric facts about ellip-
tic surfaces admitting multiple fibers.

Proposition 3.3.9. Suppose m : M — B is an elliptic surface with r multi-
ple fibers, with smooth reductions Fy,--- , F,. and multiplicities my,--- ,m,.
Then, there exists a holomorphic line bundle L — B of degree deg L =
29(B) — 2+ xpot(M) = 29(B) — 2+ Lxr such that

.
Ky =a* L+ (mi —1)F,
=1

For proofs of the above proposition we refer to [9, 49]. When B = P!
we can be more specific because in this case two holomorphic line bundles
over P! are holomorphically isomorphic if and only if they are topologically
isomorphic, that is, they have the same degree. A holomorphic line bundle
of degree d over P! can thus be described by any divisor by + - - - + by, where
the points b; are pairwise distinct.
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Corollary 3.3.10. Suppose ™ : M — P! is an elliptic fibration with r
multiple fibers Fy,--- , F. with multiplicities m1,--- ,m,. Then

Xhot (M)—2 r
P b SRR
j=1 i=1

where the points b; € P! are pairwise distinct regular values of ™ and My, ==
-1
™ (bj)

Denote by E(n;mg,---,m,) the smooth manifold obtained from the
elliptic surfaces E(n) by performing logarithmic transforms of multiplicities
mq,--- ,m, on r nonsingular fibers

En:my,---,my) =Ly, - Ly, V,.
Denote by Fi,-- -, F, the multiple fibers in E(n;mq,---,m,). For a proof
of the following nontrivial result we refer to [40].

Theorem 3.3.11. Suppose 7 : M — P is an elliptic surface such that

> Xhol(M) =n>0.

» There is no smooth rational curve C — M entirely contained in a fiber
of ™ and such that C? = —1.

» There are r multiple fibers, with multiplicities mq,--- ,m, and smooth
reductions Fy,--- | F,.

Then the following hold.
(a) M is diffeomorphic to E(n;my,--- ,my).
(b) M is simply connected if and only if either v < 1 or r = 2 and the
multiplicities m1, mo are coprime.

(c) Denote by m the least common multiple of my,--- ,m, and by F €
Hy(M,7Z)/Tors the homology class carried by a nonsingular fiber of w. Then
there exists a primitive class £ € Ho(M,Z)/Tors such that

F=mf, Fi="0F Yi=1,---,r
m;

Using the above proposition we can now determine the homeomorphism
type of the simply connected surfaces F(n;mi, mg), where we allow m; = 1.
In this case the least common multiple of m1,mo is myme. H?(M,Z)
has no torsion and can be identified with Hy(M,Z) via Poincaré duality.
We deduce
xym = 12n, by =12n — 2,
pg=(n—1), b =2n—1,
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(3.3.8) KM:m{(n—2)+Z(1— ! )}f.

myg

Using Wu’s formula we deduce that the intersection form of M is even if
and only if

v(n;my, mg) = {(”—2)+Z(1 - niz)}

is even. This happens if and only if
n=mi1+m9g=0 mod 2.
Using Corollary 2.4.17 we deduce the following result.

Corollary 3.3.12. Two simply connected elliptic surfaces E(n;my, ma) and
E(n';m/,m}) are homeomorphic if and only if
n=mn
and either
n=0 mod 2, my+msy Em/1+m,2 mod 2.

or,

n=1 mod 2.

We now have all the information we need to compute the Seiberg-Witten
invariants of the elliptic surface M = E(n;m1,m2), (m1,m2) = 1, n > 3.
Denote by F; and Fb the multiple fibers of M and pick (n — 2) pairwise
disjoint generic fibers, My, ,---, My, ,. The line bundle determined by the
effective divisor

Cp := ZMbJ’ + (my — 1) F1 4 (mo — 1) %
J

is precisely the canonical line bundle Kj,;. D determines a holomorphic
section s of Kj; such that D coincides with the zero divisor determined
by s. Using Proposition 3.2.13 we deduce that if the line bundle L — M
determines a basic class of M then there exists a divisor D on M such that

c1([D]) =c1(L) and 0 < D < (.
This means D must have the form

D= D(J, al,(fLQ) = ZMbj + a1F1 + (ZQFQ
jeJ
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where J C {1,2,---,(n—2)} and 0 < a; < m;, i = 1,2. Observe that with
D as above we have

Since my and mo are relatively prime we deduce
e ([D(J,a1,a2)]) = ex([D(J'sah, ab)]) <= ] = 7], a1 = ah, as = db.

Thus, if L determines a basic class then ¢;(L) is collinear with ¢;(Kjs) in
H?(M,Z), the virtual dimension D(L) is zero and moreover

(3.3.9) ci1(L) = (mk +miaz +moa))f, 0<k<(n—-2), 0<a; <m,.

Thus the set of basic classes of M has cardinality < myma(n —1). We will
denote by L(k, a1, a2) the complex line bundle such that

c1(L) = (mk + miaz + maay)f.

Suppose L = L(k, a1, a2). Then, according to Proposition 3.2.13, the set
of orbits of monopoles corresponding to the spin® structure oy ® L and the
perturbation tw + s + § can be identified with the set of effective divisors

D(J,a1,a2) such that |J| = k. There are exactly (”|;|2) such divisors.

Given a divisor D as above there exists a monopole
C=Cph=0W=ad®p, A= Ay+2B)

such that B induces a holomorphic structure on L, v = ap is a holomorphic
section of L, 8 = (p is a holomorphic section of K; — L, D coincides with
the zero divisor determined by «

_ . i
af = —8is, AFp=_(lof* — |8 —1).

Proposition 3.3.13. (O. Biquard [13]) Each of the above monopoles
C = Cp is nondegenerate.

Proof The idea of proof is inspired by [13]. Since the virtual dimension
d(L) = 0 it suffices to show ker 7c = {0}. Let

(1), ib) € ker Tc.
As in §3.2.3 we write
p=aaf e %) e (L) = Q"L - Ky)
and

ib=—(p+@), peQ(M).

-
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Then (see Proposition 3.2.14) &, 6 and ¢ satisfy the equations
420" — (o, &) + (8,8) = 0

] Op =

(3.3.10) V20pa +ip o =

VIO —ip 15 =

af+af =

The last equation shows &/a = —B/B on M\ (a1(0)U3~1(0)). We

denote by f this smooth function on M\ (a~*(0)UB~1(0)). Since af = —8is
we deduce

(B)=Co—(a)=Co—D=> My, +(mi—ar—1)Fy + (my — az — 1) F%

jeJ

o O O O

where J :={1,2,---,(n—2)}\ J. Since & = af and 3= —Bf are smooth
objects we deduce that f extends to a smooth function on M \ (F} U F3).

Lemma 3.3.14. The function f extends to a smooth function on M.

We will complete the proof of the proposition assuming the validity of
the above lemma.
Observe that since dpa = 0 we have (on M \ a~1(0))
= = - i
Of = 0(é/a) = (adpa)/a?) = ——
f=0(d/a) = (adpad)/a”) Nk
where at the last step we used the third equation in (3.3.10). Since
M\ a~1(0) is dense in M and f is smooth we can conclude that the last
equality is valid everywhere on M.

Using this identity in the first equation of (3.3.10) we obtain
0= _86*5.]0 - <C¥,f0(> - <57 f/8> = _(85*3+ ‘Oé|2 + |ﬂ|2)f
Multiplying by f and integrating by parts we deduce f = 0. This implies

0 =0,¢&=fa=0and f = —Ff = 0. This concludes the proof of the
proposition. W

Proof of Lemma 3.3.14 We will show that f extends smoothly over Fi.

Suppose F} is the fiber of 7 : M = E(n;my,mz) — P! over 0 € C C P
We denote by w the coordinate on C. Denote by A the unit disk centered at
0. By possibly rescaling we can assume that the restriction of 7 to 7 ~1(M)
has the form

T=u™

where u : 7~ 1(A) — A is a submersive holomorphic map.
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Now fix a point ¢ € F; and a local holomorphic coordinate on F} near
g. Then the pair of functions (z,u) forms a local holomorphic coordinate
system on a small neighborhood U of ¢ in M. In this coordinate system F}
is locally defined by u = 0 and the section « has the local description
a=u"ag
where o is a nowhere vanishing holomorphic function on U.

Since 0p = 0 we can choose U sufficiently small so that there exists
g € C>®(U) such that ¢ = v/20g. The second equation in (3.3.10) can be
rewritten over U as

d(a+iag) =0.
Thus
h:= &+ iu*agg
is holomorphic on U. We now write
(3.3.11) & =h—iu" g
and use this in the last equation of (3.3.10). This yields
(h = iu" aog) B +u™ agh = 0
so that )
h = u"a(igh — B).
The last equality shows that the smooth function hg = ag(ig3 — B) is holo-
morphic on U \ F; (where it equals h/u®') and thus it must be holomorphic
everywhere on U. This allows us to write
h = u"hg
where hg is holomorphic on U. Using this in (3.3.11) we deduce
& = u™ (hy — iagg)
so that _
f=dja= o — 109
ap

This proves that f is bounded on U since «g does not vanish anywhere. B

We now know that if L = L(k,a;,as) then there are precisely (”;2)
G-orbits of nondegenerate irreducible monopoles corresponding to the spin®
structure o9 ® L. To compute the Seiberg-Witten invariant we have to
determine the signs attached to these monopoles.

Consider a monopole C = Cp = (a® /3, Ag+2B) as in Proposition 3.3.13.
We begin by rewriting the operator 7¢ using the identifications

QL5 s ib = %(g& + @) € iL(M),
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Q"2(M) @ iw® Q' (M) 2 0 & uw «—— %(94—@) @ iuw € 102 (M),

(S}) 3¢« a® e QL) e (L - Ky),
r'(s;) =Q"(L).
Using the computations in §3.2.3 and the identification (3.3.4) we deduce

V2O + T8) i(ena—pap)
- 20¢ (aﬁ +af)
| 0| =| Livamorge | _i(m:@f &) = Re(B, B))w
1 —4/2iRe B —iTm{a, &) — iTm(B, B)

Define the isomorphism

T (iQO(M) @ iwe QO(M)) @ QO2(M) — (QO(M) ® c) @ Q02 (M),

& ifwer — (1=t J=hi) e

Using these last isomorphisms we can further rewrite 7¢c «+— T7¢

[ ipha-@ap) ]
Te| B | = 9y + s laB+ap)
@ —0%p '
| s ((aa) — (5.5)) |
[ PN« i i a6 ]
V2(0pé + 03) L .
= e +1i WY +i 7045
—d*p .
i —ﬁ<01706> ] L ﬁ<ﬂvﬂ> ]
Observe that
b a V2(dpd + 95P)
¢ [ . ] =10 | 6 | = de
ib S
® —0%p

and our orientation conventions for kerTCO and cokerTCO coincide with the
orientations induced by the above identification of these spaces with complex
spaces.

To determine the sign associated to the monopole C we will compute
the orientation transport along a cleverly chosen deformation of ’Tg to 7c,
suggested by [13]. We will get the same result since it will be clear from the
description of this deformation that it is homotopic to the deformation 77
we have used so far.
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The new deformation is a composite of two deformations. We first follow
the path (¢ € [0, 1])

Cona ]
@ V2(0pd + Op) L
U | p | = Op +i | a0 |,
@ —0%p X
RavACN
and then the path
[ pAa ] [ —@1B3 ]
a V2(dpcr + 033) L -
Vi| B | = dp +1i NARY +ti| a0
4 —0e 1 1 :
sl 30,0 ]

Observe first that the operators U; are complex linear so the orientation
transport along this path is 1. Thus we only have to determine the orienta-
tion transport along V;. Let us first point out a very useful fact.

Lemma 3.3.15. ker V;, = 0 for all t € (0,1].

The proof is word for word the proof of Proposition 3.3.13 (which cor-
responds to t = 1) and can be safely left to the reader. Denote by P the
orthogonal projection onto coker Vy and set

d
Ry = P% lt=0 V4 : ker Vy — coker V.

Observe that

—plp
. CY d OL 1 =
Vo | B IZ&L&:OVt B l=i| g%
¥ ) .

| 30.0)

is complexr conjugate linear. Thus Ry is complex conjugate linear and if it is
an R-linear isomorphism, then the orientation transport will be

(—1)d°7 do = dimg ker V.

We will spend the remainder of this subsection proving that Ry is indeed
an isomorphism and determining dy.

Lemma 3.3.16. There exists a natural short exact sequence

0— C — HY([L,B]) = H*°([D(J,a1,as)]) — ker Vy — 0
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where [L, B] denotes the line bundle L equipped with the holomorphic struc-
ture defined by the Hermitian connection B. In particular,

do = h°([D(J, ay,a9)]) — 1.

Proof Let (&, 3, ¢) € kerVy, that is,
8Bo‘<+5gﬁ'+\%gwa = 0

(3.3.12) %+MW:0.
0*p + ﬁ(d,o& =0

We use the same strategy as in the proof of Proposition 3.2.14. Using the
first equality in (3.3.12) we deduce

i

(use Opa = 0)
i )
= <ﬁ&p N «, ﬂ)LQ
(use the second equation in (3.3.12)
1 .
= <llal- 1311,

This implies ,6 = 0 and thus Oy = 0, according to the second equation in
(3.3.12). Since hO’I(M_) = 0 there exists a smooth complex valued function
f on M such that v/20f = ¢.

The first equation in (3.3.12) can now be rewritten

83((54 + ifOt) =0
so that
h:=a+ifa e HY((L,B))
and
a=h-—ifa.
Using these last equalities in the third equation of (3.3.12) we deduce
_ 1 i
(079 + Gla’)f = —%h@.

Since the positive operator 9*0 + %]aP has bounded inverse we deduce

(3.3.13) f= fulh) = (@3+§M%4m@.

i
8
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It is now clear that the correspondence
HG"([L, B)) 3 h = (&, 6,0) = (h = ifa(h)o, 0,20 a(h))
produces a C-linear surjection
HY([L, B]) — ker V.
Observe that its kernel is generated by
hg = ia.
Lemma 3.3.16 is proved. B
Lemma 3.3.17. Ry is a complex conjugate linear isomorphism.
Proof Let

(¢, Bo = 0, o) € ker V.
We will show that if

—@o
Qo
Vol 0 | =i 4—\1/50705 € Range (V)
%0
0

then ¢y = 0 and g = 0.
Suppose there exists (&, 5, p) € Q00(L) x QO02(L) x QO1(M) such that

i1 [a] [o
V| B |+Vo| O =10
¥ ©o 0

This means

53@+5%,8+%¢A&—%@0Jﬁ =0
(3.3.14) Op + i5aB+ fzdnf = 0

8*@—#@&0‘4 =0
and

530'10—%\%%)/\04 =0
(3.3.15) dpg = 0 .

5*(,00—!—%(0}0,@ =0
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Again we rely on the idea in the proof of Proposition 3.2.14. We have

|8Bﬁ \/§ OJﬂHL2 = <('9301+ ﬂa%aBﬁ \/§ OJ/6>

— (L Bp(a), Bz + %m A B B2 + (—=)2ag0 A 9, B) 12
)

V2

(use dpg = 0, 058 = dpa =

-

= <%Q5W7B>L2 + <\}§a§00 N \/58075>

(use %Oﬂpo = —0pdo)

- %(a&p,ﬂ)p — %(530'40 Ao, B) L2
%<aa¢’ B) 2 %(53(@090) — d05807ﬂ>L2

(use O3 = 0)
— %<OA(9QO, >L2 + %(doé%ﬁ)ﬁ

= i . 3314)1

= <8907—E(075+@05)>L || aB + aof|3-.
This shows
950 — %@0 18 =0
Opdyg + \/—ozgoo =0
(3.3.16) dpg = 0

5"(,00-{-&010@ =0

O?B-l—émﬁ =0

The above system of equations is very similar to (3.3.10). We can now con-
clude exactly as in the proof of Proposition 3.3.13 that the system (3.3.16)
has only the trivial solution

dp=0, 3=0, ¢y=0.

This shows that Ry is an isomorphism as claimed. W
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Observe that all divisors D(J,a1,a2), |J| = k are linearly equivalent.
Indeed, for any two sets J, J' C {1,--- ,n — 2} with |J| = |J/| the divisors

=S, 0=,
Jj€J jeJ’
are linearly equivalent since the divisors
> bis Db,
jeJ jeJ
on P! are linearly equivalent. Thus
d(J, ai, ag) := dimg¢ Hg’o([D(J, ai, ag)])

depends only on k = |J|, a1 and ay. We will denote this dimension by
d(k,a1,as2). This shows that the Seiberg-Witten invariant of the spin® struc-
ture o9 ® L(k,a1,a2) is nontrivial and more precisely

SWy = (—1)‘1(’“’“17@2)—1 <n ; 2).

In particular, M = E(n,m1,mg) has precisely mima(n — 1) basic classes.
We can be even more precise.

Proposition 3.3.18. d(k,ai,a2) =k + 1.

Proof The key ingredient in the proof is the following fact concerning
multiple fibers. Its proof can be found in [49].

Lemma 3.3.19. Denote by N; the holomorphic normal bundle of F; — M,
i =1,2. Then N; is an element of order m; in the group Pic (F}).

The proof of Proposition 3.3.18 will be completed in several steps. As
in §3.1.1, for any effective divisor D on M, we denote by fp one of the
nontrivial holomorphic sections of [D] canonically determined by D. Fix k
distinct regular fibers My, ,--- , M;, and denote by Dy the divisor

k

k
Dy = Z My,
j=1

We can identify Dy with a smooth (reducible) curve on M. Now set T' =
a1Fi +aoFyand D =Dy +T.

Step 1 The proposition is true if a; = as = 0. To see this consider the
structural sequence

0= Ou ™2 O ([Do]) = Oy ([Do]) — 0
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which leads to the long exact sequence
0 — H°(Ow) — H°(Ow(1Do])) — HO(Op,([Do])) = H'(Onr) = -+

Since M is simply connected we deduce dime H'(Oy;) = h%’j = 0. Thus we
have the short exact sequence of complex vector spaces

0 — HY(Oy) — HO ((’)M([DO])> — H° ((’)DO([DO])> 0.

Hence
H°(Oar([Do)) = H°(Onr) & H° (O, (0] )

= 1(0w) & (@ 1 (0w, (D)) ).

The holomorphic normal bundle to M, — M is (holomorphically) trivial
and, by the adjunction formula, it coincides with [Dy]] My, Thus

HY(O, (IDy])) = C.
Step 1 is now complete.
Step 2 If a1 + as > 0 then
HO(0x(T])) 2 C, H'(Ou((T])) = 0.

We will distinguish two cases: a1 + a2 =1 and a1 + ag > 1.

In the first case, assume a; = 1, ao = 0 so that T" = Fj. Using the
structural sequence

0— On — Om([F1]) = Op (N1) — 0
we obtain the long exact sequence
. 0= H(Ox) = B (Ox([F])) — (O (V)
— H'(Ox) — H' (Om(I)) — H' (O (V1)) — -

From Lemma 3.3.19 we deduce that the degree zero line bundle Ny — F}
has no holomorphic sections so that

H (oFl (N1)> ~ ().
The first portion of the long exact sequence now implies
HO (OM([Fl])) ~ F0(0) 2 C.
The Riemann-Roch theorem for the line bundle N; — F} implies
dime H° (O ([F))) — dime H' (O, (N))
= x(N1) = deg(N1) +1—g(F1) =0
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so that
Jig (oFl (Nl)) ~ ().

Using this in the second portion of the long exact sequence (%) we deduce
H ((’)M([Fl])> ~ [{(Oh) 2 0.
This completes Step 2 in the case a1 + as = 1.

The general case follows by induction. Suppose d := a3 + a3 > 1 and
assume a; > 0. Set Ty := T — F} = (a1 — 1) F} +axF>. We use the structural
sequence

0 — On([To]) = Ou([T]) = Or (1) — 0

with associated long exact sequence
0~ HO(Ou([To])) — HO(Ow([T)) — H (O, (1)
— H'(Ou(IT0])) — H' (Ox(IT))) = H' (OR (1)) — -

The induction assumption implies

H° ((’)M([To])) ~¢C, H ((’)M([To])) = ().

~

Now observe that [T]|r, = a1 Ny and since 0 < a3 < my we deduce from
Lemma 3.3.19 that the degree zero line bundle a;/N; is holomorphically
nontrivial so that

(%)

H <(’)F1([T])) =~ (),
Invoking again the Riemann-Roch theorem for a; N7 — F; we deduce
1 (0r (IT])) 0.
The conclusions of Step 2 now follow from the sequence ().
Step 3 Conclusion. Consider the structural sequence
0 — Ou([T]) ™% Ox([D)) = O, (ID]) — 0
with associated long exact sequence
0— H*(Oum((T))) — HO(Ow(ID))) — HO(On, (D))
= H'(0u([T))) — H' (Om(ID))) — H' (Op,([D])) — -+

Observe that the restriction of [D] to the disconnected curve Dy is the
holomorphically trivial line bundle. Thus

HO ((’)DO([D])> >~ CF,

(k% %)
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Using Step 2 we deduce H'! (OM([T])) 2 0 so that the first part of (x * %)
reduces to a short exact sequence

0— H° (OM([T])) - H0<(’)M([D})) ~H° ((’)DO([D])) 0.

Using Step 2 again we deduce that the first space in the above sequence is
one-dimensional. Proposition 3.3.18 is now clear. B

The next theorem collects the results proved so far.

Theorem 3.3.20. The simply connected elliptic surface M = E(n;my, ma),
(my,m2) =1, n > 2 has exactly myma(n — 1) basic classes

U(k, ag, QQ) =00® Lk‘,al,a2

where 0 <k <n—-2,0<a; <mi—1,0<ax <mg—1 and L4, 4, 5 the
complex line bundle determined by

1 (Lk,al,ag) = (mlmzkz + mias + mgal)f.

Moreover,

swar(o(k, a1, az)) = (—1)’<<” . 2).

Remark 3.3.21. For different approaches to Theorem 3.3.20 we refer to
[21, 35, 42].

The above theorem has a truly remarkable consequence.

Corollary 3.3.22. ([82, 95, 129]) Two simply connected elliptic surfaces
M = E(n;mi,mg) and M' = E(n';m/,mb) are diffeomorphic if and only if

(3.3.17) n=n'" and {mi,my} = {m},ms}.

Proof Clearly, (3.3.17) implies that the two surfaces are diffeomorphic.
Conversely, suppose the two surfaces are diffeomorphic. In particular, they
are homeomorphic and Corollary 3.3.12 implies
n=n'

Since they are diffeomorphic they have the same number of basic classes so
that

mimsg = m’lmlg =m.
Denote by f and f’ the corresponding primitive classes on M and M’. Since
By = Bjyr we deduce that there exist k1, ko, 1,91, 2, y2 € Z such that

mif = (mki + mize + moz1)f, mbHf = (mky + myys + moy)f
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and
0§k17k2§n_27 Oéxlayl Sml_la 0§l’2,y2§m2—1.

We deduce

my = mky + (mixy + mox1) > mize + Moy,

my = mky + (m1yz + may1) > miyz + may
and

/ /
myl(mixg +max1), my|(miys + mayr).

Thus,

/ /
my = M1T2 +MaZ1, My = MY + May].
This implies

mimsg = mﬁmé = (mix2 + maxy) - (M1y2 + may1)

= mima(T1y2 + T2y1) + mizoys + M3T1Y1.
We conclude
T1y1 = woy2 = 0, w1y2 + x2y1 = 1.

Some elementary manipulations now imply

{mlme} = {mllam/2} u

Using Corollary 3.3.12 we can draw the following surprising conclusion.

Corollary 3.3.23. There exist infinitely many smooth 4-manifolds home-
omorphic to F(n;my, ms) but not diffeomorphic to it /!

Proof We can construct these manifolds of the form E(n;m/,mj) such
that

{m,lv m/2} 7é {m17 mQ}

but still m; +mg =mj +mb mod 2ifn=0 mod 2. W

Remark 3.3.24. We have seen that the Seiberg-Witten invariants contain
nontrivial information about the Kahler surfaces of Kodaira dimension > 0.

The Seiberg-Witten equations contain nontrivial information about the
remaining case as well. C. Okonek and A. Teleman have used these equations
in [113] to give a new, very short proof of van de Ven’s conjecture stating
that an algebraic surface diffeomorphic to a rational surface must in fact be
rational. We refer to [88, 113] for more information.
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3.3.3. The failure of the h-cobordism theorem in four dimensions.
Recall that two compact, closed, smooth manifolds X4 are called h-cobordant
if there exists a smooth manifold W with boundary OW = X_ U X such
that the natural inclusions
Xi — W

are homotopy equivalences. W is also called an h-cobordism between X_
and X;. An h-cobordism W is said to be trivial if it is diffeomorphic to a
cylinder [0, 1] x X. The h-cobordism W is said to be topologically trivial if
it is homeomorphic to a cylinder.

In the award winning work [125], S. Smale has proved the following
remarkable result.

Theorem 3.3.25. (The h-cobordism theorem) Any h-cobordism be-
tween two simply connected smooth manifolds of dimension n > 5 is trivial.
In particular, two smooth, compact, h-cobordant, simply connected manifolds
of dimension > 5 are diffeomorphic.

As explained in [51], the proof of Theorem 3.3.25 fails in dimension 4.
Still, the h-cobordism relation is very restrictive.

Theorem 3.3.26. (C.T.C. Wall, [145]) (a) Any h-cobordism W between
two smooth, simply connected 4-manifolds X andY induces an isomorphism

fW : (HQ(Xv Z)a QX) - (HQ(Y7 Z)7QY)'
(b) If X and Y are two smooth simply connected 4-manifolds and
g+ (H*(X,Z),qx) — (H*(Y,Z),qv)

is an isomorphism then there exists an h-cobordism W such that g = fy .

This theorem suggests the introduction of the following object. Suppose
X is a smooth, simply connected 4-manifold. Denote by O(qx) the group
of automorphisms of the intersection form ¢gx. If 'y denotes the group
of components of the diffecomorphism group Diff (M) then there exists a
natural map
I'x — O(gx)
with image Gx. Theorem 3.3.26 implies that if an h-cobordism W is trivial

then fir € Gx, i.e. the automorphism fy is induced by a diffeomorphism
of X. This shows that the index

dx = [O(gx) : Gx]

is a measure of the “size” of the set of nontrivial h-self-cobordisms of X. In
particular, if there exists a smooth manifold X such that dx > 1 then we
can produce smoothly nontrivial cobordisms.
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After considerable effort, M. Freedman succeeded in [38] in proving that
a weaker version h-cobordism theorem continues to hold in four dimensions.

Theorem 3.3.27. (M. Freedman) Any smooth cobordism between two,
smooth, compact, simply connected 4-manifolds is topologically trivial.

The weaker conclusion in the above theorem is not due to a limitation
of the proof. It has deep and still mysterious roots. Yet, the mathematical
world was taken completely by surprise when S. Donaldson announced the
following result.

Theorem 3.3.28. There exist smoothly nontrivial h-cobordisms.

Proof We follow the approach in [51, Chap. 9]. Let X be the K3 elliptic
surface F(2) . We will show that §x > 1 by proving that the automorphism
(—1) of gx is not induced by any diffeomorphism. We argue by contradiction.

Suppose there exists such a diffeomorphism f. Since X has a unique
basic class og we deduce

fro0 =09
and
swx (f*og) =swx(og) = 1.
On the other hand, since f acts as —1 on H%(M,Z) and bj (X) = 3 we

deduce that f changes the orientation of H%_(X ) by —1 and thus changes
the Seiberg-Witten invariant by the same factor. B

3.3.4. Seiberg-Witten equations on symplectic 4-manifolds. We hope
that by now we have convinced the reader of the powerful impact of the
Kahler condition on the Seiberg-Witten equations.

This condition can be relaxed in two ways. We can require the manifold
to be complex but not Kéhler or we can drop the integrability condition on
the almost complex structure but preserve the symplectic form. Surprisingly,
most of the consequences continue to hold under these weaker assumption.

The first situation was considered in great detail in [13] and involves no
new analytical difficulties. By contrast, the symplectic situation is consid-
erably more difficult. In a remarkable tour de force, C.H. Taubes has shown
in [134, 135, 136, 137, 138| that the essential features of the Seiberg-
Witten equations in the presence of a Kahler form survive when the Kéhler
condition is relaxed to a symplectic one.

It is beyond the scope of these notes to even attempt to survey Taubes’
remarkable results. We have a much more modest goal in mind. We want
to prove that the nonvanishing result of §3.3.1 has a symplectic counterpart.
Our presentation will rely heavily on the results in Section 1.4.
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Consider a symplectic 4-manifold (M,w) equipped with a compatible
metric g and associated almost complex structure J so that

w(X,Y)=9(JX,Y), VX,Y € Vect (M).
The almost complex structure canonically defines a spin® structure og with
associated line bundle
det(og) = K3/
Any other spin® structure has the form
o =00® L, det(or) = K;j ® L2
where L is a Hermitian line bundle. Moreover,
I'(Sf) =)@ Q°*(L), T(S;) =% (L).
Thus, any spinor ¢ € I'(S}) naturally decomposes as
Yv=a® e L) e (L).

The Chern connection on T'M induces a connection Ay on K&l. Any

Hermitian connection A on det(or) can be written as
A= Ay+2B,

where B is a Hermitian connection on L. From Proposition 1.4.25 we deduce
that, exactly as in the Kéhler case, we have

D4 = V235 + ).

Imitating the situation in §3.2.1 we choose the perturbation parameter of
the form

) t
N = iFy, + éw.

Again, we can rewrite the Seiberg-Witten equations in terms of («, 3, B)
and, exactly as in §3.2.1 we deduce

gBOéJr(E)Eﬁ = 0

(3.3.18) AFp = i(lo2—182—1) .

0,2 1-
FB = gaﬁ

The virtual dimension of the space of or-monopoles is computed by the
same formula as in 3.2.1

(3.3.19) d(op) =L (Ky — L).

As in the Kéhler case, for any Hermitian line L. — M, we denote by
deg,, (L) the quantity

deg, (L) := i/M FpAw
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where B is an arbitrary Hermitian connection on L. Since w is closed we
deduce that the above expression is independent of B.

If b5 (M) = 1 then 7, belongs to the + chamber if
167

it - ———=

( vol (M)

Theorem 3.3.29. (Taubes, [134, 135]) (a)

deg,(L)) > 0.

swih (0) = sw! ) (Ky) = +1.

(b) If swg\j})(L) # 0 then deg,, (L) > 0 with equality if and only if L is trivial.

(c) If swg\z)(L) # 0 then deg, (L) < deg,, (Kyr) with equality if and only if
L is isomorphic to K.

Proof  We follow the approach in [69]. Using the involution o +— & we
see that it suffices to prove only that swg\}r)(ao) = +1 and (b).

Notice first that if L is trivial then (3.3.18) has a nontrivial solution
with B the trivial connection, 8 = 0 and a = t/2. Suppose now that

swg\}') (o) # 0. Fix t > 0 and consider an 7;-monopole

(1, A) = (o, B, A = Ag+2B)
corresponding to the spin® structure oy.

Using Proposition 1.4.22 we deduce
2050pa = (VP)*VBa — iA(Fp)a
Taking the inner product with o and integrating by parts we deduce
(3.3.20) / IVBa|2dvy = / (2<5;;53a, a) + iA(FB)|a|2)de.
M M
Now use the first equation in (3.3.18) to deduce
/ (2% F5a, a)duyy = —2 / (5858, a)dvyy = —2 / (8, 5%0) vy
M M M
(use (1.4.19) in 1.4.2)
_ / (1. F3%0) — (8. (9pa) o N) ) dvns
M
(use the third equation in (3.3.18))
1
= [ (~laPI8P + 25, (9na) o N ) dons.
M
On the other hand, using the second equation in (3.3.18) we deduce

. 1
[ iaEiaPdon =~ [ (1af? = |87 - Djafdons.
M M



3.3. Applications 275

Substituting this in (3.3.20) we obtain

2
[ (vPa + 55 Gap + 152 - D) duws =2 [ (5. @0) 0 Ny

8 M
or, equivalently,

[ (1970 + Glal?16 + S(lal? ~ 0 + S (Jal? ~ 1)) dons

(3.3.21) M

_9 / (8, (9pa) o Ndvar.
M

The right-hand side of (3.3.21) can be estimated using the interpolation
inequality

€ 1
b < Za? + —1?
labl = a7+ 52

and we obtain

1 1 t
[ (1970 + Glala? + Lllal? = 0 + (Jal? ~ ) )dons
o 8 8 8

1
< / |VBa|2de+C'/ |B|%dvns
2 /m M

where C' is some positive constant which depends only on the size of the
Nijenhuis tensor N. Thus,

1 1 1 t
| (51970l + Glal18R + gllal ~ 17 + gl = 8))dung
(3.3.22)

< o/ 182duar.
M

Now, using the identity

degw(L) = %/MFB Nw = i/MAFBdUM

_ 1 2 2
=1 M(ra\ — 182~ t)dow
we deduce
t t
& [ (aP = 0o = ¢ [ |pPdoy —2mtdeg, (L)
M M

Substituting this equality in (3.3.22) we obtain
(3.3.23)

1 1 1 t
/ (51970l + Sl + < (ol = )2 + <82 ) durs — 2nt deg, (L)
N2 8 8 8

< C/ |82 dvay.
M
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Since t > 0 we can assume t > 8C'. The last inequality then implies
2t deg,, (L)

Lo 2.1 202, 1/ 2 2 l 2
> - - _ —_ R — > (.
> [ (3197 + Moo + o — 07+ (£~ )1 Jauas > 0
Hence
deg,, (L) > 0.

Moreover, we see that deg_ (L) = 0 if and only if |a| = t'/2, VBa = 0 and
B = 0. This shows that L must be trivial.

If L is trivial the above inequality shows that for all ¢ > 4C there exists
a unique (up to 94,) M-monopole

Co = (g = 112, 6y = 0, Ag).

In this case, the twisting connection B on the trivial line bundle is the trivial
connection. To complete the proof of Theorem 3.3.29 we only need to show
Co is nondegenerate. We follow a strategy very similar to the one employed
in §3.3.1. Set A := /2.

As in §3.2.3 we can write

C=(aapb,ib=—=(p+¢)

-

and we deduce C € ker T¢, if and only if

(3.3.24a) V2(8é + 0* ) +i(e Aoy — @ 1 o) = 0,
(3.3.24b) MA@y + 35) = ﬁ(iﬁe(ag, &) — Re(Bo, ),
(3.3.24c¢) ié(p = 4—\1/5(0_560 + 0705),

(3.3.24d) 2V2(0* ¢ + 0* @) + TIm{ag, &) + Im (B, B) = 0.

(Recall that above ag = A, By = 0.) Using the Kéhler-Hodge identities in
Proposition 1.4.10 of §1.4.1 we deduce as §3.2.3 that (3.3.24b) and (3.3.24d)

are equivalent to

A Al
= ———=a.
4V2
We deduce that C € ker Tc, if and only if
(3.3.25a) V2(0é + 0% B) + Nip = 0,
= A

(3.3.25b)
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_ \i
3.3.25¢ oo =—""qa.
( ) ® Wi

Using the identities

Do = V2(0+0%) : Q*(M) — Q¥ (M) — QO (M)
and

D4, = V2(0" @) : QN (M) — Q°0(M) @ QO (M)
we can rewrite the above equalities as

) \i A ) .
@A(ﬂb = —ZIQO, @ZOQO = _zl,(vb? 1/} = [g] .

Thus
. . 22 .

Using the Weitzenbock presentation of the generalized Laplacian 2% 9 4,
we can rewrite the above equation as

2 .
(3.3.26) (V'V+ R+ %)w =0

where R is a zeroth order operator independent of A. If X is sufficiently
large we deduce that the selfadjoint operator R + A2 is positive definite so
the only solution of (3.3.26) is ¢y = 0. This forces ¢ = 0 and thus

kerJc, =0, VA > 0.
The proof of Theorem 3.3.29 is now complete. B

Remark 3.3.30. We have not discussed if there is a natural way of deter-
mining the sign of the unique monopole Cy. This issue is equivalent to the

existence of natural orientations on H'(M) and H2(M). Such choices are

still possible and lead to the conclusion that swg\}r) (09) = 1. For details we

refer to [57, 119].

Remark 3.3.31. The above nonvanishing result implies that any symplectic
(Ké&hler) 4-manifold admits almost complex structures which are not homo-
topic to an almost complex structure compatible with a symplectic (Kéhler)
structure; see [27].

Remark 3.3.32. One can use the information contained in Taubes’ theorem
to produce a very ingenious invariant of a symplectic 4-manifold, (M, w).

Observe first that the symplectic structure determines a canonical spin®
structure op which allows us to identify Spin(M) with H?(M,Z). Using
the morphism H2(N,Z) — H?(M,Z) we can map the set of basic classes
By to a finite collection of lattice points in H2(M,R). (The lattice is the
image of H2(M,Z) — H?*(M,R).) The image of oy is the origin of H?(M,R)
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while the image of ¢4, coincides with the image of ¢ (Kjs). For simplicity,
we will denote by Ky this image.

The symplectic form w defines by integration a linear functional L, :
H?(M,R) — R. Denote by Parw the convex hull of By, C H?(M,R). Parw
is a convex polyhedron. Taubes’ theorem imposes several restrictions on
Pt

e Since 0 € Bys <= 0 € By we deduce that Py, is symmetric with respect
to the point %KM.

e The minimum (resp. maximum) of L, on P, is achieved at precisely
one point, 0 (resp. Kjs) which must be a vertex of Py .

e The group I'y; = (group orientation preserving diffeomorphisms)/(subgroup
of diffeomorphisms homotopic to 1) acts on Bjs thus inducing an (affine)
action on Pjr,, which must leave invariant the finite set of vertices of Py .

Let us define a special polyhedron to be a I'js-invariant convex polyhe-
dron P in the affine space H?(M,R) together with the following additional
structure.

o The vertices of P are lattice points.
o P admits a center of symmetry O.

o There exist an affine map L : P — R and a pair of O-symmetric vertices
P of P such that +L achieves its maximum exactly at P.y.

We will denote the special polynomials by (P,0,P_, Py, L). Clearly,
(P, %KM, 00, Tcan, Lw) 18 a special polyhedron.

Two symplectic forms wy and w; are called isotopic if there exists a
smooth path w; of symplectic forms connecting them. Two isotopic sym-
plectic forms determine the same special polyhedron.

The group I'js acts on the set of special polyhedra according to the rule
Y (ﬂ)v Ov va P+7 L) = (’Y?a ’yOa ’YPfa ’YP+7 ’yL’y_l)

and two special polyhedra are said to be equivalent if they belong to the
same I'j-orbit.

Two symplectic forms wg and wq are called equivalent if there exists an
orientation preserving diffeomorphism ¢ of M such that ¢p*wq is isotopic to
wy. Taubes’ theorem implies that two equivalent symplectic forms determine
equivalent special polyhedra.

It is very easy to construct invariants of equivalence classes of special
polyhedra,

(P,0,P_, P, L).
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More precisely, the number deg(P-) of 1-faces of P which have P_ as one
end point is such an invariant. In particular, if w is a symplectic form on M
then the integer

y(w) = deg(00(w))
is an invariant of the equivalence class of w. At a first glance, v(w) may look
like a very difficult to compute weak invariant.

In a recent stunning work [90], C.T. McMullen and C.H. Taubes have
very elegantly constructed compact smooth 4-manifolds admitting symplec-
tic structures with distinct v-invariant. They have thus given a positive
answer to a longstanding question in symplectic topology: do there exist
compact smooth manifolds admitting non-equivalent symplectic forms?

Theorem 3.3.29 has a nice topological consequence.

Corollary 3.3.33. Suppose M is a smooth, compact, closed oriented man-
ifold such that by (M) > 1.

(a) If swpr(o) = 0 for all o € Spin®(M) then M cannot admit symplectic
structures. In particular, if M admits metrics of positive scalar curvature it
cannot admit symplectic structures.

(b) If |swpr(0)| # 1 for all o € Spin®(M) then M cannot admit symplectic
structures.

Remark 3.3.34. Part (b) of Corollary 3.3.33, combined with some very
ingenious topological constructions, was used in [36, 131] to produce many
families of smooth 4-manifolds which admit no symplectic structures, and
yet they have many of the known topological features of symplectic mani-
folds.






Chapter 4

Gluing Techniques

Treat nature in terms of the cylinder, the sphere, the cone,
all in perspective.
Paul Cézanne

4.1. Elliptic equations on manifolds with
cylindrical ends

This section includes some basic analytic facts absolutely necessary in the
understanding of the gluing problem. The main references for all of the
following results are [6, 74]. We will follow the “"” conventions of §2.4.1.

4.1.1. Manifolds with cylindrical ends. A cylindrical (n + 1)-manifold
is an oriented Riemannian (n + 1)-manifold (N, §) with a cylindrical end
modeled by Ry x N where (N, g) is an oriented compact Riemannian n-
manifold (see Figure 4.1). In more rigorous terms, this means that the
complement of an open precompact subset of N is isometric in an orientation
preserving fashion to the cylinder Ry x N. This isometry is part of the
structure of a cylindrical manifold. We will denote the canonical projection
R+ x N — N by 7 while ¢t will denote the outgoing longitudinal coordinate
along the neck. We will regularly denote the “slice” N by dsoN and the
metric g by 9s0g. For each t > 0 we set Ny := N\ (£, 00) x N.

A cylindrical structure on a vector bundle E — N consists of a vector
bundle £ — N and a bundle isomorphism

9 E’R+xN—> mFE.
We will use the notation E := 9. F.

A cylindrical vector bundle will be a vector bundle together with a cylin-
drical structure (9, E'). A section @ of a cylindrical vector bundle is said to

281
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Z>

Figure 4.1. Manifold with a cylindrical end

be cylindrical if there exists a section u of dsoF such that along the neck
1 = m*u. We will use the notation u := Jy .

Given any cylindrical vector bundle (E,@,E) there exists a canonical
first order partial differential operator P, defined over the cylindrical end,
uniquely determined by the conditions

d .
P(fu) = d—J;u—l—fPu, Vfe C®(Ry x N), u€ Elr, xN

and Pv = 0 for any cylindrical section v of E IR, xn- We will denote this
operator by 0.

Example 4.1.1. The cotangent bundle of a cylindrical manifold (N ,g) has
a natural cylindrical structure with 0,cT*N = R & T* N, where R denotes
the trivial real line bundle spanned by dt. The isomorphism 1 is given by

Do = a(8y) @ (o — a(dy)dt), Yo € QYN).

It is now clear that we can organize the set of cylindrical bundles over a
given cylindrical manifold as a category. Moreover, we can perform all the
standard tensorial operations in this category such as direct sums, tensor
products, duals, etc.

Exercise 4.1.1. Formulate explicitly the exact definition of a cylindrical
isomorphism of cylindrical vector bundles.

~

Denote by VBUN,,(N) the set of isomorphism classes of cylindrical
vector bundles. We want to draw the reader’s attention to one subtle fact.
Two cylindrical vector bundles may be isomorphic as vector bundles but
may not be isomorphic as cylindrical vector bundles. Define

Pic2%(N) € VBUN,(N)

cyl
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as the space of isomorphism classes of cylindrical complex line bundles over
N. It is an Abelian group with respect to tensor multiplication. We have a
forgetful morphism

@ : Pic2(N) — Pic™(N)
which is clearly onto. Its kernel consists of isomorphism classes of cylindrical
structures on a trivial line bundle. We leave it to the reader to check the

following fact.

Exercise 4.1.2.

kaé%ﬂﬂNﬂWH%MZﬁﬂh%%H%MZ%iHWﬁNﬂD.

The above fact can be given an alternative interpretation. The group
G := H'(N,Z) acts on Picgl(N) as follows. Given a line bundle L — N
with a cylindrical structure (9, L) and g € G we obtain a new cylindrical
structure ¢ - (9, L) on L described by the pair (y0, L), where v : M — S!
is a gauge transformation living in the homotopy class described by ¢. The
action is not free, it is trivial precisely for the elements c living in the image
of the restriction morphism H'(N,Z) — H'(N,Z). We will refer to this
action as the asymptotic twisting of the cylindrical structure. The fibers of

® are precisely the orbits of the asymptotic twisting action.

A cylindrical partial differential operator (p.d.o.) will be a first order
p.d.o. L between two cylindrical bundles E, F' such that along the neck
[T,00) x N (T > 0) it can be written as

L=Go,+L

where L : C°(E) — C*°(E) is a first order p.d.o., E = E|y, F = F|y and
G : E — F is a cylindrical bundle morphism. We will use the notation

L:=0xL.
If & denotes the symbol of L then we see that G = &(dt) and
Ol = L — GO,.

Example 4.1.2. If E— Nis cylindrical then so is T*N ® E. Any connec-
tion is a first order p.d.o. C®(E) — C>®°(T*N ® E). A connection which
is cylindrical as a p.d.o. is called cylindrical. Observe though the following
“pathology”. If V is such a connection then along the neck it has the form

V =dt @8 + 00V

where 9,V is a first order p.d.o. C®(E) — C®(E) & C®°(T*N ® E). The
component

C®(E) — C®(T*N @ E)
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is a connection on E while the component
A:C®(E) - C*(E)

is a zeroth order operator, i.e. an endomorphism of F. Thus, 9~V is no
longer a connection. We define a strongly cylindrical connection to be a
cylindrical connection such that the zeroth order component A described
above vanishes identically.

At this point it is illuminating to have another look at a notion we
encountered in §2.4.1. Recall that a connection V on a cylindrical bundle
(E , 1§) is called temporalif V; = 8. Thus, a connection is strongly cylindrical
if it is both cylindrical and temporal.

A cylindrical Hermitian bundle is a cylindrical bundle (E 19) equipped
with a cyhndrlcal metric i and a strongly cylindrical connection VO com-
patible with h.

Suppose N is an oriented cylindrical 4-manifold with IV := dsoN and &
is a spin® structure on N. We say that & is a cylindrical spin®-structure if
there exist a spin® structure ¢ on N and an isomorphism

p:0R,xNn— Ry x0

where R, x o denotes the natural spin® structure on R x N induced by o.
(¢ has to be compatible in the obvious way with the cylindrical structure of
N .) We set 0 := 0,0 and, whenever there is a potential ambiguity, we will
denote a cylindrical spin® structure by a triple

7:=(0,0,9).

We set 0o7 := 0. Two such triples 7; = (64, 0, ¢;) are isomorphic if there
exist isomorphisms

D:61— 09, ®:01— 09

such that the diagram below is commutative.

~ ®1
o1 |IR.,.><N —>R+ X 01

~ ©2
G2|r,xN —— Ry X 09

We denote by Sping, (Y V N) the set of isomorphism classes of cylindrical spin®-

structures over N. Observe that Pic2(N) acts on Sping,, (N N) freely and

cyl
transitively, so that Sping,,(N) is a Plccyl(N)—torsor.
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4.1.2. The Atiyah-Patodi-Singer index theorem. Suppose now that
E and I are cylindrical Hermitian bundles over N. An Atiyah-Patodi-
Singer operator (APS for brevity) is an elliptic cylindrical p.d.o. such

that along the neck it has the form L = G0; + L where
e (G is a homothety, i.e. there exists a positive constant A such that GG* = );
e oL := —G L0y : C°(E) — C®(E) is formally selfadjoint.
Traditionally, the APS operators are described in the form (see [6]):
L=G(o - A).

The operator A is none other than 5mf/

We will use the symbol P(ﬁ)z to denote the orthogonal projection onto
the space spanned by the eigenvectors of 0oL corresponding to eigenvalues

~

> 0. P(L)> is defined similarly.

Remark 4.1.3. We want to draw attention to a confusing point. Consider
an oriented Riemannian manifold N and form the cylindrical manifold N =
RxN. 8OON has two components Ni,,. The induced orientation on N4 is
=+ the orientation on N. Any bundle £ — N and any selfadjoint Dirac-type
operator L : C®(E) — C*(FE) define in an obvious manner a cylindrical
bundle £ = 7*E and an APS operator L = d; — L. Then dsoL is a p.d.o.
on the disconnected boundary GOON. On N4 we have

OsoL|n,..= +L.

To avoid confusion always orient the manifold N first, and then give Do N
the induced orientation given by the outer-normal-first convention. There is
no room for variation around this rule since the orientability of a bordism
implies the orientability of its boundary while the converse is certainly not
true (think of the M&bius band).

Suppose L : C®(E) — C®(F) is an APS operator between cylindrical
Hermitian bundles. The APS problem for L is the following boundary value
problem:

P = X,
(APS) { u=0 on

P(L)si=0 ondN,

where r > 0. If L = GOt + L then the formal adjoint L* = -G*0; + L*
is also an APS operator. Indeed, using G* = A\G~land (0xL)* = OsoL we
deduce

—

o - A N 1 - 4
OooL* = (G) 1" = —(G") "HGOxL)* = ~GO LG = — GO LG
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SO 5ooﬁ* is formally selfadjoint.
The formal adjoint APS* of the APS boundary value problem is

iro = N,
(APS*) { v=20 on

P(L*)s5=0 ondN,

Remark 4.1.4. As pointed out in [6], the solutions of (APS) and (APS™)
can be given an alternate description. For clarity, along the neck we write

L:=G(®,—A4), L*=-G*,— B), B:=—-GAG™".

A and B are first order selfadjoint elliptic operators and thus have discrete
spectra, consisting only of eigenvalues of finite multiplicities. Denote by
(Vxm ) Amer and (@u, )y, cr, respectively, a complete orthonormal system of
eigenfunctions of A and B, respectively. Then

P(L)s>t =0 < @y, € spange {¢Am§ Am < 0},

P(ﬁ*)>@ =0« @|3NT€ spany2 {gbun; tn < 0}.

Suppose @ and ¥ are smooth solutions of (APS) and (APS*), respectively.
Along ON,, we can write

. 2
U = E Un, Vx> Uy, € C, g lun,, | < oo
Am <0 Am <0

and

b= Z Uy Ppis Vi € €, Z [V < oc.

H#n<0 #n<0
Now extend @ and v to [r,00) X N by setting

’&(t) = Z e)\M(tir)u)\m’l/})\m7 ﬁ(t) = Z eun(tir)vﬂ'nqﬁlln

Am <0 p#n <0

and continue to denote by @ and v the sections thus produced over N. One
can show that @ and ¢ are smooth and

Li=0, L6 =0.

These two sections also have nice behaviors as ¢ — oco. 4 decays exponen-
tially to zero (and thus it is an L2-section on N) while (¢) decays exponen-
tially to

0(00) = D VG-

Hn=0
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The Atiyah-Patodi-Singer index of L, denoted by I4pg(L), is the quan-
tity

Iaps(L) = Iaps(L, N,) := dimker(APS) — dim ker( APS*).

A priori, this index may be infinite, or even worse, may not be well defined.
The celebrated Atiyah-Patodi-Singer index theorem, [6], states that both
dim ker(APS) and dimker(APS*) are finite and their difference can be ex-
plicitly expressed in terms of L. To formulate this theorem we need to define
the eta invariant.

The elliptic selfadjoint operators on closed compact manifolds behave in
many respects as common finite-dimensional symmetric matrices. The eta
invariant extends the notion of signature from finite-dimensional symmetric
matrices to selfadjoint elliptic operators.

The signature of a finite-dimensional symmetric matrix A is defined as
sign (A) = number of positive eigenvalues — number of negative eigenvalues.

This definition however does not extend to infinite dimensions since the
above terms are infinite. Following a strategy very dear to physicists one
could try to “regularize” the definition. For each s € C we set

dim ker(A — A
(4.11) pa(s) = 3 dmbad-d)
AN
Aeo*(A)
B Z dimker(A — \) — dimker(A + \)
A>0 A?

where 0*(A) = spec (A) \ {0}. Then one can define
sign (A) = na(0).

The advantage of this new definition is that it is admirably suited for infinite-
dimensional extensions. Assuming for simplicity that A is invertible we can

define
na(s) = tr(A-[A[76TY) A = (4312,

Using the classical integral
(o0}
MNa)z™@ = / et >0, a > 1,
0

we get (z+— A2, aw (s+1)/2)

1 o0 o A2
nA(S) = m/{) t( 1)/2tr (Ae 4 )dt.

The right-hand side of the above expression has two advantages. First of
all, it makes sense even when A is not invertible and on the other hand,
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it extends to infinite dimensions. We will denote the trace of an infinite-
dimensional operator (when it exists) by “Tr” while “tr” is reserved for
finite-dimensional operators. We have the following result.

Proposition 4.1.5. (a) Consider a closed, oriented Riemannian manifold
(N, g) of dimension d, E — N a Hermitian vector bundle and
A:C®(E) - C™(E)
a first order selfadjoint elliptic operator. Then
1 e 2

(4.1.2) na(s) = =———— / t6=D2Ty (A7) dt
I'((s+1)/2) Jo
is well defined for all Res > 0 and extends to a meromorphic function on
C. Its poles are all simple and can be located only at s = (d+ 1 —n)/2,
n=01,2---.

(b) For |s| > 0 the function na(s) is described by the Dirichlet series
(4.1.1).

(c) If d is odd then the residue of na(s) at s =0 is zero so that s =0 is
a reqular point.

For a proof of this nontrivial result we refer to [8]. When d is odd we
define the eta invariant of A by

1(A) := na(0).
Remark 4.1.6. (a) From the definition it follows directly that n(—A) =
—n(A) and n(AA) = n(A), YA > 0.
(b) In [14] it is shown that if A is an operator of Dirac type then one can

define its eta invariant directly by setting s = 0 in (4.1.2). In other words,
in this case

1 (o]
n(A) = 7 /O 12T (Ae~ ) dt. W

Example 4.1.7. Let N = S! and Dy = idy. The spectrum of D is Z and
all its eigenvalues are simple. Thus, for Re s > 1 we have

ng () = Z 51i1:n _ o
n#0
By unique continuation we deduce that np,(0) = 0. This simple equality
reflects the symmetry of the spectrum of Dg. In general, the eta invariant
should be regarded as a measure of the asymmetry (about the origin) of the
spectrum.

More generally, define for each a € (0, 1) the operator
D, :=Dgy+ a.
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Its spectrum consists only of simple eigenvalues \,,(a) = n+a, n € Z. Thus
1 1
m.(8) =) ——— D) ————
7%;)(n—i-a)s n%%(n—i—l—a)s

= C(S, a) - C(Sv 1—- a)

1
((s,a) = Zm

n>0
denotes the Riemann-Hurwitz function. Thus

1D, (0) = ¢(0,a) — ¢(0,1 — a)
and, according to [148, 13.21],

where

€(0,a) = % —a.

We obtain the following identity (see [7]):
np,(0) =1 — 2a.

Theorem 4.1.8. (Atiyah-Patodi-Singer, [6])

Lars(L ) = |

~ 1 N N
p(L)dvg — 5 (dim ker 0o L + n(aooL))
Ny
where p(ﬁ) denotes the local index density of l:, which depends only on the
coefficients of L (see [12, 48, 117] for an exact definition) while 1(0ooL)
denotes the eta invariant of the operator Ox L. (The above integral is inde-
pendent of r > 0.)

Influenced by the above theorem we introduce the &-invariant (or the
reduced eta invariant) of a selfadjoint elliptic operator A by
1
£(4) := 5 (h(4) +1(4))
where h(A) := dimker A. Note that {(—A) = (h(A) — n(A))/2 so that
A — £(A) is not an odd function.

Exercise 4.1.3. Let Ly and L; be two APS operators on N which Adiffer
bAy a geroth order term. Suppose there exists g > 0 such that Ly = L1 on
N\ N;,. Prove that

Iaps(Lo, Ny) = Inps(L1, Ny), Vr > 1.

In many geometrically interesting situations the index density p(L) has
a very explicit description. We present below one such instance.
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Figure 4.2. The smoothing function

Example 4.1.9. Suppose N is a cylindrical 4-manifold equipped with a
cylindrical spin¢ structure & and A is a strongly cylindrical Hermitian con-
nection on det( ). Denote by o the induced spin® structure on Juo N and
set A =0,0A=A |n. Then, as shown in §2.4.1, the Dirac operator ZQA is
an APS operator and Theorem 4.1.8 takes the form

~ ~ 1 1 A n N
(@13)  Laes®s ) =5 [ (<m0 +a(d?) - @)
N,
where pl(Vg ) denotes the first Pontryagin form of T'M determined from the
LeV1—C1V1taA connection V9 on TN via the Chern-Weil construction. The
2-form ¢;(A) is defined similarly.

4.1.3. Eta invariants and spectral flows. While the eta invariant itself
is a very complex object its deformation theory turns out to be a lot more
tractable. More specifically, in this subsection we will address the following
problem.

Consider a smooth path of selfadjoint Dirac operators ®, on an odd-

dimensional manifold N (dim N = n). Compute £(D1) — £(Do).

Set & = £(D¢). We want to compute & = % although at this moment
we have no guarantee that the map ¢t — &; is differentiable.

Since the family of Dirac operators (@,)ye[o,1] may not be independent
of uw near u = 0, 1 we need to smooth out the corners. To this end, consider a
smooth, nondecreasing map = : [0,1] — [0, 1], u +— (u) such that (0) = 0,
v(1) and 4/(u) = 0 for u near 0 and 1 (see Figure 4.2). Moreover, for each
0 <t <1sety(u)=ty(u) so that 7, connects 0 to t.
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Denote by u the longitudinal coordinate along [0,1] x N. For every
0 <t <1 form the APS operator L; on [0,1] x N defined by

fft =0y — Qt'y(u)'
From Theorem 4.1.8 we get

. T 1 1

where p; denotes the integral of the index density of Ly, hy = h(Dy¢), m =
n(®¢). The above formula can be rewritten as

(4.1.4) & — & = pt + it

where j; = —(ho + i¢). The term p; depends smoothly on ¢ since the coef-
ficients of L; do. The term j; is Z-valued so it cannot be smooth, unless it
is constant. If [§] = & (mod Z) then the map ¢t — [§] is smooth and by
(4.1.4)

d[&) .
4.1.5 —2= = .
( ) dt Pt
We will deal with p; a bit later. We first need to better understand the
special nature of the discontinuities of &;.
We see from (4.1.1) that the discontinuities of & (and hence those of
jt) are due to jumps in h;. We describe how the jumps in h; affect & in a

simple, yet generic situation. We assume ®; is a regular family, i.e.

o The resonance set Z = {t € [0,1] ; hy # 0} is finite.

e For every tg € Z and every sufficiently small € > 0, there exist an open
neighborhood N of ¢y in [0,1] and smooth maps \; : N — (—¢,¢), k =
0,1,---,hy, such that for all t € N the family {\;(¢)}r describes all the
eigenvalues of D; in (—¢, ) (including multiplicities) and, moreover, Ag(tg) =
0, Ai(to) #0 for all k=1,2,--- , hy,.

Now for each t € Z set
or(t) = #{k; £ (1) > 0}

and
—0_(0) if t=0
Ao =< oy(t)—o_(t) if te(0,1)
oi(1) if t=1
If

Atf = li%1+ (ft-&-a - ft—a)
we see that A& = 0 if ¢ ¢ Z while for ¢t € Z we have
(416) Atf = AtO'.
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-1 1 +1

Figure 4.3. Spectral flow

(To understand the above formula it is convenient to treat ©; as a finite-
dimensional symmetric matrix and then keep track of the changes in its
signature as the spectrum changes in the regular way described above.)
Finally, define the spectral flow of the family ®; by

(4.1.7) SF(D) = Y Ao,
te(0,1]

For example, in Figure 4.3 we have represented those eigenvalues \; of a
smooth path of Dirac operators which vanish for some values of t. The £1’s
describe the jumps A;o. Thus the spectral flow in Figure 4.3 is 1.

Intuitively, the spectral flow is the difference between the number of
spectral curves Ag(t) which cross the axis A = 0 going up and the num-
ber of spectral curves which cross this axis going down. The initial and
final moments require separate consideration. At the initial moment only
the going-down spectral curves contribute (with a nonpositive quantity),
while at the final moment only the going-up spectral curves are relevant,
contributing with a nonnegative quantity.

Using the equalities j1 — jo = >, A& and jo = 0 we deduce

(418) j1 —j(] = —’il — h() = ZAtf = Z AtO‘ = SF(@t)
3 te[0,1]

so that

(4.1.9) i1 = Iaps(L1) = —ho — SF(Dy).
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From the equalities (4.1.4) and (4.1.8) we now conclude

1
(4.1.10) &1—& = SF(Dy) +/0 %dt

Remark 4.1.10. In the above two equalities we have neglected the smooth-
ing effect of v. However, since y(u) is nondecreasing the crossing patterns
of the eigenvalues of t — ©; and u — D,(,) are identical. This implies
SF(Dy) = SF(Dyw))-

Example 4.1.11. To make sure our sign conventions are correct we test
the equality (4.1.9) on a very simple example. Fix A € R\ Z and for each
t € [0,1] define

Dy =10y + At : C°(S1) — C™(Sh).
spec (D) = tA + Z and all the eigenvalues are simple. The family (D;) is
regular and its resonance set is

Zy={tel0,1]; M\t € Z}.
To compute the spectral flow note that when A\ > 0 we have o_(t) = 0 and
o4(t) =1 for all t € Z) and thus
SF(Dy) =#Zx—1=[\].
When A < 0 we have o_(t) =1 and o () =0 for all ¢t € Z) so that
SF(Dy) = —#Zy = [\
We can form the operator Ly = d; — D; on [0,1] x S*. A separation of
variables argument shows
Inps(Ly) =#{ne€Z;n>0,n+A<0}—#{neZ;n<0,n+A>0}
=#{n; 0<n< A} —#{n; -A>n>0}
_ A . A<0 g
—{ CI=1 . A0 ~ A —1, VAeR\Z.
In our case hg = 1 and we see that hg+ind (L)) = —SF(D;) which confirms
(4.1.9). Again we have neglected the possible corners of the family D; near

t = 0,1 but the above computations stay the same if we work with the
smoothed-out family D, ,) instead.

It is now time to explain the continuous variation %[5],5. Formula (4.1.5)
shows that this is a locally computable quantity. In fact, one can be more
accurate than this.

Assume we have a family (Dy),e[,1) of Dirac type operators on our n-
dimensional manifold N (n is odd), acting on a Hermitian bundle E — N.
Observe that ©, can be written as ©g + T;, where T, is a selfadjoint bundle
endomorphism depending smoothly upon u. Set T, = %Tu and &, = £(Dy).
We then have the following result.
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Proposition 4.1.12.
1 )
& = ——an_1(Ty,D?), n:=dim N

NG

where aj(Tu, D,,) is determined from the asymptotic expansion

4
du

Tr (T exp(—tD32)) ~ > a;(Ty, D3)t0"/2 ¢ — 0.
j=0

For a proof of a more general version of above result we refer to [48, Thm.
1.13.2]. (Watch out for an ambiguity in the statement of that theorem.)

The coefficients a; are local objects but apparently the above proposition
replaces an abstract assertion with an impractical statement. In special
situations though, the coefficients a; can be determined quite explicitly.
Such is the case when T, is scalar, T, = uA so that Tu = A. In this
case a;(T,,D2) = Aaj(D2) where the coefficient a; is determined from the
asymptotic expansion

Tr exp(—t92) = Y _a; (DU 2, t — 0.
Jj=0

For each u the operator D2 is a generalized Laplacian and so there exist a
unique connection V,, and an endomorphism R, such that

D2 = ViV, + R

In [48, Chap. 4] it is shown that the coefficients a; can be expressed in terms
of the metric g on NV and the Weitzenbock remainder R,,. As j increases the
actual description becomes more and more involved. However, for low j the
expression is quite manageable. For example (see [48, Chap. 4]) we have

1 . voly(N) -tk (E)
(4.1.11) ag(D;) = W/Nt“db“ dvg = (4m)n/z 7

(4.1.12) az (D) = (47T1)n/2 /Ntr (Ru+ %id;;) dvg

where s(g) denotes the scalar curvature of the metric g.

Example 4.1.13. We illustrate the strength of the above arguments on a
simple example. Consider again the operators D, = idy + uX of Example
4.1.11. Assume |\ < 1/2, A # 0. In this case n = 1. Equip S! with the
standard metric so that its length is 2. Using (4.1.11) we get
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Note that our assumptions on A imply h; = 0. Since hg = 0 the variational
formula (4.1.10) now yields

td
& =& —1-SF(D,) + /0 L le,Ja
Since n(Dy) = 0 we get
n(D1) =1+ 2(SF(Dy) — ).

From Example 4.1.11 we deduce SF =0 if A > 0 and SF = —1if A < 0.
Hence
1—-2Xx if A>0

”(ia“”):{ —1-2) if A<0

This is in perfect agreement with the computation in [7] or Example 4.1.7.

For more general paths of Dirac operators the formula in Proposition
4.1.12 is for all intents and purposes useless. Fortunately, there is a geometric
way out of this trouble supplied by Theorem 4.1.8.

We consider only a simple situation. Assume NN is an oriented Riemann-
ian manifold of dimension 3 equipped with a spin® structure o. Fix a smooth
path of metrics (gu)uep,1) on N such that g, = g; if u is close to i = 0, 1.
Next, choose a path (Ay)y,ep,1) of Hermitian connections of det(o) such that
A, = A; for u close to i = 0,1. For each u denote by ®, the associated
Dirac operator on N determined by ¢, and A,. Consider now the manifold
N = [0,1] x N equipped with the metric § = du?® + g,. The Levi-Civita
connection V of g has the strongly cylindrical form

V = du A 9y + VI

near u = 0,1. The path of connections (A,) determines a connection A on
the product spin® structure 6 on A. Denote by P ; the geometric Dirac

operator determined by V and A. This is an APS operator on N and, more
precisely, along N it has the form

D ; = c(du)(0y — Da, — Tu)
where T, are zeroth order operators such that
(4.1.13) T, =0, for unear 0 and 1.
Set

@ii i=c(du) (0y — D a,)-
Using (4.1.13), Exercise 4.1.3 and (4.1.9) we deduce

A~

Iaps(@ ;) = IAPS(@%) = —ho — SF(Da,)-
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1 ¢ 1 t T

Figure 4.4. Cutoff functions

Theorem 4.1.8 now implies

665 [ (-3n(D) +ad?) - Lars@) —ho

3
One can further simplify this formula by expressing the integral term as an
integral over IV of some transgression forms. We refer to the beautiful paper
[7] for more details.

= SF(Da,) +é/ﬁ(—lp1(@) +c1(21)2>.

4.1.4. The Lockhart-McOwen theory. Let us first introduce three im-
portant smooth cutoff functions «, 5,7 : R — R, satisfying the following
conditions.

e 0< 3 <4

e 3(t)=1on[l,00) and =0 on (—o0,1/2].
o at)=1—p(t).

o 7(t) = fg B(s)ds.

The graphs of these three functions are depicted in Figure 4.4.

We can view 7, first as a smooth function on the neck R} x IV and then,
extending it by 0, as a smooth function on N. In a similar way, we can

regard o and 3 as smooth functions on N.
Fix a cylindrical Hermitian vector bundle E — N. For each § € R,
k € Z, and p € [1,00] we denote by ng’p(E) the space of LI"P-sections @ of

A~

FE such that

lk,pis 1= ||65Ta‘|k,p <0

I
where || - ||k, denotes the L¥P-norm, defined in terms of the metric § and
the fized connection V. Notice that we have an isometry

mg : LYP(E) — LMP(E), 4 ea.
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Much as in the compact case, these spaces are related by a series of
Sobolev-type embeddings. For a proof of the following results we refer to
[84, Sec. 3]. Set n :=dim N.

Theorem 4.1.14. (Continuous embeddings) There is a continuous em-
bedding
Lhoro(B) — Lhr(B)

if
(i) ko — k1 = n(1/po — 1/p1),
(ii) ko > k1 > 0 and either
(11i) 1 < pp < p1 < oo with py < pgy or
(113°) 1 < p1 < po < 00 with py < po-
Theorem 4.1.15. (Compact embeddings) If

(i) (ko — k1) > n(1/po — 1/p1),

(i) ko > k1 and

(iii) i1 < pio
then the embedding Lﬁ%’pO(E) — Lﬁll’pl(E) is compact.

An Lfoc—section 4 of a cylindrical bundle E is called asymptotically
cylindrical (or a-cylindrical) if there exists an L?, -cylindrical section @ such
that @ — 4g € LQ(E). We set Oxoti := Oxolig. Observe that g is uniquely
determined by 4. (N.B. In [6] the asymptotically cylindrical sections were
called extended L2-sections. We use the new terminology only for coherence
purposes.) The supremum of all g > 0 such that o — 4o € Li is called the
decay rate of the a-cylindrical section .

We introduce a norm || - ||e; on the space of asymptotically cylindrical
sections defined by

Hauez = ||ﬂ - ZALOHL? + ”80071||L2

and we denote by L2, the resulting Hilbert space. It fits into an exact
sequence of Hilbert spaces

0— L(E) — L2,(E) %3 [*(0E) — 0.
Using the cutoff function § we can construct an entire family of splittings
ir : L?(0soF) — L2, (E), r € Ry, of this sequence described by
u(x) — (ipu)(t, x) := Bt — r)u(z).

We will find it convenient to have a whole range of asymptotically cylindrical
sections. Define LL, in the obvious way and then set

LEP (B):={a e L' nNIP (E); |a— 11000 ptv ) + |9l n iy < 00}

n,ex loc
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A pdo. L:C®(E) — C®(E) is called asymptotically cylindrical if there
exists p > 0 such that

A€ LF?(Hom (E, F)), Vk € Zy

and L — A is cylindrical. p = p(L) is called the decay rate. A connection

is called asymptotically (strongly) cylindrical if it differs from a (strongly)

k.2

cylindrical one by zeroth order term in ﬂkzoL Its decay rate can be

defined similarly.

An asymptotic APS operator (a-APS for brevity) is a first order
operator which along the neck can be written as

L=G@ —Ly) + A
where Lo := G(0y — Ly) is an APS operator and A€ Lk2(Hom (E F))

Vk > 0. The decay rate is defined exactly as before. We set dsoL := L. For
later use define the spectral gap

~(L) := dist (0, spec (Lo) \ {0} ).

Observe that if L is an a-APS operator then for every r > 0 we define ,.L
as the APS operator which along the neck is described by

- G<6t - L0> Falt—r)- A
If L : C°°(E) — C°°(F) is an a-APS operator on N then it defines a bounded
operator
(4.1.14) Ls=Lys: LSV (E) — LE2(F), keZy,
for any 0 < p(L). Its formal adjoint with respect to the metric L% is denoted
by L* and is given by
(4.1.15) L* = m_o5L*mog.

We can regard it either as a closed unbounded operator Lg — Lg or as a
bounded operator L(ls’2 — Lg.

The gluing construction uses the following spaces.
kers L :=ker L N L2, kere, L :=ker LN L2,.
The following result is proved in [74] .

Theorem 4.1.16. (Lockhart McOwen) Suppose L is an a-APS opera-
tor. Then for any 6 < (L) which is not an eigenvalue of —0x L the operator
Lk,é 1s Fredholm and its indez is independent of k.

The following proposition is a slight generalization of [6, Prop. (3.11)].
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Proposition 4.1.17. Suppose L is an a-APS operator. Then the following
hold.

(a) kers L =ker Ly 5 , Yk € Zy, 6 < p(L).
(b) The spaces kers L, ker_s L* are independent of 0 < & < min(u(L),v(L)).
(¢) For every 0 < § < min(u(L),v(L)) the continuous map mas : L3 — L2
mduces an isomorphism

kers Lre ker_s L.

(d) For every 0 < 6 < min(u(L),v(L)) we have the equality
ker_s L= kere, L.
(¢) For all > 0 and for all 0 < & < min(u(L),~(L)) the pullbacks by the

inclusions N, — N induce isomorphisms

ker(,L, APS) = kers(,L)

and
A%

ker(,L", APS*) 2 ker_s(,L") = keres(,L).

) A A
ind(Ls) = Tli)rglo Iaps(,L).

Exercise 4.1.4. Prove the above proposition.

The above results suggest the introduction of an APS index for an a-
APS operator L by setting

Iaps(L) := lim Iapg(,L).
r—00
Using Proposition 4.1.17 and (4.1.9) we deduce that if L = G(8; — L(t)) is
an a-APS operator on R x N then
(4.1.16) ind(Ls) = Iaps(L) = — dimker L(—c0) — SF(L(t)).

The remarks in §4.1.3 can be used to determine is := ind (L;) for arbi-
trary 0. Assume for simplicity that L is an APS operator (not just asymp-
totically). Set A := 0 L.

By definition, the map

ms: L — L%, ¢ ™My
is an isometry so that

Zg(ﬁ) = Z‘Q(mgﬁmgl) = IAPS(mgﬁmgl, NT).
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A simple computation shows that
Ls :=msLlm;' =L - dr'(1)G.
Observe that 5oof/5 =A+6=: As and
is = Iaps(Ls, Ny).
Set C,. := [r,r + 1] x N. We have

Laps(Ls, Nyat) = Laps(L, Ny) = —(€(As) — €(A)) + / p(Lg)du;.

On the other hand, the above index density can be expressed as in (4.1.4)
in terms of the APS index of the operator Ls = L — 6G on C,.

/ p(Ls)dvg = E(As) — £(A) + h(A) + Laps(L — 6G, Cy).

Finally, according to (4.1.9), the last term can be expressed as a spectral
flow

(4.1.17) Inps(L —6G,C,) = —h(A) — SF(A+ 6, t € [0,1]).
Putting all of the above together we obtain the following useful equality:
(4.1.18) is = Iaps(L) — SF(A+t6, t € [0,1]).

This is in perfect agreement with Theorem 1.2 in [74]. Note also that if
0 is sufficiently small then there is no spectral flow correction in the above
formula.

Exercise 4.1.5. (Excision formula) Consider two a-APS operators
Lo, Ly :T(E)) — T(E_)
on N which have the same principal symbol. Set A; := 8_:)0[:@-, 1=0,1. Prove
that
(4.1.19) Iaps(Lo) — Laps(L1) = SF(Ag — A1)

where SF(Ay — A;) denotes the spectral flow of the affine path of elliptic
operators A; = Ay + t(A1 — Ap), t € [0, 1].
Remark 4.1.18. The above exercise illustrates one of the many “anom-

alies” of the non-compact situation. The operators Lo and Ly are obviously
homotopic via the affine homotopy

L= 0 —t)Lo+tL.

However, for some values of ¢, the operator L may not define a Fredholm
operator

Ly (By) — L3(E-)
so that it is possible ind (IA/O,(;) # ind (IA/L(;). The correction is given by
precisely the spectral flow SF(Ag — Aj)



4.1. Elliptic equations on manifolds with cylindrical ends 301

4.1.5. Abstract linear gluing results. The main result of this subsection
is a general gluing theorem of Cappell-Lee-Miller [24]. To formulate it in a
more intuitive fashion we need to introduce the asymptotic notions in [110].
We begin with the notions of asymptotic map and asymptotic exactness. An
asymptotic map is a sequence (U, V,, f,)r>0 with the following properties:

e There exist Hilbert spaces Hy and Hj such that U, is a closed subspace
of Hy and V,. is a closed subspace of Hy, Vr > 0.

e f. is a densely defined linear map f, : U, — H; with closed graph and
range R(f,), Vr > 0.

o lim, oo 6(R(f,), V;) = 0 where, following [60], we set

A

U, V) = sup{dist (w,V);uel, |ul= 1}.

Ir
We will denote asymptotic maps by U, —* V..

Example 4.1.19. Suppose Hy =R =U,, HL = R®R and V, = R®0 C H;.
Then the sequence of maps

fr i Hy — Hy, tw— (rt,t)

fr
defines an asymptotic map U, —® V,.. Observe that f, does not converge
in any reasonable sense to any linear map.

There is a super-version of this notion when U, and V, are Zs-graded
and are closed subspaces in Zo-graded Hilbert spaces such that the natural
inclusions are even operators.

Define the gap between two closed subspaces U,V in a Hilbert space H
by

S(U,V) = max{S(U, V), 8(V, U)}.
The sequence of asymptotic maps

f'r gr
U —*V, —*W,, r— oo,

is said to be asymptotically exact if
lim 6(R(f,),kerg,) =0.
T—00

The following result (proved in [110]) explains the above terminology.
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Proposition 4.1.20. If the sequence
fr gr
U, _>a‘/;‘—)aWra r— 00,
is asymptotically exact, P, denotes the orthogonal projection onto ker g, and
Q, the orthogonal projection onto W, then there exists rq > 0 such that the
sequence

Profy

v, v, 2w,

is exact for all r > rg.

fr
An asymptotic map U, — V,. is said to be an asymptotic isomorphism
if the sequence

fr
0—-U, —*V,—0
is asymptotically exact.
Two cylindrical manifolds (Ni, gi), i = 1,2, are called compatible if there

exists an orientation reversing diffeomorphism

(Yol N1 — NQ
such that

91 =¢"ga.

Two cylindrical vector bundles (E;, 9, E; = OsoF;) — Nj; are said to be
compatible if there exists a vector bundle isomorphism

v Er— Ey
covering .

For simplicity, we will fix some (ghost) reference, orientation reversing
diffeomorphism ®y : Ny — Ny. We set N := N; so that we can identify
@ with an orientation preserving self-diffeomorphism of N. It is very con-
venient to think of the end of Ny as the cylinder (—oo,0) x N so that the
outgoing coordinate on N, is —t. Note that the compatibility condition
provides a way of identifying 0 E1 with s E» so that we can compare a
section of 9. F1 to a section of Ou Es.

The sections #; of the compatible cylindrical bundles E; are called com-
patible if 0@ty = Oxotie. The cylindrical partial differential operators L; on
N; , i = 1,2, are compatible if along their necks they have the form

L1 = G108, — L1, G20y — Ly, G1+Gy =1L — Ly =0.
Consider two compatible cylindrical manifolds N;, i = 1,2. For every

orientation preserving diffeomorphism ¢ : N — N and every r > 0 we
denote by N(r) = N(r,¢) the manifold obtained by attaching

Ni(r) == N\ (r+1,00) x N



4.1. Elliptic equations on manifolds with cylindrical ends 303

N

z

§

N
Figure 4.5. Gluing two cylindrical manifolds

to
Na(r) := Na \ (=00, =1 — 1) x N
(see Figure 4.5) using the obvious orientation preserving identification
Gr X Poo:[r,r+ 1] x Ny — [-r —1,—r] x Ny
where
Gr(t) =t —2r — 1.
Two compatible cylindrical bundles E; can be glued in an obvious way to
form a bundle FE(r) = E1#,FE> for all r > 0. We want to emphasize that the
topological types of the resulting manifold N(r) and the bundle F(r) depend

on the gluing isomorphisms ~. In the sequel, to simplify the presentation,
we will drop ¢ and v from our notations.

Given two compatible cylindrical sections ; of Ei, i.e Osoll] = Oxollo,
we can glue them together to a section @1 #,ue of E1#,F>. More generally,
if 4; are only L2 -sections with identical asymptotic values then we can
approximate them by cylindrical sections

Ui = U;i(1r) = ap(t); + Br(t)Osotly, ©=1,2,

where «,(t) := a(|t| — r) and 5,(t) := B(|t| — r), Vt € R, r > 0. Observe
that if 4; are genuine cylindrical sections then 4;(r) = u; for all r > 0. Now
define

(4.1.20) U1 Hrlo = ﬁl(T‘)#rﬂg(T), r > 0.
The cylindrical partial differential operators Lion N; ,i= 1,2, are compat-
ible if along their necks they have the form

Ly = G180 — Ly, G20y — Ly, G1+Gy =1Ly —Ly=0.
Such pairs L; of compatible cylindrical operators can be glued following
the above pattern and we let the reader fill in the obvious details. Using
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the above cutoff trick we can extend the gluing construction to compatible
asymptotic operators, i.e. pairs of operators which differ from a compatible
cylindrical pair by zeroth order terms in (1, L§’2. Cylindrical connections
are special examples of cylindrical operators so the above gluing construction
includes the gluing of compatible asymptotically cylindrical connections as
a special case.

Suppose D; : C®(E;) — C*°(E;) are compatible, formally selfadjoint
a-APS operators of Dirac type. Observe that the compatibility condition
implies (on account of orientations) ) D1 —8 D2 so we set D := 0 D1

We can now form the Dirac type operator

~

D(r) := Di#, Dz : C*(E(r)) — C=(E(r)).
Fix 0 < § < min(~(D;), u(ﬁz)) and a continuous function
c:Ry — Ry

satisfying

c(r) =o(1/r), — =0(e"") as r — 0.
(1) = o1/r). =5 = O(e™)

Define I@c(r) as the finite-dimensional subspace of L?(E(r)) spanned by
eigenvectors of D(r) corresponding to eigenvalues in the interval [—c(r), ¢(r)].
Observe that K.,y C C*°(E(r)). One should think of this space as an ap-
proximation for the kernel of D(r) for r > 0.
The formulation of the main gluing result requires the introduction of
some splitting maps
ST C®(E(r) — L2, (E;), i=1,2.

We explain the construction for ¢ = 1. First, regard NLT as a submanifold
of N(r) in an obvious fashion. Thus any smooth section @ of E(r) — N(r)
defines by restriction a section u(r) over ]\71771. Denote by z, the midpoint
of the overlapping interval [r,r 4+ 1] and set

Ortt = 11 (7) |2 %N -
Now set
STt = a(£)i (r) + By ()0,
Observe that S74 is a cylindrical section of E; and
O0soS1 1 1= Opll.

With S5 : C®(E(r)) — L2,(Fs) defined in a symmetrical fashion we have
the obvious equality
0505 U = 050551
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We assemble these maps in a single splitting map
§" = 8] @ S5 : C°(E(r)) — L2, (Er) © LZ,(E).

Denote by L; C L? (E) the image of kere, lA)Z via the map 0. Observe that
L; C ker D. The spaces L; have additional structure which we now proceed
to describe.

The symbols of the operators D; define Clifford multiplications on the
bundles F; and that is why we will denote them by the same symbol

¢:T*N; — End (E;).
Set J := é(dt). The operator J is skew-symmetric and satisfies J? = —1 so
that it induces a symplectic structure on L?(E) defined by

w(u,v) = /N(Ju,v)dvg

Since {J, D} := JD + DJ = 0 we deduce that H := ker D is a symplectic
space. We have the following result (see [16, 104]).

Lemma 4.1.21. The spaces L; are Lagrangian subspaces of H i.e.
Li = JL;.

We get a difference map
A :kerey D @ kerey Dy — Ly + Ly C ker D, (i1, tig) — Oooliy — Onolla.

The following result is due to Cappell-Lee-Miller [24]. For a shorter proof,
in this asymptotic mappings context we refer to [110]. This result will be
the key to understanding the monopole gluing problem.

Theorem 4.1.22. (Linear Gluing Theorem) Using the above notation
and hypotheses we have an asymptotically exact sequence

. ST . R
(4.1.21) 0 — Koy — keteg D1 @ kerey Dy =+ Ly + Ly — 0.

We want to point out that the above sequence naturally splits. More
precisely, the gluing map
#, :ker A — L*(E(r))
defines an asymptotic map ker A—%H, which is an asymptotic right inverse
for S;.

The above result also shows that the cut off level ¢(r) is somewhat arti-
ficial since KC.(;) is asymptotically independent of c(r). This shows that as

r — oo the eigenvalues A, of f)(r) satisfying
M| = O0(r™179)
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are subject to the sharper constraint

IAr] =0O(r™"), Yn>1.
We conclude this discussion with a special case of Theorem 4.1.22 particu-
larly relevant in Seiberg-Witten theory.

Suppose now the entire problem is supersymmetric. Thus, Ey splits as
Efr @ E| and D has the block decomposition

15_[9@*].
D 0

The restriction E of E; to N induces a splitting £ = ET @ E~ and we can

write .
=6
where G*G = 1+, GG* = 1. Moreover, J(E*) = JET and
D‘“? —JI(;J_l]'

The space H is Zo-graded,

H=H"oH"
and GHT = H".

The bundle E» is also Zo-graded and the compatibility assumptions must
include the condition 9y EL = 00 5.
Li=LfeL;, LfcH*

and the Lagrangian condition translates into

(4.1.22) (LH* =G*L;, (L))" =GL;

(2
where | denotes the orthogonal complements in H*.
All the spaces I@C(T), kere, f)l and L; in the statement of Theorem 4.1.22

are Zo-graded and in this case we can be more specific: all the asymptotic
maps in (4.1.21) are even. Moreover, the spaces KC.(,) have a particularly in-

teresting description. To explain it we have to write ﬁ(r) is supersymmetric

form
[ 0 P(r) ]
pr)y 0 |
For every selfadjoint operator A and any compact interval I we denote by
Spec(A; I) the spectral subspace corresponding to the part of the spectrum
situated in I. Then

K7,y = Spec(D(r)* D(r); [0,¢(r)?))

D(r) =
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and

Ky = SpecDD(r)"; [0, ¢(r)?)).
Observe that dim ICZF(T) — dim Iéc_(r) is a quantity independent of r because it
is equal to ind ()
4.1.6. Examples. We conclude this section with several examples which
in our view best reveal the nature and the complexity of the objects involved

in the gluing theorem. Moreover, we will need these computations later on
in concrete gauge theoretic applications.

Example 4.1.23. Suppose N is a cylindrical manifold. The Hodge=
de Rham operator

d+d* : Q(N) — Q*(N)
is a cylindrical APS operator. According to [6, Prop. 4.9], the L?-kernel
of this operator can be identified with the “image of the relative in the
absolute”; i.e. with the image of the natural morphism

H* (N, ONy) — H*(Ny)
(for some ¢t > 0). To understand the extended kernel let us recall that we
are working with the canonical cylindrical structure on 7*N and we have
BN T*N 2 N*T* 00 N @ A*T* 0 N.
Along the neck we have the isomorphisms
Aeven/oddT*N _ Aeven/oddﬂ_*T*N @ dt A Aodd/evenﬂ_*T*N'

We see that the induced grading on 8. A*T™* N is not the obvious one. The
asymptotic boundary map

Do : kerey(d + d*) — QF(N) @ Q*(N)
has two components. Given an a-cylindrical form & on N we have
O Qv := g @ dt N xaq
and we will set
ap = 0% & and a; = 9L 4.
Denote by L, the image of the morphism
Ono : kerey(d + d*) — H*(N) @ H*(N)

and by Ly, the image of the morphism H*(N) — H*(ON). We have the
following isomorphisms:

(4.1.23) Lan = Range (0%,)) ® *Range (0%,) 2 Liop @ *Liop.

For the reader’s convenience we include a short proof of this fact.
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Observe first of all that Ly, is a Lagrangian subspace of H*(NV), i.e.
*Liop = Lig,, so that 2dim Ly, = dim H*(N). Next, notice as in
[24, Sect. 10] that if & € kere,(d + d*) then

Dok = £0L G+ dt AN¥0% 6 & O k=40 i=0,1.
This implies 9’ & € Lty (i = 0,1) so that
Ly, C Ltop ) *Ltop~
Both spaces above are Lagrangian and thus have the same dimension,
dim H*(N). Hence they must be equal.

By comparing the short exact sequences
0 — kerg(d + d*) — kerey(d + d*) — Liop @ (¥Liop) — 0

and

0 — kerg(d + d*) < H*(N) — Liop — 0

we conclude that the natural map ¢ : kere, (d+d*) — H*(N) is not injective
(!) because we have

dim kere, (d 4 d*) = dim kero(d + d*) + 2dim Ly, = dim H*(N) + dim L.
On the other hand, ¢ is surjective. Indeed, the isomorphism (4.1.23) shows

that given the harmonic forms g, € Ly there exists a form & €
kere, (d + d*) such that 9% & = ;. Its image in H*(ON) via the morphism

v kereg(d + d¥) S H*(N) — Ligp

is the form 9%,&. Thus the above composition is onto and its kernel can
be identified with the subspace of a-cylindrical harmonic forms & such that
0% & = 0. Tt has dimension

dim ker v = dim kerg(d 4 d*) 4 dim Lygp.
On the other hand, ker(H*(N) — Lt,,) = kero(d + d*) C Range () so that

dimkerv = dim ker ¢ + dimker(H*(N) — Lypp)
= dim ker ¢ + dim kero(d + d*).
Hence dimker ¢ = dim L., = dim kere,(d + d*) — dim H*(N). This proves
the surjectivity of ¢. Its kernel is a subspace of ker d%,. Moreover, the
induced map
8;0 tker p — Ly

is a bijection. Observe that if & € ker ¢\ {0} (i.e. & is a nontrivial harmonic
form representing 0 € H*(N)) then 81 & # 0 so that 9% %& # 0 which shows

A

that the harmonic form *& represents a nontrivial element in H*(N) !!!

These facts can be very clearly observed on the simplest situation. Sup-
pose N =R x N. Then for any harmonic form o on N the form dt A « is
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both harmonic and in L2, but its image in H*(N) is obviously trivial since
dt A o = d(ta). On the other hand, %(dt A a) = & * « is in L2, but it
represents a nontrivial cohomology class.

Exercise 4.1.6. Fix 0 < ¢ <« 1. Use the results in the above example
together with the Gluing Theorem 4.1.22 to prove that there exists R =
R. > 0 such that for all » > R, zero is the only eigenvalue in the interval
[—r~17%, r717¢] of the Hodge-de Rham operator d+d* on the closed manifold
N(r) (introduced in §4.1.5).

Example 4.1.24. Suppose Nisa cylindrical 4-manifold. We can then form
the anti-self-duality operator

ASD : QY(N) — (92 @ Q°)(N), & V2(da)* @ —d*a.

Remark 4.1.25. Let us explain the two unusual features of this definition.
The factor /2 guarantees that ASD is an APS operator. The choice of
—d* instead of the regular d* is motivated by consistency reasons. When we
investigated the linearization T¢ of the Seiberg-Witten equation we encoun-
tered the operator d+ @ —2d*. The negative sign appears because we worked
with the left action of the gauge group. Changing this into a positive sign
will affect all the orientation conventions.

Observe that if 7 : R x N — N denotes the natural projection then
along the cylinder we have the bundle isometries
AT*N — (AL @ AO7T"T*N, o' (a,f) = (v — Jw, Jw),
A2T*N — A'7*T*N, n— V21
where _l; denotes the contraction by d;. As in §2.4.1, any differential form
w on N can be uniquely written as

w=dtANf+a, f:=_lw, a:=w—dtAf.

Moreover,
( A fO4at)y =dt A (@b — dfY) + da',
fw? = %(dt A f1 a?) = dt A xa® + o f1
cz+(dt Ao +a) = 5(cZ+ “d)(dt A fO + al)
1 1
= Sdt A (a' — df + *xda') + 5 * (a* — df° + dat)
and

d*(dt A O+ at) = —di(dt A fO 4 ab) = —(f° — d*ab).
We can now regard the ASD-operator \/§CZ+ — d* as a p.d.o.
C®((A @ AD7*T*N) — C°((A' @ A%)7*T*N),
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a a+ *xda — df
— . .
f f—d*a
We see that ASD has the APS form

sl = (-1 e )5 ]

oo A T*N = (A @ AOYT* 00N =2 05 (A2 @ AO)T*N

and

= —xd d
sasoy= [ 20 1]
The operator —5OO(ASD) is called the odd signature operator and we will
denote it by SIGN. (The negative sign is due mostly to historical reasons
but not solely.) It depends on the metric g and its eta invariant will be
denoted by 7sign(g) so that the Atiyah-Patodi-Singer has the form

Iips(ASD) = /

N
Remark 4.1.26. If we define the “classical” ASD-operator by

ASD,, := V2dt @ d*

1
p(ASD) + §(nsign(g) — dimker SIGN).

then 5 0
a 1 0 — % a
asoa[ <[ G]G0 [
and
Js(ASD,) = { *dtd g} = 9, ASD.

If we assume N is spin and S = S; @ S_ is the associated bundle of complex
spinors then the Clifford multiplication map

¢:AT*N ® C — End (S)

induces isomorphisms ( but not isometries)

(4.1.24) A'T*N ® C = Hom (S4,S_) 2 S% ®S_ S, @S_
and
(4.1.25) (N @A)T*N®C=End(Sy) =S, ®S; =S, ®S;.

The operator ASD; can be regarded as an operator
ASD, : C*°(S_®S;) = C(S+ ® Sy).

If® : C>(Sy) — C°°(S_) denotes the canonical Dirac operator then we can
identify ASD,; with the geometric Dirac operator @* twisted by the bundle
Sy equipped with the Levi-Civita induced connection (see [5, Sec. 6] and
the references therein for details).
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The operators ASD and ASD_; have the same local index densities since
ASD* - ASD = ASD}, - ASD., ASD - ASD* = ASD,, - ASD;,.

This common index density is

(4126) pasd(g) = _%<e(¢g) + %pl (@@))

where e(V§) € Q*(N) is the Euler form associated to the Levi-Civita con-
nection of N (via the Chern-Weil construction) and pi(V9) € Q4(N) is the
first Pontryagin form associated to the Levi-Civita connection of g. This
follows essentially from the above identification of ASD,; with a geometric
Dirac operator (see [5, 6] for more details). Thus, as far as index computa-
tions are concerned, it makes no difference whether we work with ASD or
ASD,.

Exercise 4.1.7. Show that D := ASD, is a Dirac operator, i.e. both D*D
and DD* are generalized Laplacians.

Suppose a € kere, ASD. Then
(d+*d)a =0 and di@ = 0.

We deduce that d*da = 0. Taking the inner product with & and using the
integration by parts formula of Sec. 1.2 over N, (r > 0) we deduce

/ |dé|%do = i/ & A * g dé.

V> AN,

The boundary term goes to zero as r — oo since & € ng and we deduce
d& = 0. Thus & € kereg(d + d¥) so that

kere;(ASD) = kerez(d + d*) |n ) -
Arguing similarly we deduce
(4.1.27) kere; ASD* = Py kerey(d + d*) |2 & OR

where P, denotes the projection Q% — Qi

We can now determine Ju, kere,(ASD) and On kere, (ASD*). To present
this description observe that the spaces Li, discussed in the previous ex-

ample are graded by the degree. We denote by Liop the degree-i subspace.
Since L;?Op = (0 we deduce
(4.1.28) Ooo kerez (ASD) = Ly, = Li,, @ (dt A xL},)) = Li,,.

Since Du kere, (ASD*)L = Gy kere, (ASD) (see (4.1.22)) we deduce

(4.1.29) Oso keren (ASD*) = L7, & Li,,
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The above equality can also be seen directly from (4.1.27). We can use
the above simple observations to compute the APS index of ASD. Let us
assume for simplicity that both N and NV are connected.We have
I4ps(ASD) = dimkery2(ASD) — dim ker, (ASD™).
The first space can be identified with the image of H'(N,N) in HY(N).
Using the long exact sequence of the pair (N, N) we deduce
dimker;2(ASD) = dim H'(N, N) = b

where 0% := dim H¥(N). On the other hand,

dim kere, (ASD*) = dim P, kere,(d + d*) + 1.

We want to identify the right-hand side of the above equality with known
topological invariants. For a 2-form & € ker(d + d*) the condition %& = @&
implies

a =0l a
so that we have a natural map

Py kerey(d + d*) — L?

o 0 -
tops @ O

From the isomorphism (4.1.23) we deduce the above map is onto. Its kernel
is none other than the self-dual part of keryz2(d + d*). Thus
dim Py kerey (d + d*) = dim Py kery2(d + d*) + dim Lfop.

The radical of the intersection form on H 2(]\7 , N) is precisely the kernel of
the morphism
H?(N,N) — H*(N)
so that
dlm P+ keI‘LZ (d —+ d*) = b+
where by denotes the dimension of the positive /negative eigenspace of the
intersection form. Thus

dim Py kere, (d + d*) = by + 12
Hence
Iaps(ASD) =% — by — 12— 1.

On the other hand, we have the following identities which are either tau-
tological or follow from the long exact sequence of the pair (N, N) coupled
with the identity I* + I>7% = dim H¥(N):

where ¥ := dim Lfop.

¥ o= bi+r+b
ro= 2
T = b_|_—i7_

i)k _pik =k _ Ak
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where 7 is the dimension of the radical of the intersection form and 7 is
its signature. After some elementary manipulations involving the above
identities we reach the conclusion

1
(4.1.30) Laps(ASD) = —o(x +7+h)
where y = Zk(—l)kl;k and h = dim(H® @ H')(N).

We conclude this section with a detailed discussion of a very special
choice of N which will be needed for further applications.

Example 4.1.27. Supppose L, — S? is a Hermitian line bundle of degree
¢ € 7 over the 2-sphere. We assume S? is equipped with a round metric gg
so that its area is 7. Thus its radius is 1/2 so its Gauss (sectional) curvature
is 4. Denote by wy the volume form on S2.

The metric on L determines a unit disk bundle D; — S? with boundary
a principal S'-bundle
Sl [SEEN NZ

™

52
Observe that Lg is the trivial line bundle and Ny = S! x S2 while L_; is the

tautological line bundle over P! = $2? and in this case N_; = §3. Moreover,
D_; can be identified with a tubular neighborhood of P' < P2,

N, is equipped with a free S'-action whose orbits coincide with the
fibers of . We denote by ( its canonical infinitesimal generator. A global
angular form is an S'-invariant 1-form ¢ € Q!'(Ny) such that ¢ 1 = 1.
Equivalently, this means that the restriction of ¢ to any fiber of 7 coincides
with the angular form df on S'. Using the language of principal S'-bundles
as in [64] we can say that ip defines a connection on the principal bundle
Ny. Notice that

Ledp =0, (1(dp) =Lep —d(¢1p) =0.

Thus idy is the pullback of an imaginary closed 2-form €2 on S2, the curva-
ture of the connection iyp. Moreover

(4.1.31) 2;/529 _ /52 er(L) = deg(L) = .

The choice of global angular form is not unique. We can alter ¢ by the
pullback of a 1-form a on S?. The curvature will change according to the
rule

i — iQ + ida.
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In particular, we can choose the global angular form so that its curvature is
harmonic

Q= cwy, ceR.
Using this in the equality (4.1.31) we deduce

—%area (5%) = cwo =V

"o
so that ¢ = —2¢. Thus with this choice we have
dp = =207 wy.

Observe that ker ¢ determines a subbundle of TN, isomorphic to 7*71S2.
Thus
TN =R @ ker p =2 R¢ & n*T'S2.

For each r > 0 we construct a metric g, on T'Ny uniquely determined by the
conditions

gT(C? C) = 727 gr ’kergpz (71-*90) ‘W*TSQ .
The metric g, is the restriction of a natural metric g, on D,. Denote by h
the Hermitian metric on Ly.

To describe g, observe that the angular form ¢ induces a Hermitian
connection Ag on Ly. This produces a splitting of the tangent bundle T'L,
into vertical and horizontal parts.

TLy:=VTL, @ HTL,.

The vertical part is spanned by vectors tangent to the fibers of 7 : L, — S?
and is isomorphic to 7*Ly. The horizontal part is generated by the locally
covariant constant sections in the following sense. Choose local coordinates
z = (z,y) on a neighborhood U of a point pg € S? and a local unitary frame
f of Ly|y. Then a point P € 7=1(U) can be described by a pair of complex
numbers (£, z) uniquely determined by the conditions

Pecnl(z), P=¢f,.
A tangent vector (,%) € TpLy is vertical if 2 = 0. It is horizontal if
£ +ia.(2)6=0

where ia € Q' (U) is the 1-form representing Ag with respect to the unitary
frame f.

Consider the family of hypersurfaces X, C Ly
X, :={(p,v); pe S* venp), hy(v,v) =r’}.
X, is locally described by the equation
Xr ={(&2): | ="}
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Observe that all these hypersurfaces are diffeomorphic to N,. Since Ay is a
Hermitian connection, the horizontal sub-bundle is tangent to the hypersur-
faces X,. If we choose polar coordinates (r, ) (away from the zero section)
in each fiber

pi=I¢], &F = pef
then the horizontal distribution can be described by the equation
(p,0,2) € Te Ly, p=0, i0+ia(2).
The 1-form df + a is precisely the global angular form expressed in the local
coordinates (r,0, z).
Now we can define a metric g, on T Ly := VTL, ® HT L, by

gr = 1*h @ 7 (g0)-

The restriction of g, to X; coincides with g.. We want to prove that the
scalar curvatures of g, and g, are everywhere positive provided r is suffi-
ciently small. We will use Cartan’s moving frame method. For more details
concerning this method we refer to [105, Chap. 4].

Pick a local (oriented) orthonormal frame 71,75 of T'S? |7, denote by
6', 62 the dual coframe and set

4 ol

Then the structural equations for the Riemann metric go imply

q_ 0 pn 7 1
d@-[_u 0} 0, peQ(U).

The so(2)-valued 1-form

0 —p
w0
describes the Levi-Civita connection with respect to the frame 7, 7o:
VECr = pmy, VECTy = —pumy.

Then
1
dp = — o

where 1/4 is the sectional curvature of S2. Set

2 2

ot i=rdp, ©*i=rp, ¢ =x0t, ot=n%62

Observe that the metric g, can be described as

a={")+ ()} + {7+ (")}
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so that (o', ,¢*) is a local, oriented, g.-orthonormal coframe of T*L,.
Set

1

2
@ = 3
4

ASTR ST ST

The Cartan structural equations show that there exists a unique 4 X 4 matrix
Sr = [Bili<ijzas 6 € Q' (Lo),
such that
dg =5 Np, 0;= —0!.
Moreover, the curvature of the Levi-Civita connection of the metric g, is
given by
Q, = —dS, + 5, A S,.
If ({1, 2, (3, C4) denotes the frame g,-dual to ¢ then the scalar curvature of
the metric g, is given by

i#]
We have
0
L —2r€g03 A <p4
ng - ’/T*,U A S04
_W*M/\ <P3
and )
) 1 . )
05 = =5 2406 G) + 7 (G ) — dig® (i )
k=2
We deduce
1 1o
03 = —5 > {det (¢, G) — det (G @) ok = 5 D7 deh (G G)et =0,
k=2 k=2
1 4
03 = —5 Z{dSOS(Cth) - dSOk(C1,C3}<Pk =0,
k=2
) =0,
4
03 = =5 {407 (€3 Gi) + dP(Gn o) — ddH(CanGa) ot = bt
k=2
4
01 = —% D 149 (Cas ) + dp®(Ca, G) — dSOk(Cz,CzL)} = —rlp?,

i
[\o}
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3 1

0 =—5 4{d<P3(C4, Ce) + do* (€3, Cr) — d (G, C4)}<Pk7

2

k=2
1 *
= _5{_d902(g3, <4)902 - 2d<p3(<’3’ C4)803 _ 2d904(C37 C4)904)} _ —T&p2 bt
Thus
0 0 0 0
~ 0 O TKQDZL _TEQDS
S, = A - )
0 —r&p 0 —7“&,0 +
0 7lp> rlp? —T*p 0

The Riemann curvature tensor of g, is

Q, = —dS, + 5, 15,

0 0 0 0
0 0 Tl A @3 A ot
=10 —rln*uny? 0 (i —2r202) 3 A
0 —rlmpnet (20202 — D3 A ! 0
[0 0 0 07
0 0 * *
+
0 —r202p%2 A3 —rlp3 AT p 0 *
| 0 —7“252@2 A <p4 — 7“&,04 AT 7“262903 A <p4 0 |

0 0 0 0
0 0 20202 A o3 20202 A oA
B 0 —r202p% A @3 0 (3 =3r20%)p3 At
L0 =222 Nt (3202 — i)cp:3 A pt 0

The scalar curvature of g, is
5 = 2{r22? NG (G N ) + G A NG A )
1

1
+(Z — 3r2€2)<p3 A <p4(§3, C4)} =5 2202,

We see that

1
4.1.32 S 0, V —.
( ) ST > 9 r < 2|£‘

A similar computation shows that the scalar curvature of g, is

1 .
Sp = 3~ 220 = §,.
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Observe that we can slightly perturb the metric g, in a neighborhood U of
0Dy so that the new metric continues to have positive scalar curvature and
its restriction to a smaller tubular neighborhood V' C U of N, is isometric
to the product metric dt? + g, on (0,¢] x Ny.

More precisely, near 0Dy, g, has the form

gr =12dp* +1°p*0* + g0, pe (1-¢e,1].

Define the perturbed metric to be §, := r2dp? + r?a(p)?¢? + 7*go, where
the cut off function « is depicted in Figure 4.6.

v

Figure 4.6. Smoothing the linear function p — p

The scalar curvature of g, differs from the scalar curvature of g, by a
term bounded from above by Cr?|la||c2 where C is a universal constant.
The scalar curvature s(g,) will be positive as soon as r is sufficiently small.

The classical topological invariants of Ny, ¢ # 0, are easy to compute.
To determine its fundamental group observe that Ny is a Zj-quotient of
N_1 = 83, To see this represent S as the unit sphere in C?
P ={(="2?) e [P+ =1}
and the cyclic group Zj, as the multiplicative subgroup of S 1 consisting
|¢]-th roots of 1. Then Z; acts on S by

p(z',2?) = (pz*, p2%) (pl =1)
and this action commutes with the Hopf action of S!
eit(z1’ 22) — (eitzl’ eitZQ).

This action descends to an S!-action on the quotient N = S3 /Zyg and the
stabilizer of each point with respect to this action is precisely Zj,. Thus N
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is equipped with a free S1 = §1/ Zyg-action and the natural projection
T:8% >N
satisfies
m(etz) = efilr(x).

Thus N — N/S! is a principal S'-bundle and the |¢|-fold cover 7 : S — N
maps the fibers of the Hopf bundle S* — S? to the fibers of N — N/S?.
Moreover the restriction to fibers is an |¢|-fold cover. This shows that N is a
circle bundle of degree —|¢| over S?, i.e. N & N_jg- (To obtain the bundles

of positive degree we have to replace the Hopf action by its conjugate in the
above arguments.) This shows that

71 (Ne) = Zyy

and the homotopy class of a fixed orbit is a generator of this cyclic group.
Thus

H'(Ny,Z) = Hy(Ny, Z) = 0, Hy(Ng,Z) & H*(Ny, Z) = Zy.

It is convenient to describe the isomorphism H?(Ny,Z) & Zy) from a dif-
ferent perspective.

The manifold Ny, bounds a disk bundle Dy, of degree ¢ and we have a
long exact sequence

0= H'(Ny,Z) — H?*(Dy, Ni; Z) — H?*(Dy,Z) = H*(S?,Z) — H*(Ny)
— H3(Dy, Ny;Z) = H Dy, Z) = 0

where at the last step we have used Poincaré duality. On the other hand, the
Thom isomorphism theorem shows that the Poincaré dual 7 € H?(Dy, Ny; 7Z)
of S? < D, satisfies

i*1 = £ x generator of H*(S?,7Z)
and the map
HY(S%,Z) — H*(Dy, Nj; Z) = Hy(Dy,Z), w7 AT

is an isomorphism. Above, 7 denotes the natural projection D, — S? while
i denotes the inclusion of S? in Dy as the zero section. Thus, 7 is a generator
of H?(Dy, Ny;Z). The image of 7 via the morphism

H*(Dy, Ni; Z) — HX(Dy, Z) =5 H*(S% 7))

is precisely i*7. Thus, the image of H?(Dy, Ny;Z) — H?(Dy,7Z) = Z is the
subgroup ¢Z. The surjective morphism H?(Dy, Ny) is none other than the
natural projection

H*(Dy,7) =7 — 7. — L)L = H*(N;, 7).
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If we now identify H?(N,,7) with the Abelian group Pic™(N;) of isomor-
phism classes of smooth complex line bundles then the above observations
show that the restriction map

(4.1.33) Pic™®(Dy) — Pic™(Ny)

is a surjection, i.e. any complex line bundle over N; extends to a line bundle
over Dy. Such extensions are not unique. The kernel of the morphism
(4.1.33) is freely generated by the VI'D; = 7* L, = the pullback of L, — S?
to the disk bundle Dy — L.

Consider the operator ASD on D, determined by the metric §.. Because
of the cylindrical nature of g, near 9Dy we can attach a cylinder [0,00) x
Ny and obtain a cylindrical manifold Ny. We will continue to denote the
cylindrical metric on Ny by gr. Assume ¢ # 0. Then

Lps(ASD) = ~(x(D0) + (D) + h(Ny))

= —%(2 +7(Dy) +1) = —%(2 + 1+ sign (£)).
Moreover,
ker;2(ASD) = H'(Dy, Ny) = 0.
Observe that
Oso kerez(ASD) = <L}, & LY, = 0 & R.
Thus
dimker.,(ASD) = dimker;2(ASD) +1 =1

and )
dim ker.,(ASD*) = 5(1 + sign(4)) + 1.

This confirms the prediction
1
IAps(ASD) = —5(3 + T(Dg)).

We can now use the Atiyah-Patodi-Singer index theorem to conclude that
1 1 . 1 e 1
~5@+700) = =5 [ ()4 gp1(F7)) 4 3 (mign(s) — b).
D,
Since h = bg(N) + b1(N) = 1 we deduce

nsign(gr) =-2- T(DZ) +/

[ (e97) + 3m(¥9)).

3

On the other hand, the Gauss-Bonnet theorem for manifolds with boundary
(see [48, §2.7.6 — 7]) implies

/ e(V0r) = (D) = 2
D,
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so that

(11.34) nain(ar) =5 [ w97 = 7Dy,
D,

The last equality is valid for any 4-manifold with boundary, not just the
disk bundles D,. It justifies the name signature defect used to refer to
Nsign(g) since the right-hand side of (4.1.34) would be zero if D, were a
closed manifold. One of the main motivations for the research conducted in
the beautiful papers [6, 7, 8] was the need to better understand the nature
of this defect.

Let us now turn our attention to Dirac operators. Again we restrict
to the case £ # 0. Since the tangent bundle of any compact, oriented 3-
manifold is trivializable we deduce wo(Ny) = 0. Thus Ny is spinnable. The
universal coefficients theorem shows that

Zo ¢=0 mod 2

HQ(Nz,Zz)%Ze@@Zzg{ 0 /=1 mod?2

Hence, if ¢ is even there are precisely two nonisomorphic spin structures
on Ny while when £ is odd there is exactly one isomorphism class of spin
structures.

If o € Spin®(Ny) then c¢i(det o) =0 mod 2. This implies that the range
of correspondence

Spin®(Ng) 3 0 — ¢y (det o) € H*(Ny, Z)

is the subgroup Gy of Z; generated by 2 mod ¢. We will identify G, with a
subset of {0,1,---,|¢| —1}.

Fix o € Spin®(Ny) and denote by k the element in Gy determined by
ci(det(o)). Since ci(det o) is a torsion class the line bundle det(o) supports
at least one flat connection A,. This connection is determined by its holo-
nomy along the fibers (which generate 71 (/Ny)) and is given by a complex
number

27Tki)
)
As in [106, p. 369], we form the connection

Po = exp(

so that

The holonomy of B, along any fiber is zero. (Can you see why ¢) Since the
curvature is the pullback of a form on the base of the fibration N, — S? we
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deduce that B, is the pullback of a connection B/, on a line bundle L/, — 52
such that 7*(L,) = L,. The Chern class of L is

i k
L) = 1 (“2kiwg) = “uwp.
c1(Ly) 5 (—2kiwo) —wo

Wwo =T
SZ

this class corresponds to the element k € H?(S?,7Z) = Z. Since the pullback
7% . H*(S%,7) — H?(Ny,Z) is given by the natural projection Z — Z/{Z
we deduce that k € Gy mod ¢ and ¢1(L,) = k.

On N, there is a canonical spin® structure oy induced from the natural
spin® structure g on Dy determined by the complex structure. Observe
that as a complex vector bundle we have

TDy =" Ly ® 7" TS? = ¥ (L@ KV

Since

~Y

where K denotes the canonical line bundle on S? = P!. Observe that
deg K = —x(S?) = —2. Then
det(60) = Kl & n*(Le@ K1),
This induces a spin® structure o9 on Ny satisfying
det(cg) = m*(Ly @ K1) |§, 2 7" K|y,

since Ly |n,= C. Thus ¢1(0p) = 2 mod £. For every n € Z denote by L,
the degree n line bundle over S? and set

Op =00 ® Ly, op:=0n|n, .
Observe that
c1(det(69)) = 7" Loy, c1(det(6y)) = 7" Lotoion.
Then o,, = 0,,, <= n = m mod /£ so that
Spin®(Ny) = {on; n € Z mod ¢}.

Observe that c¢(deto,) = (2n 4+ ¢ + 2) mod ¢. Following [109], for each
n € Z we define the canonical representative L, of o, to be the complex
line bundle L — S? uniquely determined by the requirements

14 degL

degL=n mod/{, — 7

€[0,1).
We set

1+ deg L,
——
The rational number h(c,) has a simple geometric interpretation namely,
exp(—4mh(oy,)i) is the holonomy along the fibers of N, — S? of the flat
connections over det(oy,).

h(oy) ==
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The previous considerations show that a flat connection over det(o,)
extends to a flat connection over det(d,,) if and only if 2n + 2+ ¢ = 0.

Fix a spin® structure o, on N, and denote by A, a smooth flat con-
nection on det(oy,). (There is only one gauge equivalence class of such flat
connections.) Suppose that there exists an asymptotic strongly cylindrical
connection A, on det(6y,) — Ng, with positive decay rate p and with anti-
selfdual L?(g,)-curvature F A (FXH = 0). (We will see later that if £ < 0

then there exist such connections fln) The connection An determines an
asymptotically cylindrical Dirac operator 3 A, with

0P =Da,

The Weitzenbock formula implies that ker® 4, = 0 since Fy,, = 0 and the
scalar curvature of g, is positive. This implies
kere, ’}Z)zn = kerje @zn
so that
Taps(® ) = dimckerp2®@ 5 — dimc kerp» @j}ln'
We claim that kerz29 ; is trivial.

For T' > 0 set
Ny(T) := N¢ \ (T, 00) x Np.

Denote by ¢t — oo the longitudinal coordinate along the long neck of Ny,
J = ¢(dt) and for each T > 1 set

Ny(T) := Ny \ (T, 0) x Np.
Let ) € ker;2®,. Observe that since ker 4, = 0 we have
(4.1.35) 19 |1y, ller = o(1), as t — oc.

Using the Weitzenbock formula (in which F;{ = 0) and the integration by
parts formula in Exercise 1.2.2 of Sec. 1.2 we deduce

- /. 5,25, 0 D))
= [ (P 926.0) + S auia

= [ (e D) ava) - [ i b

Ny(T)
The estimate (4.1.35) now implies

[ (9 MR ava) = o1) asT - .
Ny (T) 4
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Now let T — oo. Since the scalar curvature of g, is positive we conclude
that ¢ = 0. Thus

IAPS(@AH) = —dim kerex@*An = —dimker;2 C;Z)Zn.

Denote by 14 (0n, gr) the eta invariant of the Dirac operator © 4, . Formula
(4.1.3) of §4.1.2 implies

— dim ker,,, an = Isps(®P1)

11 e 1 . 1
= a7 o> gr S An/\ An__ ir\O,dr)-
g1 f, 77+ [ ath nadn) — gnile.o)
Thus
1 - , . A A
477d2'7«(0',g7«):—§/ pl(Vgr)+8d1mkerem’}2)A —/ c1(Ap) AN er(Ay).
Dy " Ny

Using the equation (4.1.34) we obtain
F(om, gr) == 4Mair(0, gr) + Nsign(gr)

= 8dimkere; @ — 7(Dy) +/ c1(Ay) Aer(Ay)
n Ny

(4.1.36)

In [107, 109] we showed that
(4.1.37) F(on,gr) = 4Ch(op)(h(op) — 1) + £ — sign (£).
We deduce

8dimkerc, @% = 4lh(y)(h(on) — 1) + L~ | e1(An) Acr(Ay).
n NZ
Suppose for example £ < —1 and —1 < n < |¢| — 1. Then
n+1
14

h(op) = —
so that
dn+1)(n+14¢)
14

To compute the integral term we use the intersection form on H?(N,Z)
induced by the Poincaré duality

H*(Dy,0Dy;Z) x H*(Dy,Z) — Z.

Alh(y) (h(on) — 1) =

Then )
A A M+ 2+ 0
/A c1(Ap) Acr(Ay) = %

N,
since det(dy,) = 7" Loy 424+¢. We conclude that

dim ker,; @j}; =0.
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4.2. Finite energy monopoles

This very technical section offers a glimpse into the analytical theory of
the Seiberg-Witten equations on 4-manifolds with cylindrical ends. To keep
the technical details within reasonable limits we will consider only some
special, simpler situations required by the topological applications we have
in mind. This choice has an academic advantage as well: it offers the reader
a quite extensive picture of what to expect relying on a relatively moderate
analytical machinery. For an exhaustive presentation of this type of problem
in the Yang-Mills context we refer to [96, 133].

We tried to keep the presentation as self-contained as possible but, to
keep the length of this section within reasonable limits, we had to appeal
to certain basic facts about elliptic partial differential equations we did not
include in this book. These can be found in [47, 105].

4.2.1. Regularity. Suppose N is an oriented cylindrical 4-manifold with
N := 85 N. Fix a cylindrical spin® structure 7 = (6, 0,¢) on N (0 := s00)
(see §4.1.1 for precise definitions). Denote by S; = S+ & S the bundle of
complex spinors associated to &, and by S, the bundle of complex spinors
associated to o. S, can be equipped with a cylindrical structure such that
So = 9sST.

We denote by s the configuration space consisting of pairs C:= (1&, fl)
where ) € Li)i(SJr) and Ais an L2’2 Hermitian connection of det(¢). Define
90 as the space of L —maps ’y N — S For every point pg € N we
define the subgroup Sg(po) - 90 consisting of maps 4 : N — S such that
F(po) = 1. (Such gauge transformations are said to be based at po.)

A finite energy monopole is a configuration C = (1&,121) el satisfying
the Seiberg-Witten equations

D = 0
{ Fro= e '(34v))

and the growth condition
o A R oA 1 o
BQ) = [ (1949 + Sl
N

We will denote by Z5 the set of finite energy monopoles on N.

%+ ZW\Q)CZU(Q) < o0.

As in the closed case, we will need to use perturbation parameters. In
this case they will take the form of closed, compactly supported 2-forms
n € Q?(N) of appropriate regularity.

Proposition 4.2.1. Let C = (1&,/1) € 25. Then there exists 4 € §,3 such
that 4 - € € .
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Proof The proof relies on the following technical result.

Lemma 4.2.2. Suppose M is a smooth, compact, oriented Riemannian 4-
manifold with smooth boundary OM = N, o € Spin®(M) and C = (1, A) is
a L*%-monopole corresponding to the spin-structure o. Then there exists a
L3’2-map f: M — R such that €'/ - C is smooth in the interior of M.

loc

We will present the proof of this lemma after we explain why it implies
Proposition 4.2.1.

Let C = (4, A) be a finite energy monopole on N. Set C,, := (n,n+2) x
N, n € Z4. Using Lemma 4.2.2 we can find L3?

loc

f:Ni=N\(1,0)x N =R, f,:C, —R

-maps

such that
el - Clg, € C®(N), €/nCle,€ C®(Ch), Vn€Zy.
Set ug = fo— f, up := fn — fn_1, Yn > 1. Observe that u, is a smooth
function on (n,n+ 1) x N, Vn € Z; because on this cylinder we have
—2idu,, = etfn - A —elfn1 A ¢ C™((n,n+1) x N).
Fix 0 <e %. For each n € Z define ¢, € C (N) such that ¢, = u,

comp

on (n+1—e,n+3+¢)x N and ¢, = 0 outside (n+3 —2e,n+ 3 +2¢) x N.
Finally, set
hn:(n—1/2—en+1/24e)x N =R, hy = fo1+¢n, n>1,
and
ho=f+¢o on N\[1/2,00) x N.
Observe that hy,—1 = hy, on (n+ % —e,n+ % +¢) X N so that the collection
(hy) defines an Li;i—map A
h: N —R.
On the other hand, on the cylinder (n —1/2 —e,n+1/2+4¢) x N we have

elh . C = elon. (eif"*é) celn.C®cC™® N

Proof of Lemma 4.2.2 Fix a Hermitian connection Ay on det(o) which
is smooth up to the boundary of M and set ia := A — Ap. The Dirichlet
problem
{ Apyu = %d*a in M
v = 0 ondM
has a unique solution u € L>?(M) (see [47, Chap. 8]). Set v := ¢! and
(¢,B) :=~- (¢, A). If ib := B — A then

ib = ia — 2idu
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so that d*b = i(d*a — 2Apsu) = 0. The Seiberg-Witten equations for (¢, B)
can be rewritten as an elliptic system

(4.2.1a) D.1,0 = —5eli)o,

(4.2.1b) (dt e d")b= (%q(qﬁ) - FXO> ® 0.

An elliptic bootstrap, identical to the one in the proof of Proposition 2.1.11
of §2.1.2 concludes the proof of Lemma 4.2.2. B

Proposition 4.2.1 shows that there is no loss of generality by working only
with smooth finite energy monopoles. Observe also that nowhere in the proof
have we relied on the growth condition E(C) < oo to establish regularity
modulo § The growth condition affects only the asymptotic behavior. In

particular, the considerations in 2.4.1 show that
Zs # () = there exist three-dimensional o-monopoles on N

In the next subsection we will have a closer look at three-dimensional monopoles.

4.2.2. Three-dimensional monopoles. Consider a closed, compact, ori-
ented Riemannian manifold (N, g) and a spin® structure o € Spin®(N).
We want to define a functional set-up which closely follows the relationship
between the four- and three-dimensional theory.

Define a configuration space €, consisting of pairs (¢, A) where ¢ €
L?2(S,) and A is an L*2-connection on det(c). (Often we will need to
consider configurations of different regularity, which will be indicated by
Sobolev superscripts attached to C,. E.g., €/ refers to configurations in
L’I‘,Q. )

Denote by G, the group of L32-maps v : N — S'. Observe that since
dim N = 3 the Sobolev-Morrey embedding theorem implies L2 embeds in
a Holder space and, as in §2.1.2, we can conclude that G, is a Hilbert-Lie
group with commutative Lie algebra T1G, := L>?(N,iR). For every x € N
we set

Go(x) == {7 € Go1 ~(x) =1}
9o (x) will be called the group of gauge transformations based at *. Observe

that G, (x) acts freely on C,. Now set B, : C» /Gy and B, () := Cx(*)/G0 ().
As in §2.2.2 we can equip B, and B, (x) with natural Sobolev metrics.

For every C € C, we denote by
Lc: TG, — TcC,
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the infinitesimal action at C
Selif) = g e C = (i, A~ 2idf).
Its formal (L?) adjoint is
TcCy 3 C s £6C = LE(¢,ia) = —2id*a — iTm (1, 4)).
As in the four-dimensional case, we can identify ker £¢ with the Lie algebra

of the stabilizer Stab (C) with respect to the G, action.

Since C, is an affine space we can identify the tangent space TcC, with
G, via the map
C—C+C
Define the slice Sc C TcC, = C, at C by
Sc := ker £ N L*2

More generally, we set S¢ := ker £& N L™2. The slice at C is equipped with
a natural Stab (C)-action and, exactly as in the four-dimensional case (see
§2.2.2), we have the following result.

Proposition 4.2.3. There exists a small Stab (C)-invariant neighborhood
Uc of C € Sc such that every orbit of G5 which intersects Uc does so trasver-
sally, along a single Stab (C)-orbit. In particular, every G, (x)-orbit inter-
sects Uc transversely in at most one point.

From the above proposition we conclude that B, (*) is a Hilbert manifold
while B, is smooth away from the reducible orbits.

A three-dimensional monopole is a configuration C = (¢, A) € C, satis-
fying the Seiberg-Witten equations

{ Pay = 0
5a(¥) = c(xFa)

Denote by Z, C €, the set of three-dimensional monopoles. Exactly as
in the four-dimensional case we conclude that each three-monopole is G-
equivalent to a smooth one and M, := Z,/G, is a compact subset of B, .

Remark 4.2.4. Arguing exactly as in the proof of Lemma 2.2.3 one can
prove that if (¢, A) is a 3-monopole then

sup [¢(z)[* < 2 sup |s(z)|
zeN zEN

where s is the scalar curvature of N. We have already used this fact in the
proof of the Thom conjecture in §2.4.2.
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To describe the local structure of 91, we need to linearize the Seiberg-
Witten equations along a slice. The monopoles are zeros of the smooth
map

SW : €y — €y = TcCs, (1, A) = (Dt a(¥)) — c(+Fa)
As explained in §2.4.1, the map SW is the formal (i.e. L?) gradient of the
energy functional
Er : Gy — R,
&0 A) =5 [ (A= A0) A (Fat Fap) + 5 [ (Dau)de,
N N
where Ay is a fixed, smooth reference Hermitian connection on det(o). Since

d HE Oy
7 lt=0 Es (e -C) =0
we deduce
Dc&y(Lcif) = 0 = <SW(C) L c(if) >L2 =0, Vif € T4S,
so that
SW(C) € 8¢, VC e C,.
Observe also that for every v € G, we have

SW(y- (¥, A)) = (v®av, q(¢) — c(xFa))

so that

[SW (- Oz = [[SW(C)] L2
Hence C — ||SW(C)||2 is a well defined continuous function on B, which
we denote by j. We can regard SW(C) as an S'-invariant tangent vector

field on B, () or as a genuine tangent vector field on B, ;.. For CeT cCs
and if € T1G, define

¢ swo —32c ][ C
Te [ if ] | . .

4|10 SW(C +tC) — 1 &c(if) .
= € TcC,” @ L*(N,iR).

—38¢C
More explicitly, if C := (1, A) and C = (w, ia) then
) D4 0 0 W seia)y — 5 fy
(42.2) Tclia |=| 0 —xd d|-|ia |+ 30(1,¥)
if 0 d° 0 if 13m (¢, )

Denote by T2 the first operator on the right-hand side of (4.2.2) and set
Pc:=Tc— ‘J'?: Notice that Pc is a zeroth order operator while J¢ is a first
order, formally selfadjoint elliptic operator.
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Exercise 4.2.1. Prove directly that J¢ is formally selfadjoint.

Suppose Cg is a 3-monopole. To understand the local structure of 9,
near Cg it suffices to understand the structure of the critical set of the
restriction of &, to a small neighborhood U of Cy € Sc,. For every C € C,
we denote by Ilc the L?-orthogonal projection

TcCL — 8L,

Since Tc€Y is independent of C, TcCY = L*(S @ iT*N), we can write II
instead of Ilc.

Exercise 4.2.2. Show that IITcC, C S¢ , Vr > 0.

Lemma 4.2.5. There ezist a Stab (Co)-invariant neighborhood U = Uc, of
Co € 8¢, and a constant X > 0 such that

1
AISW(Ollzz < [USW(C)l 2 < AISW(C)l| 2, VC e U.

It is worth emphasizing the main point of the above result. Roughly
speaking, it says that, for C sufficiently close to Cp, the component of SW(C)
orthogonal to Sc, is small compared to the component along Sc,. In par-
ticular, if C € Sc, is close to Cp then SW(C) vanishes if and only if its
component along Sc, vanishes.

Proof Observe that we always have
ITILSW(C)|[z2 < |SW(C)| 2
so it suffices to find a neighborhood U of Cy € Sc, and A > 1 such that
[SW(O)| 2 < AISW(C)|[r2, VCeU.

We will prove a slightly more general result. More precisely, we will show
that there exists a neighborhood U of Cy € Sc, such that for any C € U and
any ¥ € Sc we have the equality

V|2 < AT f2.
Lemma 4.2.5 follows by setting ¥ := SW(C) in the above inequality.

We argue by contradiction. Suppose there exist sequences C,, € Sc, and
V¥, € Sc,such that

12,2 1
Co —Co, [Wallpe =1, [MWmllr2 <
Set T, :=1I¥,, and =, := (1 — II)¥,,. Then

(4.2.3) 12H3M>(1—%)
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Now observe that Z,, L Sc, so there exists a unique if, € (ker SZCO)L =
(T1Stab(Co))* C T1G, such that

Lc,(ifn) = Zn,
Lc,(if) = &co + R

where R, is a zeroth order p.d.o. (bundle morphism) such that ||Ry||22 =
o(1) as n — oo. The condition

£¢,%n =0
can be rewritten as
0= (£¢, + Ry)(Trn +En) = £6,En + REn = £8,L¢,(1fn) + Ry En,.
Thus if, L ker £¢ £¢, and
1£¢,Lco (ifn)llLr = [|ByEnllLe, Vp € (1, 00).
Using the Sobolev inequalities we deduce that there exists C' > 0 such that
[ Rpllzee < CHRnH2,2'
Hence there exists C' > 0 such that
[R7EnllL2 < Cyl|Rull22]|Enll2, Vn.

Using the elliptic estimate of Theorem 1.2.18 (v) for the generalized Lapla-
cian £¢ £¢, we deduce that there exists a constant C' > 1 such that

[fnll22 < Cl[RnZnllr2 = o(1) asn — oco.

This implies f, — 0 in L*2 and since L£c,(ifn) = E, we deduce E,, — 0 in
L?. This contradicts the inequality (4.2.3). Lemma 4.2.5 is proved. B

Fix a neighborhood U of Cy € Sc, as in the above lemma. The critical
points of &, |y are determined from the equation

Isw(C) =0, CeU.
Equivalently, this means there exists a unique if € 715, such that
if L ker£¢c,, SW(C)+ L¢,(if) =0.

Thus, the problem of understanding the structure of 91, near Cqy boils down
to understanding the local structure of the equation

(4.2.4) SW(Co+C) =0
where £EOC =0 and ||C|[2,2 is very small.
Set
HY :=ker &c,, HL = {C €ec; SW(C) =0, £.C= o}
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and denote by 1I; : S¢, — Héo the L2-orthogonal projection. Observe that
ker Tc, = H¢, & HY, .
For every r > 0 we set
B(r):={Ce Hg; |ICllp2 <}
The equation (4.2.4) is equivalent to the pair of equations

(f) (1 -T)(SW(Co+C)) =0, CeScyy (€22 <,

(t) M (SW(Co+0)) =0, CeSep €z <=

The local structure of (f.) can be easily analyzed using the implicit
function theorem. Our next result states that the solution set of (.) can be
represented as the graph of a Stab(Cp)-equivariant map

P Héo — ker II;
tangent to Héo at 0.

Proposition 4.2.6. Suppose Cy is a smooth 3-monopole. There exist rg =
r0(Co) > 0, ¢ = (Cp), v = v(Cp) > 0 and a smooth Stab(C)-equivariant
map
CI>1 . BCO (’r’o) — ker(l - HI)SCO
satisfying the following requirements.
(i) ©1(0) = 0.
(ii) Any solution C' of (t.) decomposes as
C'=C® ®(C)
where C =11,C’ € Bc,(r0). In particular,
(1- nl)(sw( C+C+d(C))+ sc%(C)) —0,
vC € Bc(r).

(iid) [ @1(C)lla2 < VICIZ, D@10l < Clloll - €], Vo, € € HE,. (HE,
is a finite-dimensional space and thus all norms on it are equivalent.)

The proof is a consequence of the implicit function theorem applied to
the nonlinear equation

F(C)=0
where F' is the Stab(Cp)-equivariant map
F:Sc, — (1-14)SE, Cr (1—T)ISW(Co+ C).
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The linearization of this map at C = 0 is (1 — II;)SW,, which is onto and
has kernel Héo.

Set
Qc, : Be,y(ro) — HE,, € I SW(Co + C+ @1(C)).

Qc, is called the Kuranishi map at Co. It is a Stab(Cp)-equivariant map
and the above discussion shows that QEOI/ Stab(Cy) is homeomorphic to a
neighborhood of Cy in 9M,.

Definition 4.2.7. A 3-monopole Cy is called regular if Qc, = 0.

Example 4.2.8. Suppose Cy = (¥g, Ap) is a smooth reducible 3-monopole,
i.e. Y9 =0. Then

Sc, = {d@ibe 12*(S, &iT"N); d'h=0}
and
Teo = T¢, =Da, ® SIGN.

Thus
Héo = ker@Ao @ iHl(N,g), HCO = iHO(N,g) &~ iR.

Fix (¢,ia) € Bc,(ro). Then (¢, ib) := ®,(¢),ia) is the solution of the equa-
tion

(9.10) € (1~ Th)Sc,, o
(1-1L) <@Ao+ia+ib(¢ + ) *F ) iarih — %q(@/; + qj)) =0
or equivalently,
.1 .o
(1-11,) <@A0+id+ib¢ + elia + ib)¢)) — 0,
A SN
(=1 (ixdb— Sa(d+9)) =0

where II} denotes the orthogonal projection onto ker® 4, and II{ denotes
the orthogonal projection onto H!(N, g).

Suppose now that ker® 4, = 0. Then I} = 0, ¥ = 0 and thus (4.2.5) is
equivalent to

(4.2.6) D spsiard =0, (1=117) (ix b~ q(d)) = 0.
The map ®; of Proposition 4.2.6 is described by a pair of maps on
b=0b(a), ¢=¢(a), aeH'(N,g), a2 <ro, [Bllz2 < vllall3.

(4.2.5)

By making ry even smaller we can assume 2 is invertible, being

Ag+ia+ib(a) .
very close to the invertible operator ® 4,. This shows that ¢ = 0 and the

second equation of (4.2.6) implies b = 0. Thus ®; = 0.
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To compute the Kuranishi map at Cy we need to compute
Hlll(*FAo-‘rid)v a € Hl(Na g)

Now observe that since Cy is reducible we have Fy, = 0. Thus *F4,+iq =
i*da, which clearly has trivial projection on the space of harmonic 1-forms.
We have thus shown that if Ay is a flat connection on det(o) such that
ker ® 4, = 0 then (0, Ap) is a regular, reducible monopole.

The stabilizer of Cg is S' which acts trivially on Héo = iHY(N, g) so
that there exists an open neighborhood of Cy in 9, homeomorphic to an
open ball in R*(N) and consisting only of reducible monopoles.

Definition 4.2.9. A pair
(0,9) = (spin® structure on N, Riemannian metric on N)

is called good if all irreducible (o, g)-monopoles are regular and for any flat
connection A on det(o) the operator @ 4 is invertible.

The discussion in the above example has the following consequence.

Proposition 4.2.10. If g is a positive scalar curvature metric on N then
(0,9) is good for every o € Spin®(N). Moreover, M, is either empty or it
is a compact smooth manifold diffeomorphic to a by(N)-dimensional torus
consisting only of reqular reducible monopoles.

Remark 4.2.11. Suppose (0,g) is a good pair and Cy = (¢, Ap) is a
smooth monopole. If Cy is reducible then Héo =~ HY(N,R) and the action
of Stab (Cp) on Héo is trivial. This proves that T¢I, = Hé, vC e M, .

For each smooth monopole C and 0 < x < 1 we define the Kuranishi
neighborhood of C

Uc(x) = {C € S¢; ||Cll2;2 < min(x,=(C))}

where £(C) is determined as in Proposition 4.2.6. After we factor out the
action of Stab(C) it determines an open neighborhood of C in B,.

A word about notation When no serious confusion is possible, we will
continue to denote by Uc,(k) the neighborhood of [Co] in B determined by
Uc, C Sc,- For example, the statement C € Uc, () means C—Cy € Sc, and
|C — Coll2,2 < K while the statement [C] € Uc, provides information only
about the gauge equivalence class of C and not C itself.

The family
{Uetr); [clem, }
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is then an open cover of the compact subset 9, C B,. We can extract a
finite subcover

UC1 (K)a Ty UCm (’i)
and we set

ko := min{k(Cy), - ,k(Cpn)},
Uy := U Uc,(k), VK < Ko.
i=1
Uy is an open neighborhood of M, in B, called a Kuranishi neighborhood

of M,. Observe that for every C € Uy
diStZQ([C], f)ﬁg) < K.

4.2.3. Asymptotic behavior. Part I. Consider a semi-infinite cylinder
N := (Ry x N, dt? + g)

and o a spin® structure on N. We will denote by & the induced cylindrical
spin® structure on N. For every smooth configuration

C=@W,A) el(S}) x Ay
we define the scalar quantity called the energy density as

NI 1, 5
pei= (VAU + Gla)f + [P + g 1of*

Thus,
E(C) = / pedug.
N

For every interval I C R} and every € > 0 we set

I, :={t e Ry; dist (t,I) <e}

Ec(f) = / pcdvg.
IxXN

Fix a Hermitian connection Ay on det(c) — N and denote by Ay its
pullback to det(6) — N. Any smooth Hermitian connection A on det(d)
can be written as

A= Ag +ip(t)dt + ia(t)
where p(t) (resp. a(t)) is a smooth path of O-forms (resp. 1-forms) on N.
Set
A(t) == Ap +ia(t) = Al -
If 4 := e/ is a gauge transformation on N then
df

A=Ay +i(p(t) — 2 )dt +i(a(t) — 2df (1))
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where we recall that d denotes the three-dimensional exterior derivative
along N. If we regard 4 as a smooth path of gauge transformations -,
on N then the above computation shows

(3 A)(t) =7 - At).
In other words, the assignment A — A(t) defines a unique class [A(t)] €
As/Gs. This also implies that for any smooth configuration C the assignment

g0 C Ct) = C\{t}xN

defines a unique gauge equivalence class [C(t)] € B, = C»/G,. Clearly, the
path t — [C(t)] in B, is continuous. In particular, the quantity

ve(t) :=f(C(t) = [ISW(C())] 12
is well defined and independent of the gauge equivalence class of C.

Suppose now that Cisa 4-monopole. Modulo a smooth gauge transfor-
mation we can assume C is temporal

C = (¥(t), A(1))-
Then, for every interval I C Ry we have
/||SW DI2adt = /dt/ () + |APdvy = S B(T)
so that
1
(42.7) Ivcli2aq) = 5Be(D).
A simple application of Hélder’s inequality shows that
. 1
(4.2.8) dist 2 ([C(to)], [C(t1)]) < §E¢([to,t1])1/2(t1 —t9)'/.
Consider a finite interval I = [tg,¢1] € R4 and set
|s] == max|sg(z)].

Observe that
1 - 1 -
TPy = 7 [t [ttt o)lan,

/dt/|q D)P < Ee(I ——/dt/ s 2dv,
I +—/dt/ |b|?du,
4 Jr JIn

S N

< Be(r) + B (11— 10) 20l (N) V20 v
1,4 |3|2

< BelI) 4 g5 9l + - (1 — fo)voly (V).
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We have thus obtained the following L*-estimate.
(4.2.9) 19 21y < 32Be (1) 4 16]s]*(t1 — to)voly(N).
We can build on this estimate to obtain a priori L*°-estimates for 1/3

Proposition 4.2.12. There exists a constant C' > 0 which depends only on
the metric g such that

(4.210) Dl < C’(EC([T —1,T+2))+ 1), VT > 1.
Proof We have
. N I NP SPSY: IS B ~
0=239 0 = (V) 'V + i+ Se(F ).

We can now use Kato’s inequality and the equality é(FZ) = %q(z/}) to con-
clude that

~ A A ANk A A A S 1 -
Aglibf? < 2((VA)' VA $) =~ — Zlal*
Now set u := |¢|2 so that we have
A 1
Agu + %u < _ZU2 <0.
We can rewrite this as a differential inequality of the type
Agu +au <0

where a = § € L>([T — 1,7 + 2] x N). Using the DeGiorgi-Nash-Moser in-
equality (see [11] or [47, Thm. 8.17]) we deduce that there exists a constant
C > 0 which depends only on g such that

sup < C(Is]+ ullagror o))
[T, T+1]xN

(4.2.9) 1/2
< C’(EC([t—l,TJrQ])Jrl) . u

Corollary 4.2.13. Ifé = (@Z;, 121) is a finite energy monopole on N=RxN
then there exists a constant C' > 0 which depends only on the metric g such
that

(4.2.11) S C(EG(RJF) + 1).

The next result, whose proof is deferred to §4.2.5, shows that if the total
kinetic energy over a time period of length 4 is small enough, then the kinetic
energy at each moment must be small. In other words, “bursts” of energy
are prohibited.
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Lemma 4.2.14. Fiz a smooth connection Ay on det(o). There exist Cy > 0

and 0 < wg < 1 such that for every smooth temporal monopole C on
[—2,2] x N satisfying

C = (C(t) = (¥(t), Ap +ia(t)), a(t) € QY(N),
/ dt/ ) + |a(®)] )va§w0
we have

ISW(CENIaon = [ (IBOF +1a)F)duy < CoE?, Vi€ [-1,1

Corollary 4.2.15. There exist C > 0 and wo € (0,1) such that if C is a
smooth monopole on [—2,2] x N satisfying

E? = E¢([-2,2]) < wp

then )
[SW(Clixn)llz2v) < CoE, Yt € [-1,1].

Proof Since the above inequality is invariant under gauge transformations
n [—2,2] x N we can assume C is in temporal gauge and then apply Lemma
4.2.14. 1

For every i > 0 denote by " the level set of §
={CeCy; f(C) <h}.

Observe that " is an open neighborhood of Z, in B,. The following result
refines Proposition 2.4.6 of 2.4.1. We leave its proof to the reader.

Proposition 4.2.16. There exists a function
h:(0,1) = (0,00), Kk — h(k)

such that

(i) im0 h(k) =

(i3)If C € §"%) then there exist a smooth monopole Cy € Zy and v € Gy such
that

v C € Ug, (k).

From the above proposition we deduce the following consequence.

Corollary 4.2.17. If M, = O there exists hyg > 0 such that §(C) > hg, VC.
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The above result, coupled with Corollary 4.2.15, leads to the following
conclusion.

Corollary 4.2.18. Ifé s a finite energy monopole on Ry x N then for any
sequence t, — oo we can find a subsequence ty, such that [C(t,, )] converges
to a point in M, .

If im((,l), e ,i)ﬁt(f ) are the connected components of 9, we can find Ky >
0 such that U,, consists of disjoint open neighborhoods U,gj ) of SDT((,] ), j =
1,---,£. Set
do = dp(ko) := mindist 2 (U(i) U(j)).

Ko KO
#J

]. . E l k G

KO
Hint: Show that if kg is sufficiently small there exists a constant C' > 0
depending only on the geometry of N and C'(Ep) such that

disty2([C), MP) < Cro, Vi, ¥[C] € UL

Corollary 4.2.15 shows that if C is a finite energy monopole and 7" > 0
is such that
Ee([T,00)) < h(k)
then [C(t)] € Uy, Vt > T + 1. Clearly, for large ¢ the path ¢t — [C(¢)] will
wander inside a single component U,gj ) of U.. We have thus proved the
following result.

Corollary 4.2.19. Suppose Cisa finite energy smooth monopole on N.
Then there exist a connected component i)ﬁ((,j) of My and, for all k> 0, an
instant of time t = t(k) > 0, such that [C(t)] € Ul for all t > t(k).

A priori, the path [C(t)] in the above corollary may wander around
smaller and smaller neighborhoods U,gj ) of Z)ﬁ((;] ) without converging to any
specified 3-monopole so the limit set may consist of several points in I,.
The results we proved so far show that the manner in which [C(¢)] travels
around M, is quite constrained. More precisely, for every triple of arbitrarily
small constants a, b, ¢ > 0 there exists an instant of time 7' = T'(a,b,c) > 0
such that for all ¢ > T the distance between [C(¢)] and 9, is < a, the kinetic
energy ||’l/](t)”%2 + [la(t)||3, at time ¢ is < b, and there is not much energy
left, i.e.

Ee([T,00)) <ec.
The energy functional £ on N (whose critical points are the 3-monopoles)
may not descend to C, /G, so it may not induce a well defined function on
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9M,. On the other hand, it descends to function on C,/G. where Gl denotes
the identity component of G,. We denote by 9, the space of Gl-orbits of 3-
monopoles. & defines a continuous map from the discrete set of components
of M, to R. M, is a quotient of M, modulo the action of the discrete group
H'(N,Z). Since
E(C(t1)) — E(C(to)) = E¢([to, ta])

E(C(t)) has a well defined limit £, as ¢ — oo so that the path C(t) “orbits”
closer and closer around one of the components of M, where £ = En.

In the next subsection we will show that these restrictions, coupled with
the ellipticity of the Seiberg-Witten equations on cylinders, will force [C(¢)]
to converge to a specified monopole [Cy] € M,. To minimize the volume
of technicalities we will make the simplifying assumption below which is
satisfied in all concrete applications we have in mind. For a presentation of
the general situation in the similar case of Yang-Mills equations we refer to
(96, 133].

(N) In the remainder of this chapter we will work exclusively with
good pairs (o, g).

4.2.4. Asymptotic behavior. Part II. Suppose C is a finite energy
monopole on N. In the last subsection we have shown that for every
0 < k < 1 there exist a smooth monopole Cy and an interval J = [tg,t1] C
R4 such that for every ¢t € J the configuration [C(t)] € Uc,(k). We de-
duced this conclusion by taking advantage of the nice dynamical description
of the Seiberg-Witten equations in temporal gauge. These arguments were
however not powerful enough to deduce, for example, that once [C(t)] enters
a neighborhood Uc, (k) of [Cp] it is then forced to stay inside it. From a
technical point of view this is due essentially to a lack of estimates of the
length of the path [C(t)], that is, estimating L'-norms of t-derivatives on
long time intervals. It is desirable to control the length of a portion of this
path in terms of its energy. To obtain such estimates we need to modify C
by a gauge transformation which will capture the elliptic character of the
Seiberg-Witten equations on a cylinder. Following [96, 133] we introduce
the following notion.

Definition 4.2.20. Let x € (0,1) and Cy be a smooth monopole on N. A
configuration C on a cylinder I x N is said to be in k-standard gauge with
respect to Cq if there exist smooth paths

I3t (if(1),V(1) € (ker £¢,)" x Scy, V(1) = (¥(t),a(1))
such that ||V(t)|l22 = |[¥(t)]]2,2 + |la(t)||2,2 < &, Vt € I and
C = (o + ¢(t), Ao + if (t)dt + ia(t)).
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For a proof of the following technical result we refer to [96, Lemma
2.4.3].

Lemma 4.2.21. Assume C is a smooth configuration on I x N and Cy is a
smooth monopole on N such that C(t) is gauge equivalent to a configuration
in Uc,(k), Vt € I. Then there exists a smooth gauge transformation

4:Ix N — S

such that 7 - C is in k-standard gauge with respect to Cgp.

Suppose now that C is a smooth 4-monopole on I x N in k-standard
gauge with respect to the smooth 3-monopole Cy = ()9, Ap). Thus, we can
write

C= (= o+ v(t), A = A +idf (t)dt + ia(t))
where, for any ¢ € I,

(4.2.12) la()llg 5 + 65 » < .
£¢,((t),ia(t)) = 0, if(t) L ker £c,.
Then, using the identities (2.4.1) and (2.4.2) in §2.4.1, we deduce
Fj = Fa, +idt A (a(t) — df (t)) + ida(t),

Ff = %(dt A (@ py + #da(t) — df (1)) + #(@(t) + Fa, +da(t) — df (1))

(J :=e(dt), A(t) := Ap +ia(t)),
Di= J(at — D@ + %f(t))-

If we suppress the t dependence in the above notation and we use the identity

1

Datpo = (QAO + %C(ia))% = §C(ia)¢o

we can rewrite the Seiberg-Witten equations for C as follows.

(12130) 50 = (D4~ 2f) @+ o) = Dyt + 5(elia) — 1) (o + ),

d 1
(4.2.13b) iaa = iq(wo + 1)) — xida + idf — *Fa,,
1
(4.2.13¢) da -+ 5om{vo, ¥) = 0.

One unpleasant feature of these equations is the apparent lack of infor-
mation on the t-derivatives of f. Still, the size of f can be controlled in
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terms of the sizes of (¢, A). To achieve this we will need an elementary
identity whose proof is left to the reader.

Exercise 4.2.4. ([107]) Suppose v is a smooth spinor on N and A is a
smooth Hermitian connection on det(c). Then

(4.2.14) d*q(y) = —iIm (), D 4¢). W

For simplicity, in the sequel will denote the t-derivatives by dots. Also,
we will denote by the same letter C' all positive constants which depend only
on Cy, the total energy of C and the metric g.

Differentiating (4.2.13c) with respect to t we get

id*a + %meo, b = 0.

Now use (4.2.13c) and (4.2.14) to obtain

0— %d*q(z/z + o) + id*df + %’meo,w

(4.2.13a) _ijm<w0 + 1, D A(Yo + ) + id"df + %jm(@/)o, v)

2
= gm0+ 37+ v} + i+ 5Im{, )
= id'df + i\wo + o2 f - %3m(¢, gy 223

Ldf + Relibo b0 + 0 — 2Im, D agt) — Relw (Yo + )]

= id"df + {Re(vo, v + ¥)f — SIm(, Da¥)

= id*df + Ll + T Reluo, v)f — S Im{y, Dayt)

= 188, 8,(if) + {Re(w, YIS — SIm(w, D a,0).
Hence

(4.2.15) EEOSCOif = —Re(Yo, V)if + 2Tm(y, D 4,1).

The proof of the following result is a simple application of Theorem
1.2.18 (v) and is left to the reader.

Lemma 4.2.22. For each ¢ such that ||¢]|22 < K consider the operator
Ty : ker £, N L*? — LY2(N,iR), if — £& Lc, + Re(tho, ¥)if.

Then, if k is sufficiently small the operator Ty, is invertible. Moreover for
every r € {0,1} and every p € (1,2] there exists a constant C > 0 depending
only on p, r and the geometry of N such that

[Fll24rp < CITyif -
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Using the above lemma we deduce that there exists a constant C' > 0
such that

[fll22 < ClTm(e, D ay9) [ 2

The Sobolev embedding theorems show that we have continuous embeddings
L*?(N) — L*®(N), L“?(N) < LS(N).

Using Hélder’s inequality we deduce that there exists a constant C' > 0 such
that for every a € L*?(N) and b € LY?(N) we have

la-bllzi2 < Cllallaz - [16]]1,2-

Hence
[Im(, D 4, )| L1z < Cllll2,2[D 409

We have thus established the estimate
(4
(4.2.16) I fll22 < Cllll59 Cr?.

Since k is meant to be very small we deduce that f(t) is very small as long
as C|rxn is in k-standard gauge. Set

V(t) = (¥(t), ia(t)).

The flow equations (4.2.13) can be rewritten as

12 < O3,

2.12)
<

(4.2.17) V =SW(Cy+V)+ { _%‘biodjf v ]
where

(4.2.18) eV =0

and

(4.2.19) if = 2T, (iTm(y, D 4y ).

We will denote the second term on the right-hand side of (4.2.17) by (V).
Observe that

1 .
(4.2.20) NV) = —5Lcov(if).
The estimate (4.2.16) shows that
(4.2.21) 1M(V) 2.2 < CIIVII3 -

Remark 4.2.23. One can show exactly as in [96, Chap. 2] that there
exists a natural L2-metric on Sc, such that in a neighborhood of 0 € Sc,
the equations (4.2.17) have the form

V=VE |3c0 (Co+V)

where the gradient V is computed with respect to this metric. W
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For every 0 < k < 1 we can find Ty(x) = Ty(k, C) > 0 such that for all
to > Tp(k) there exists a smooth monopole Cy = Cy(tp) € M, so that

[C(to)] € Ug, (+?)
(4.2.22) Ee([To(k),00)) < &%, Vit > Ty(k).

ISW(CONIZ < #°
Fix to > Tp(k) and define

To(to) == Sup{T > 05 [Clto + )] € Ugya) (), Vi€ [o,T]}

- sup{T > 0; [V(to+t)||las <k, Vte [O,T]}

where V() is determined as above by placing C in k-standard gauge at Cg
over the time interval for which this is possible. Roughly speaking, T} (to) is
the length of the time interval, beginning at ¢, during which the orbit [C(?)]
stays k-close to [Co] := [Co(tp)]. We want to get more precise information
about the size of

distzg( [C(t() + t)]a [CO] )
for 0 <t < Ty (to).

One of the main advantages of working in standard gauges comes from
the fact that the 4-dimensional equations become “almost” elliptic and thus
one can control stronger norms by weaker ones. More precisely, we have the
following result.

Lemma 4.2.24. There exist ko > 0 and C > 0 with the following property.
For any finite energy monopole C on Ry x N and all

0< k< ko, to>To(k,C), telto+1,Tulto)], [Co] €My

such that
disty22 ( [C(to)], [Co] ) < K2
we have
diStQQ([C(to + t)], [Co])Q
(4.2.23) < C(distya([Clto + 1)), [Co])* + Ee(ft — 1,¢ +1)))

< C(disth([C(to + )], [Col)? + 116).
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In order to keep the flow of arguments uninterrupted we will defer the
proof of the above lemma to the next subsection. This lemma roughly states
that the L?? -distance between [C(to +t)] and [Co] can be controlled by the
weaker metric dist;2. This type of control immediately leads to nontrivial
lower estimates on the duration 7T} (to).

Lemma 4.2.25. There exists a positive constant C such that for all 0 <
K < 1 we have

To(to) > (")

0= ol )

(to) d+ K2

Proof Let T = T,(ty). We rewrite

C(to+1t) = Co+V(t), £c,V(t) =0, [[V(t)|l22 < .

(Note the time shift in the argument of V.) The maximality of T implies
IV(T)ll2,2 = =

so that using Lemma 4.2.24 we deduce

(4.2.24) IV(T) || 2 > CIIV(T) |22 — &% > Ck — K.

The distance ||V(T') — V(0)||z2 can be estimated using the flow equations
(4.2.17). We have

T .
IV(T) = V(0)l[ > :/0 V()| 2dt

T
< /0 (ISW(Clto + 1)) 2 + [9UV(£) ]| 2) dt
w C(TI/QEA ([to, to + T])V/2 + T/iQ) < O(TY23 1 K2T) < CTx2.
< ¢ ([to, to < <
Hence,
(4.2.25) V(D)2 < IVO) g2 + IV(T) = V(0) 2 < &% + CTw.
Lemma 4.2.25 now follows by comparing (4.2.24) and (4.2.25). B

Since the configurations [C(¢)] lie in a very small neighborhood of Cq
it is natural to expect that the linearization of the flow (4.2.13) at Cp will
contain information about the nonlinear situation. We now want to suit-
ably decompose the flow (4.2.13) into a linear part and a small nonlinear
perturbation, and analyze how much of the linear behavior is preserved un-
der perturbation. At this stage the regularity assumption on Cy introduces
substantial simplifications.

Consider again the Stab (Cp)-equivariant map
CI)l : UCo — (1 - HI)SCO
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introduced in Proposition 4.2.6. Denote by A the linearization of SW at
Co:
./4 = SWCQ‘
Lemma 4.2.26. A defines a closed, densely defined linear operator
ker £¢, N L? — ker £¢,

with domain
ker £¢, N L2

This operator is selfadjoint with compact resolvent. Moreover ker A = Héo.

Exercise 4.2.5. Prove the above lemma.
The spectrum spec (A) of A is discrete, consisting of eigenvalues with
finite multiplicities. We have an L?-orthogonal decomposition
Sc, = H¢y ® 8¢ @ S,
corresponding to the partition
spec (A) = {0} U spec(A) N (0,00) U spec(A)N(—o0,0).
Correspondingly, any vector U € Sc, decomposes as
U=Ug+ Ut +U".
Denote by pt+ = p4(Cp) the smallest positive eigenvalue of A, by —u_ =
—1—(Cp) the largest negative eigenvalue of 4 and
p = min(p—, fi4).
Now set
Vo(t) i= THV(D), €(t) = Vo(t) + ®1(Vo(8)), U(t) = V(t) — £(1).

Observe that Ug = 0. Since Cy is regular, the graph of the map ®; describes
the critical points of SW in Uc, (k). To proceed further observe that

SW(Co+V) = SW(Co+ €+ U) = SW(Co + € + U) — SW(Co + &)
= A+ U) - Al + R((+U) — R(§) = AU+ R({ + U) — R(§)

where

IRX) 1,2 < ClIX[[32, VX € Sc,-
Set

Q(V) := R(§ + V) — R(§) + N(V).
Q) satisfies a similar quadratic estimate as R:

(4.2.26) IQX) Iz < CIIX|32, VX € Scy-

We can be much more precise. The following estimates are proved in the
next subsection.
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Lemma 4.2.27. There exists C > 0 such that Vt € [0,T,] we have

(4.2.27a) IR(E®) +U(t) — Rz < CIVE) |22 - V@) 2,
(4.2.27D) I TNV () |2 < CIV(E)ll22 - V)] 12,
(4.2.27c) N(V),UE) 12| < CIV@)ll2,2 - 1U(@)]]3-

The estimates in Lemma 4.2.27 can be used to provide a crucial lower
bound for [|[SW (V(t))]| 2.

Lemma 4.2.28. If k is sufficiently small we have

(4.2.28) ISW (Co + V(#)|| 2 = CU®)|| 2, ¥t € [0, Th(to)].

Proof We have
[SW(V()lr2 = AU + R(§ + U) — R(U)]|
> [|AU|2 = [|R(§ + U) — R(U)| 12
> pf|Ullz2 — Cr[[U]| 2. B

The flow equations (4.2.17) now decompose as

(4.2.29a) Vo(t) = THQ(V),

(4.2.29b) Ut(t) = AUT + Q(V)" — %(él(Vo(t)))+,
(4.2.29¢) U (t) = AU~ +Q(V)™ — %(%(Vo(t)))_
Set

fot) = Vo)l 72, f(t) := [UF(@)][72,
F() = fr(t) + f-(t) = U7
Since || ®1(Vo)l|r2 < ||V0||%,2 < C|Vo||3, we deduce that the problem of

estimating ||V(¢)|/z2 is equivalent to the problem of estimating fy(t) and
f@t).
From (4.2.29a), (4.2.27a) and (4.2.27b) we get

IVo()]| < CfY2.
In particular,
®1(Vo(t))lIz2 = | Dvy(y®1Vo ()l < [ Dy @1l z2lIVo(t)] 2

< Cr||Vo(t)|| g2 f1/? < Cr fH2

2
dt
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Thus,
d
(4.2.30) ‘<E<I>1(V0(t)),ui)L2 < Okf.
Using (4.2.27a) and (4.2.27c) we deduce
(4.2.31) ’(Q(V),Ui)Lz < Ckf.

Now, take the L2-inner product of (4.2.29b) with U (¢) and use (4.2.30),
(4.2.31) and the inequality

(AUT (1), UT ()12 > na [UF ()72 = 14 o (2)

We get

(4.2.32) Fr(t) > 2uy fr(t) — Cyrf.
Using the equality (4.2.29¢) we deduce similarly that
(4.2.33) fo(t) < —2pu_fi + C_kf.

By replacing Cy+ with max(Cy,C_) we can assume Cy = C_. Set h :=
f+ — f—. Notice that h satisfies a differential inequality of the type

(4.2.34) h>2uf > 2uh, Vte[0,Ty).

Remark 4.2.29. The trick in [133, Lemma 9.4] applies without change in
this situation as well, allowing us to conclude that

(4.2.35) f(t) < 2( F(0) + fo (T)) (e*ﬂt + eﬂ“*T)), V0 < t < T < T(to).

Observe that this estimate is valid for any monopole Cona cylinder
[—1,T + 1] x N provided the total energy is sufficiently small and the path
[C(t)] lies entirely in a Kuranishi neighborhood of a 3-monopole Cy. B

Lemma 4.2.30. Suppose there exists 0 < 7 < Ty(to) such that h(t) <0 for
all 0 <t < 7. Then there exist ¢,C > 0 such that for all t € [0, 7] we have

f(t) < 26_(2M*_c”)tf(0)’
[Vo(t)]| < C|[Vo(0)]| < Cr2,
IV < C(IVO) 2, + e Cr-ment)
and

IVOIZ2 < C(IVOI2 + 8 + wlem@==e0) < CpA(1 4 w26~ Gummenl),
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Proof  The inequality fi(¢t) < f_(t) implies f(¢) < 2f_(t). Using this
information in (4.2.33) we deduce that

F) < —@u —en)f
from which we obtain by integration
F(t) < 2f-(t) < 27 CH=9) £(0).
Using (4.2.29a) we deduce

o/2(6) = LV ()| < [T V()] +/0 TV (s)]|ds

t
< ITLV(0)]| +c/ FY2(s)ds
0
< C(mV0)] + £(0)2e~ ==ty < C|IV(0)|2,1-

We now conclude using Lemma 4.2.24. B

Set
(4.2.36) Te(to) :==sup{7 € [0, T (t0)]; fr(t) < f_(t), YO<t<T}
Lemma 4.2.31. For every € > 0 there exist 0 < k < € and to > To(k) > 0
such that T (tg) = oo.

Proof We argue by contradiction. Thus, assume there exists €9 > 0 such
that for all kK < g9 and all tg > Ty(k) we have T := T,,(t9) < co. Taking into
account the maximality of T (t9) we deduce

IV(T)l2,2 = &
so that
(4.2.37) V(T2 < k.
Using Lemma 4.2.30 we now deduce 7 := 7,(tg) < T. Set t1 := tg + 7 and
define x = x(k) by
W 1= max{ K2, distz,s ([C(to + 7)), [Co]) }-

Lemma 4.2.30 shows that K < y = O(k). Observe that for ¢ > ¢; the
configuration [C(t)] satisfies the conditions (4.2.22),

[C(t1)] € Ucy(x*)
(4.2.38) Ee([t1,00))) < k% < X6

supgsg, [SW(CEHDIT2 < x°

so that
ex < Ty =Ty (t) < oo
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Redefine V(t) := V(t1 +t), t € [0,T\(t1)] etc. Observe that by maximality
(4.2.39) IV(T1)l2,2 = x-

From the definition of ¢; as t; = to + 7x(to) and the maximality of 7, (to) we
deduce

Fo(t) > f-(), Vte (0,Ti]
Using the inequality (4.2.32) we deduce

1 _ —c _
§”U(t>Hi2 < f(t) < fi(Ty)em Breme)Ti=h)

<NU ()26~ Cre=20T=0 "yt e [0, 7]
Then

T '
Vo(T0)[l < [[Vo(O)]l + [IVo(T1) — Vo(0)[| < [[Vo(0)]l +/0 ITLV(2)|dt

T
< [Vo(0)| + © /0 V()2 dt

T
< [IVo(0)]| + HU(TI)”B/ o~ (=) (T1—1) gy
0

(4.2.28)
< VO + CIU@)llzz < IVoll + CISW (Co + V(D)) 12
(4.2.38) (4.2.38)
(4.2.40) < VOOl +O(*) < x4 O(k?) = O(x?).

Thus
[U(T )22 = V(T2 — Cl[Vo(T1)]| 2
(4.2.23)
> C(IV(T)ll22 = £°) = Vo(Th) |
(4.2.40 (4.2.39)
> CIV(T1)|l22 — Ck? > C(k—r>.

This contradicts the inequality (4.2.28) which, coupled with the last condi-
tion in (4.2.38), implies

IU(T)] 2 = O(x%). W

The above lemma has an immediate consequence.

Corollary 4.2.32. There exists [Co] € M, such that
tlim distg 2([C(t)], [Co]) = 0.
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Proof Lemma 4.2.31 shows that for every limit point [Cy] € M, and any
neighborhood U of [Cp] in C,/G, there exists an instant of time ¢ = ¢y such
that [C(¢)] € U, Vt > ty. In particular, this shows there exists exactly one
limit point. W

We can now prove the main result of this section.

Theorem 4.2.33. Suppose C= (@ZA),A) is a smooth finite energy monopole
on Ry x N. Then there exist a smooth gauge transformation

4:Ry x N — St
and a smooth monopole Co = (g, Ag) on N such that
4-C= (1), Ao + ia(t) + if (t)dt),

£¢,(%(t) — o, ia(t)) = 0 <= (¢(t), Ao + a(t)) € Sc,, VE >0,

Jim e (11(8) = voll 22y + la(®)l 22w + 1 Bl o2 ) =0,
VO <A < pu—(Co).
Proof Fix a smooth representative Cy of the limit of [C(¢)] as ¢t — oc.
For all k sufficiently small we can find a smooth gauge transformation 4
on Ry x N such that 4 - C is in s-standard gauge with respect to Cp on

a semi-cylinder [Ty(k),00) x N. Re-label C := 4 - C. Then there exists a
to > To(k) > 0 such that

E(:([th OO)) < 1433,
IC(t0), Coll 22wy = [9(t) = Yoll 22wy + lla(®) |22 vy < K2,

1C(to +t) — Coll22(w) < K,

V0 <t < Tk(tog). Observe that 7, (o) defined in (4.2.36) is infinite. Indeed, if
Tx(to) < oo then, arguing as in the proof of Lemma 4.2.31, we would deduce
that fi (7, + t) increases exponentially. This is plainly impossible.

Using Lemma 4.2.30 we deduce
U@ L2 < Cem == Vit > Ty(x)
and

MLV = [T V() — L V(o) || < /:O TV (s)]|ds

< 0/ ,u,f—cri)sds < Ce™ (,uf—cn)t
This shows that
V()22 < CIV ()l g2 < Ce™ =Mt Vit > Ty(k)
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so that
lim e=~)disty ([C(£)],[Co]) =0, Ve < 1. W

t—oo

Remark 4.2.34. The gauge transformation 4 postulated by the above theo-
rem may not be in the identity component of the group of gauge transforma-
tions on Ry x N. The group of components is parameterized by H'(N,Z).
If 4 lies in the component parameterized by ¢ € H'(N,Z) then we can find
a smooth map
y:N — St

which belongs to the component of G, corresponding to ¢. We can think of
as a t-independent gauge transformation on R, x N. Moreover 4, := 4 -7~
lies in the identity component of the group of gauge transformations on
R, x N and % C will satisfy similar asymptotic behavior as g - C with Cg
replaced by 7. ! - Co. Thus we can strengthen the conclusion of Theorem
4.2.33 by adding the fact that § can be chosen to be of the special form
4 =€l

The above convergence result can be slightly strengthened.

Proposition 4.2.35. Wz’th the above notation, for every nonnegative integer
m and every 0 < \ < B~ there exists a constant which depends only m and
A and the geometry ofN such that

IV L2 (173 (6),00) x 3y < CF-

Exercise 4.2.6. Prove the above proposition.

Proposition 4.2.36. Fix an instant of time Ty > 0. Then there exists a
constant kg > 0 with the following property. For every k < kg, and every
monopole C on Ry x N such that

||pc||%2([To,oo)><N = EC([T()?OO)) < R67

and
diStL2,2([C(T0)},f)ﬁg) < K2

we have

sup | SW([C(OD172(n) < CK°
t>To+1

o [C(t)] € Uy, YVt > Tp.



4.2. Finite energy monopoles 353

e There exist a monopole Coo on N and a smooth gauge transformation 4
on Ry X N such that

lim H’AYC ’tXN _COO||L2v2(N)'
t—o0

Proposition 4.2.36 is a simple consequence of the previous considerations
and we leave its proof to the reader.

Exercise 4.2.7. Prove Proposition 4.2.36.

Proposition 4.2.35 can be roughly interpreted as saying that, if the total
energy of the monopole C is below a certain capture level, then its dynamics
is constrained to a small Kuranishi neighborhood of some 3-monopole on N.

Up to now we have worked on a very special cylindrical manifold, N :=
R4 x N. The results we proved extend without difficulty to the case when
N is a cylindrical manifold without boundary such that dxN = N. The
next result summarizes all the facts proved so far.

Theorem 4.2.37. Fix T > 0. There exists a constant h > 0 with the
following property. If m € Z4, 0 < XA < u_(Cyp), there exists a constant
C depending on m, \ and the geometry of N such that for any smooth
monopole C = (&,121) satisfying

/ pe < h
[T,00)xX N

there exist a smooth function
4: Ry x N—>R
and a smooth monopole Co = (Yo, Ag) on N such that along the neck
el . C = ((t), Ag + ia(t) +if (t)dt)
£¢,((t) —bo,ia(t)) = 0 <= (¥(t), Ao +a(t)) € Sc,, VE>T

and

’W(t) - wOHLT’Q([T,oo)xN) + Ha(t)HL;”vz([T,oo)XN) + Hf(t)HLT’Q([Tm)XN) <C.

Remark 4.2.38. We would like to say a few words about an alternate
proof of Theorem 4.2.33 which works in the more general situation when
(N) is not satisfied (see [96]). For simplicity we will describe it briefly in
our nondegenerate context.

Observe that (4.2.15) can be rewritten as
Tyif = 20m(y, D av) = 2Im(y), 1))
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where
13m{h, D) L2 vy < CllYl2,21190] 22
from which we deduce that

1NVl 2(xy < ClIVI 22Vl 2.

Next observe that there exists a constant depending only on the geometry
of N such that if V € Uc, (k) is sufficiently small in the L?%-norm then

|£(Co + V) — E(Co)[Y2 < ClISW (Co + V)|l 12wy

ISW (Co + V)| 12 > Cdist 2 (c0 LV, M, N UCO(K;)).

If k is sufficiently small then, following the proof of [123, Lemma 1, p. 541],
we deduce that if V(t) € Uc, (k) for all t € [to, t1] then

(4.2.41) /t N gyt < € (Be(lto, 00))72 ~ Be(ft,00))?)

< C'E¢([to, t1))"/?

where C,C’ are geometric constants. Using Corollary 4.2.15 it is now a
relatively simple job to establish the existence of an asymptotic limit. We
refer for details to [96, Chap. 4].

4.2.5. Proofs of some technical results. As promised, we include in this
subsection some proofs which would have diverted the reader’s attention had
they been included in the middle of the flow of arguments in the previous
subsections.

Proof of Lemma 4.2.14 Set Cp := [-T,T] x N and denote by /10 the
connection induced by Ag on the cylinder C. There exists ¢ € [—2, 2] such
that

ISW (C(to))l[72(vy < E/4 < wo/4.
Now fix wp sufficiently small so that
dist ;22 ([C(to)], M) < 1/100
for some ¢y € [—1,1]. Set Cp := (0, Ag) and
6 i= sup{dist 22 ([Col, [C]); [C] € M, }.

Observe that § < oo since 9, is compact. We can find a smooth gauge
transformation such that

1Co — - C(to)l| g2 < & + 1/50.
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Now observe that both the hypotheses and the conclusion of Lemma 4.2.14
are invariant under the action of the group of smooth gauge transforma-
tions on N. Thus, modulo such a transformation we can assume that our
monopole C satisfies the additional restriction

Ha(to)HL2,2(N) <+ 1/50

for some ty € [—1,1]. Holder’s inequality now implies

t
la@®)ll2(v) < llato)ll L2 +/t la(s)ll 2 ds
0

<8+ 1/50 +2EY2,
The Seiberg-Witten equations have the form

{ D0 = —gela(t)
ia = 1q(y) — xida — xFa,

If we apply d* to the last equality we deduce

(4.2.42)

it = S dq() “EY DI, Dy ap) = I ().

Now regard @ as a 1-form on the four-dimensional cylinder. Since 1@ = 0 we
deduce d*a = d*a. Set b := a, ¢ := . By differentiating the Seiberg-Witten
equations with respect to ¢t we deduce

2
. D 4,0 = —5¢(a(t))d + 5e(b)y
ASD(ib) = (4(t,9)) @ (~iIm(v, 6))
According to (4.2.10) there exists a geometric constant C' > 0 such that

sup [[¢(t)]| = (N) < C(1+ EY*) < C
t]<1

so that
|ASD(ib)|| (e, < CE.

Using interior elliptic estimates for the elliptic operator ASD we deduce
10l 2(c0) < C (B + Bllzeen ) < CE.
Thus, for all ¢ € [-3/2,3/2] we have

¢
12 ()] L1.2(nyds < C.

to

la(@l1.2 < llato)ll12 + [t —to

Using the Sobolev embedding
LY3(N) — L5(N)
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we deduce
la(®)llLs(cy ) < C-
Thus
1e(@)@lla/2(cy ) < CllDlL2(cy) ) < CE.

Using interior elliptic estimates for
i, i,
(4.2.43) P 1,0 = —elalt)o + Se(b)

on C3/9 we deduce

16172

i, i,
< (I8l 072y + Il = 560006 + 5@l 2r2(cy, ) < CF.

Using the Sobolev embedding L1’3/2(C4/3) — L12/5(C'4/3) and the Holder
inequality (with 1/6 +5/12 = 7/12) we deduce

Hé(a)¢||[,12/7(c4/3) <CE
and we conclude as before using (4.2.43) that
H¢||L1,12/7(C5/4) <CE.

Now use the Sobolev embedding L1’12/7(C5/4) — L*(C5/4) and the Holder
inequality (with 1/6 4+ 1/3 = 1/2) to deduce

le(a)éll2(cy,,) < CE.
Using (4.2.43) again we deduce
10l 125 ,5) < CE.
Thus
bl L12(c5) + 19l L12(C4 ) < CE-
Using trace theorems (see [79]) we deduce
162 + lo@)l L2 < [1bllL12(cy5) + Nl 12(C4 ) < CE, VE € [=1,1].
The last inequality is precisely the content of Lemma 4.2.14.

Proof of Lemma 4.2.24 Consider 79 > 0 such that
IV(#)|l2,2 < Ck, V|t — 10| <1, E¢([to+70 —1,00)) < K.
Set I; = (10 — 1/27, 70 + 1/27). We will first prove that there exists j > 0
such that
(4.2.44) IV 521, %3y < CIV I L2150 x v

where V(t) = C(t) — Cyp. We follow an approach similar to the one used in
the proof of Lemma 4.2.14.
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Rewrite equations (4.2.17) and (4.2.18) as an elliptic system over the
4-manifold Iy x N

(4.2.45) (0~ Da)lt) = elialt)y — L ((1) + ),
. lQ(w + ¢) —«F 0
(4.2.45b) ASD - [ —1?}2) } Y ’

—3Im (v, ) —if
The component f is uniquely determined by ) via the differential equation
on N

(4.2.46) Tw(t)(if) = S’Eoﬁcoif + Re(tho, Y)if = 2iTm(h, D 4,0).
Observe also that

%(JWO + 1)) — *Fy, + idf
(4.2.47) ASD - [ ia(t) | = .
—5Im (o, )

Our strategy is very simple although the details are somewhat cumber-
some. We will use the fact that (4.2.45a) + (4.2.45b) form an elliptic system
and then, relying on interior elliptic estimates, we will gradually prove that
stronger and stronger norms of the right-hand side, on gradually smaller

subdomains of Iy x N, can be estimated from above by the L?-norm of V
on Ip x N.

Observe first that L?2(IN) embeds continuously in L>°(N) because N
is three-dimensional. The L“2-norm of the right hand side of (4.2.46) is
bounded from above by C|[¢||2,2 and thus we have a bound

[fllzs.2vy < Cllbllp2.2(v)-

Using interior elliptic estimates for the elliptic equation (4.2.45a) on I x N
we deduce

[P 221, x vy < C(I!w(t)HLmoxN) + lleGa(®) ()l L2 (19x )

(@ + o)l o))
(use [[¢]loc < C)
(4.2.48) < Cl[Olz2moxny + a2 zoxvy) = CIVOI L2(1x v)-
In particular, we deduce

(4.2.49) IO 2205 < CIVO 2215 3)-
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Set ¢(t) := D 4,1. Then

(4.2.50) (1) — D o(t) = %[%, c(ia)]y + %c(ia)cz) — seldf) - g¢.
Thus, we have

16y < O (160 2t + | Near ()22 0,

‘f’H le(ia)(t) 9l L2(n) HL2([1) + || [D 40, c(ia)]y HL2(11><N)>-

Now use
ldf 22wy + 19l 22wy + llall 22y < Ok,
LY2(N) — LS(N) — L*(N)
and
le(ia)@llLz(vy < Cllall ey 1l La vy
to deduce

le(Ga)(®)¢ll L2y + lle@df ()P ()l 2v) < Cr(llgllzzv) + 19l z2(v))

and

1D 49, cia)[¥ |l 2y < CElYl L2 vy < CrIV | L2(20x 3
Hence
(4251 o)l 12 xny < C(W(t)um(hxm + /‘”vHV(t)HB(leN)))

< (19O e ) + VOl ) < CIVOll 2y
Differentiating (4.2.46) with respect to ¢t we deduce
Ty (if) = F(2)

= —iRe(th(1), Yo) — AIm(D(1), ¢) + 20Tm{y), ).

Since f 1 ker £¢, and 19 ()| 2.2y is small we deduce from Lemma 4.2.22
that for every 1 < p < 2 there exists a constant C}, > 0 such that

£ |20 () < CIF @)l o(w)-

Using the Sobolev embedding L'2(N) — LS(N), Holder’s inequality (in the
case 4/6 = 1/6 4+ 1/2) and the estimates

[9llL12(vy < Ck, [P]loo < C

(4.2.52)

we deduce

IEO N a2y < CURD 20y + 19O 2 |60 | 1.2y + KlISE) [ 22(v)

< C (kD) 20wy + IOl 2w )
Invoking the Sobolev embedding
L2’3/2(N) AN Ll’Q(N)
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we deduce
1Oy < (I 2 + A 2w + 190 2

so that we get
(4.2.53) Hf(t)HL1»2(N) < C||f(t)HL2(N) < C(W@)HL%N) + Hé(t)HL%N))-

Integrating over I and taking (4.2.49) and (4.2.51) into account we deduce

(4.2.54) HfHL2(12xN) + ||deL2(12xN) < C(W@)HLQ(be) + ||¢||L2(12><N))
< CIV) 2 (1o x vy

To proceed further observe that

q(o + ) = q(vo) + 2q(v0, %) + q()

where ¢(u, v) is the symmetric bilinear map associated to the quadratic map
q(u),

o(,0) = {(alu+ ) = alu ).
Since q(10) = 2 * F, the equation (4.2.45b) can be rewritten as

(4.2.55) ASD - [ S

—iam(yo, ) —if

Using interior elliptic estimates we deduce

(4.2.56) (@, Ollzr2(zsx vy < Cp<||a(t)”L2(10><N) + 1%l 2 (1 x 3

2w ) < IV z2(zpseny-
Putting together the estimates (4.2.48) and (4.2.56) we deduce

(4.2.57) VOl 2z < CIVOl 2y, 2 € (1,2).

Thus, we have estimated the L1(I3 x N)-norm of V(t) by a weaker one,
L%(Iy x N). We iterate this procedure. Observe that the L1?(I3 x N)-norm
of the right-hand side of (4.2.45a) is bounded from above by the L?(Iy x N)-
norm of V so, invoking the interior elliptic estimates, we deduce

Il 22 x vy < ClIVIL2(zox v

Using this estimate and estimate (4.2.53) in (4.2.47) we deduce that the
LY2(I4 x N)-norm of the right-hand side of (4.2.47) is bounded from above
by the L?(Iy x N)-norm of V. Using the interior elliptic estimates we deduce

lall22 (s x vy < ClVI L2 (15 wv)-
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This shows
(4.2.58) IVIIz22(15x ) < ClIVIIL2(10x V) -

Differentiating (4.2.50) with respect to ¢ we deduce that ¢ satisfies the
elliptic equation

06— Dy = 5Dy, i)}t + 500y, clia)}
(4.2.59)

5 (cldfyi + etdr)yi + fo+ 13).
By trace results (see [79]) we deduce
la()lprrzevy < Clla®) |y 19O 22y < CIO@ L2 xm)-
Using the continuous Sobolev embeddings
LY%4(N) < L3(N), L“*(N) < LS(N)
and the Holder inequality, which produces a bounded bilinear map
L3(N) x L%(N) — L*(N), (u,v) — uv,

we deduce

| 40, i)

L%(N)
< C(Jlallpra 0l () + Il ez 1l e )
< Cr( IVl + il )
so that
| @ag et |, < Ox(IVlzagen + el 2 ).
Using (4.2.53) and the L*>-estimates on f and ¢ we deduce
|etatyy +etdryi + fo + 54|

L2(IsxN) < OVl 21y x v

Applying the interior elliptic estimates to (4.2.59) we deduce

1Dl 12 (rx vy < ClVI L2 (19 x N)-
Differentiating (4.2.52) with respect to ¢t we deduce

L& Leoif +iRe((t), vo) f = —iRe((t),1h0) f + 4iIm(Y(t), §)

+2iTm (i) (t), (1)) + 21Tm (1), ¢).

We can rewrite the last equation as
Ty (if) = —iRe((t), vo) f + 4iTm{(1), 6)

+2iTm (i) (t), (1)) + 20Tm (1), ¢).
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Since [|9(t)[| 22wy is small we deduce from Lemma 4.2.22 that for every
1 < p <2 we have

1Pl
< G| -Re(@(t), Yo} f +4Tm((1), &) + 2Im(i(1), B(¢)) + 2m(1, )|
Now observe that

198e((t), %) | oravy < Cll N2y 1 oy < Cll 2y 11l vy
(use 4.2.53) and trace results)

< CIIVI pa(roxmy 19l L2 () -

LP(N)

Similarly
[T (8), ¢ |2 (ny < ClE N2yl ez < CrllP L2 (-
Next observe
1Tm (3, $)l a7z < Clldbl| Lo 1€l Loy < ClIbO | 122y 1911 L2z

(use trace results)

< Cllbl 121wy 1Dl 1121 v)-
Finally

13w, &)l o2y < ClIMD, D)l L2(ny < CllBll 2wy
We conclude that ) )
Ifllzr2vy < CllFll 272y

< C(HVHL2(10xN)WHL?(N) 1l ey Bl prezx vy + H@ML?(N))

Integrating the last inequality over Ig we deduce

(4.2.60) 1F 1|2ty + 14N 22620y < ClIVI202050)

Now, look at the elliptic system (4.2.45a) + (4.2.47) in which the
L?*2(Ig x N)-norm of the right hand side can be estimated from above by

IVI[[£2(7ox n)- Invoking the interior elliptic estimates once again we obtain
(4.2.44).

Now using trace results (see [79]) we get

V) 22wy < CIVO 227,y < CIVOI ey

T0+1
e / dist 2 ([C(to + )], [Co])dt <
T0—1

To+1 2.
C / " (disth([C(to+t)],[C(t0+70)])2+disth([C(t0+70)],[Co})z)dt w2

0—1

T0+1
c/ " (disth([C(tg—l—To)],[Co})2+\t—7'0|EC([t0—|—7'0—1,t0—|—7'0+1])>dt

0—1
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< c(amm ([C(to + 70)], [Co))? + Fﬁ).

The conclusion in Lemma 4.2.24 is now obvious. H

Proof of Lemma 4.2.27 Set

iag ia,
= , U:= .
=] o=l
The quadratic remainder R(V) = SW(Cp + V) — AV can be expressed ex-
plicitly and, after some elementary manipulations left to the reader, we get

seliag + iay) (Ve + )
%q(wé) + q(w&wu) + %Q(¢u> — *Fa,
ze(iag)ve
R(§) =
34(1he) — +Fa,
Clearly
[R(E+ V) — R(&)lz2 < CV]22[U]2

The term (V) requires a bit more work. We use the identity (4.2.20)

MN(V) = —Lcysv(if) = £c (if) [ A ] = £c,(if) + .

Now define A¢ := Ag + iag, and observe that
F = jm<wa ®A0¢> = jm<¢7©A§w>v

= Jm(Y), D a ) + In(Y, D 4 ) = Tm(Y), D 4 )
We claim that

(4.2.61) 1F )20 < OV ]2z - U] 2,

that is,
[(F,7) 2| < ClIVI22 - (Ul - 7]z, V7€ CF(N).
Indeed, using the Sobolev embedding L*2?(N) < L>®(N) we deduce

[ 7 Dagndduy| < Clol=Dactulsel 1761

< ClDaou + cliag)ul L1271 2ll9 ]2

< Cllrlhalloz (1D agtull -1 + leliag)ull-1.2)
< Cllrlh 2V l22]1 Ul 2.
The equality Ty (if) = 2iF now implies
(4.2.62) 1fll2 < CIFl-12 < C%lloe + IV
so that

2,2) + [|U][ 2

[€corv(if)lle < Clifllh2 < ClIV

22 [[U]|L2-
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This proves (4.2.27b). To prove (4.2.27c) observe that

2[(V), U552 = | [ (8, (3) + . U

(£, U* =0)
) R B P T P P
(use the Sobolev embedding L'2(N) — L*(N))

(4.2.62)
< Cllglellv
This concludes the proof of Lemma 4.2.27. B

22 [U]|72.

4.3. Moduli spaces of finite energy monopoles:
Local aspects

We have so far studied the internal structure of a single finite energy mono-
pole. We now shift the emphasis to a different structural problem. Namely,
we would like to describe some natural structures on the set of finite energy
monopoles.

This problem encompasses both a local and a global aspect. The local
aspect refers to the smoothness properties and the expected dimension of
this moduli space. The global issues we will discuss are concerned with the
compactness and orientability properties of this space.

4.3.1. Functional set-up. To analyze the possible structures on the set
of gauge equivalence classes of finite energy monopoles on a 4-manifold with
cylindrical ends we need to define an appropriate configuration space a priori
containing the set of such monopoles. Consider a cylindrical 4-manifold
(N, §) and a cylindrical spin® structure & on N. Set o := 06 Again we
will be working under the nondegeneracy assumption (IN) in 4.2.3, that the
pair (g, o) is good.

The asymptotic analysis in the previous section suggests that it is wise
to restrict our attention to a special class of connections on det&d. We
will follow an approach inspired by [96, 99]. Observe first the following
consequence of the nondegeneracy assumption (IN).

Lemma 4.3.1. The quantity
p—(0,9) = inf{u—([Coo]); [Coo] € fma}
1s strictly positive.

Exercise 4.3.1. Prove Lemma 4.3.1.
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Proposition 4.2.35 shows that it is natural to restrict our attention only
to configurations with stringent restrictions on their asymptotic behaviour.
Fix 0 < p < p—(o, g) and denote by C5°,, the set of smooth configurations C

H,ex
on N which differ from a strongly cylindrical configuration by an Li’2—term.
More precisely, along the neck C has the form
C= (i, 4) = ((1), Ao +if ()dt +ia(t)), t € Ry, Ax € Ao
and there exist 1o € C°(Sy), oo € QY(INV) such that
£l 22 + lla(t) = acoll j22 + [[9(2) = Yeoll 2.2 < o0

We set

050C := Coo = (Y00, Ao + 100)-
We thus have a natural projection

Oso : ézoex — C5° = smooth configurations on N.

As in §4.1.4, for every r > 0 we can construct a right inverse

. 200 OO
iy @ Co —>Gu’ex

for Oso, Ox © i = 1. The space éfj’ex is equipped with a natural metric

du(C1, Ca) i= [|000C1 — 9o Call22 +

(€1 = 110xC1) = (G — 110Co)|

2,2°
Ly

We can now define! ¢ ez @s the completion of éfﬁu with respect to the metric
d,. It is naturally equipped with a structure of Banach manifold. Observe
that J» extends to a smooth map

Oso émex — Cg.

Oso 18 a surjective submersion.

N

Proposition 4.2.35 shows that for any smooth finite energy monopole C
there exists 4 € C*°(N, S1) such that 4 - C € €. We want to prove that

n.ex”
oo

pex Das finite energy.

the converse statement is true: any monopole Cee

Proposition 4.3.2. Fiz a smooth configuration Coy = (z/}o, flo) € éu,em such
that

/AFAO/\FAO<OO‘
N

Then C = (1, A) € émex has finite energy
BQ) = [ (1949 + 5la()P +1F4P + {107 )dv(g) < oo
N

IThis a departure from the traditional functional set-up which involves fractional Sobolev
spaces, [96, 133]. Our configurations have regularity slightly better than L%2(N) because, by
definition, their asymptotic traces are not in L3/2:2(dN) but in the more regular space L22(9N).
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if and only if

B©) = [ (1949 + 3Ie(F ) = 3a(D)E ) av(d)
+26,(0C) + |

N
where E; : C, — R is the energy functional described in (2.4.8) of §2.4.1,
defined in terms of the reference connection Ag := 0ocAo. In particular, if

Ce Clres 1S @ monopole then

FAO/\FA0<OO

E(C) 22250(8OOC)+/A FAO/\FAOZ/A FA/\FA<OO.
N N

Proof Set Np := N\ (T, 00) x N. Using the integration by parts formulse
in Exercise 1.2.2 (in which all the inner products are real valued) we deduce

| @atla@) = [ Be @B+ [ 230 0d0)
Np ONT Ny
(use the Weitzenbock formula)

:/A B;Z)A(d;u@Alzj)dv<g)
ONT

[ (GG + SR+ S elF b)) do(s)

N

- /BNT (B% (0, 49) — Boald, @Ai/}))dv(g)

A2 S, Loy 2 .
+ o (9490 + S0 + S, a0 ) (o).
Denote the above boundary integral by Rs(7T'). As in the proof of Proposi-
tion 2.1.4 we have ) )
Z S(FTY — Za()2du(
5 D — 5a0)Pdv(a)
1

= [, UL+ ) = S}, o) av(s)

By adding the above equalities we deduce
- 1,. - .
| (b + 5leED - Sa)R) oo
Nr

= Ro(0)+ [ (1940P + S0P + 21FL + 5l dol)

Nt

= Ro(T)+ [ (VA0 + 316 + 114 + Ela(d)F)do()

Ny 8
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il FA A FA
Np
Using Exercise 1.2.2 we deduce

Ro(T) = [ (1098400 — (0.9 ) o)
(A(T) 1= A Ly,

_ / (B IV = D)) — (@, Vi) ) dv(g)
ONT

= —/A (¥, D Ay ) du(g).
ONp
On the other hand, we can write F)y = Fj + CZ(A — flo) so that
FA/\FA:FAO/\FAO+CZ((A_A0)/\(FA+FAO))'
Thus
/ FA/\FA_/A (A_AO)/\(FA+FAO>+/A FAO/\FAO
Ny Ny Ny
so that if we set C(T) := C o5, we deduce
| (b + 5leFD) - Sa)R) v
Ny A 2 A 2
SA 2 5002 o 1 oo -
= | (IVAB2 + 2P + P42 + Sla(h)2)dv(g)
Nr

—25U(C(T)) —/ FAO VAN FAO'

Nr
The first part of the proposition now follows by letting T" — oo.

The second part is an immediate consequence of the above proof and
the fact that 05C = (¢o0, Aso) is a monopole so that D41 =0. B

We now need to define an appropriate gauge group. Set
Gppen = {fy € L32,(N,C); 3(p) =1 Vpe N}.

Observe that
gu,e:c : Cu,ex - Cu,e:c'

We can now define a metric d,, on Ej\u,ew by setting

du(F1:92) = [|0s¥1 — OcY2l[3,2

+H(’AY1 (t) - Z.OGOO'AVI) - ('3’2 - Z.0800272)HLf'L’Q(]R_pd\r)'
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/9\“7% equipped with the above metric becomes a topological group and we
have a continuous group morphism

Oso /g\u,ex — G5
Proposition 4.3.3. §“m is a Hilbert Lie group and Tl/g\u,em o Lizez (N, iR).
Exercise 4.3.2. Prove the above proposition.
The group §,W may not be connected. Its group of components is
isomorphic to H'(N,Z). Since the map
HY(N,Z) — HY(N,Z) = the group of components of G,
may not be onto, the morphism
Oso §M,ex — G,

may not be onto. It becomes onto if we restrict to the identity components
of the two groups. We will indicate these components by the superscript 1.

~

Lemma 4.3.4. The morphism O0s : Gl

1 . .
pex — 9o admits a natural right
mnverse

E: 5, = Gjew oxplif) = expiin)-
V\ie will denote by /9\/1 the kernel and by 9?, the image of the morphism
Oco : Gpex — G0 so that
$,/92 = H'(N,Z)/H' (N, 7).
Fix Co = (1&,121) € éu,w and set Cy := 80060, Goo := Stab (Cy). Define
Soo :={CETc Cr; £6_C=0}.
Fix a tiny neighborhood Uy of 0 € Sy, such that every G, orbit inter-

sects Coo + Uy along at most one Goo-orbit. We deduce that any Sg—orbit
intersects Uy, along at most one Gy-orbit. Set

Uso = 05 (Coo + Uso).

We see that any §U—orbit intersects Use along at most one orbit of the
group Gex(Coo) 1= 03 (Goo). Thus, the problem of understanding the
local structure of €y, ¢r/Gyex is equivalent to the problem of understanding

the local structure of
Uoo/gu,ex(coo)-

Observe that /S\u,ew(Coo) is a commutative Hilbert Lie group with Lie algebra

Ty8pe0(Coo) = {if € L322, Ouo(if) € TiGoxo).
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Observe that there is a natural action of /9\“7%(COO) on 91 (Coo ) X Use defined
by

The following result should be obvious.

Lemma 4.3.5. The natural map

07 (Coo) X Uso — Uso, (C,C) — C+ipC

[e.9]

s a §M76x(Coo)—equivariant diffeomorphism.

The last lemma reduces the structure problem to understanding the quo-
tient agol(coo)/@,m(coo). Observe now that 9 !(C) is a smooth Hilbert
manifold modeled by L,sz (St eiT *N). The group §u7ex(Coo) acts smoothly
on this manifold and, as in the closed case, we can define the infinitesimal
action

£¢. 1 T1Gpuer(Coo) = Tp 05 (Coo), if dii ls—0 e - Co.
Set
Sep =L € Te, 01 (Cxo); £2C =0}
where *, denotes the Li—adjoint as in §4.1.4. Set G := Stab (Cg). Notice
that the induced map Gy — G is one-to-one.
Let us first observe an immediate consequence of the Lockhart-McOwen

Theorem 4.1.16.

Lemma 4.3.6. There ezists puo = po(o,g9) € (0,u—(0,g)] such that the
operator

(d+d™): LA (AT*N) — LLY2(AT*N)
is Fredholm for every 0 < p < po(o,g).

(4.3.1) In the sequel we will always assume 0 < p < po(o,g).

Proposition 4.3.7. There exists a small Go-invariant neighborhood 14 of
0e 860 such that every orbit of G, cx(Coo) intersects Co + V' along at most

one Go—orbit.

Proof We will follow the strategy used in the proof of Proposition 2.2.7
in §2.2.2. Consider

F: §u7ex(coo) X S(:O - 8<;01(COO)
defined by

~

F(5;,1a) = (3o + ¥), Ag + ia — 2d5/7).
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We have the following counterpart of Lemma 2.2.8.

Lemma 4.3.8. There exists a Go-invariant neighborhood W of (1,0) €
Gper(Coo) X S¢, with the following properties.

e P1 The restriction of F to W is a submersion. In particular, F(W) is an
open neighborhood of Co in 03 (Coo)-
e P2 Each fiber of the map F : W — F(W) consists of a single Go-orbit.

Proof of Lemma 4.3.8 We will use the implicit function theorem. The
differential of ¥ at (1,0) is the bounded linear map

DF : T1Gpex(Coo) % S, = Te, 05 (Cov)
described by
(if,9,ia) = (ifdo + ) ® (i - 2idf) = £¢ (if) + ¢ @ ia.
We want to prove that DF is surjective and ker DF & T Go.
o ker DF = TyGo. If (if,1),1a) € ker DF then £ (¢ @ ia) = 0 so that
v @
0= £y DF(i frb,ia) = £ (L¢, (i H+deia) = £ Le, (i 5.
Thus,
0= [ (e, 0 ifmaydn(s) = [ (g me, (), iFdv(s

= [ 1o, (P Pmaude(e) = [ (75 Hma(T)doto).

Np ONT
By letting T" — oo we obtain

0= [ Ige, (PP ma,du(a)
so that if € ker £Co = Tléo. This equality forces @ =0and a=0.

e Surjectivity We need the following technical result. Its proof will be
presented after we complete the proof of Lemma 4.3.8.

Lemma 4.3.9. The range of the bounded linear operator

Lo, {if € L2 (M,iR); 0xif € TiGoo} — LL(SE @ iT*N)

H,ex

1s closed.

If we assume the lemma then we deduce that any ¢®ia € LZ(S; GiT*N)
decomposes Li—orthogonally as

b@ia=Lc (if) +y@ia

where 22“ (@L @ia) =0 and if is unique up to an element of ker Leo
o\
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Lemma 4.3.10. If
) @ia e L2?

then
if e 132

wex:

Observe that if ) & ia € L,?ﬁ then Lemma 4.3.10 implies @ Pia € L};Q,
thus proving the surjectivity of DJF.

Proof of Lemma 4.3.10 Observe that foo := 0 f is a constant function
on N and thus extends in an obvious fashion to IN. Set

fO = f_ foo
We use the equality
£ Le,(ifo) = u = L& (P @ ia) — £ Lcy foo € L.
Along a cylinder [T'—2,T + 2] x N, T > 3, we have
£ 8e,(ifo) = (£, 8¢ +2u8e, ) (ifo) = u
so that using interior elliptic estimates we deduce

I foll a1 4 1)xn) < C(Hf0||L2((T72,T+2)><N) + Hu||L112((T72,T+2)><N))

< CeiuT(Heutfo(t)HL2((T—2,T+2)><N) + Heutu(t)HL172((T—2,T+2)><N)>-
Thus

e foll a2 r—1,m41)x8) < Ce* T\ foll Lz (r—1.711)x Ny

< C(lle fo®lar-arsaem + e u®)lpraqr—s, m)xm).

If we now square the above 1nequahty and then sum over T =2,3,--- we
obtain an estimate of the L3 -norm of fo in terms of the L % norm of u and
the weaker Li norm of fo. This completes the proof of the claim. B

We can now apply the implicit function t/peorem to copclude that there
exists an open neighborhood W' of (1,0) € §pe2(Coc) x Sg such that the
restriction of F to W is a submersion. Since ker DoF = T1Gy we deduce
that the fibers of E}“ : W — F(W) are smooth manifolds of dimension dim G.
In particular, if Gg = 1 then JF is a local diffeomorphism.

Suppose Gy = S! so that 1])0 = 0. We have to prove that each fiber
of F: W — F(W) consists of a single Gg-orbit. Let F(exp(ifi);¢1,ia1) =
Fexp(ifa); o, idn), i

exp(if)1 = o, a1 —ag = 2df
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where f := f1 — f5. Since (%,idj) € S, we deduce
S*Cﬁ(wj, idj) =0+ d*“dj = 0.
This implies
drdf = 0.
Using again an integration by parts argument as before (over Np, T — 00)

we conclude d f = 0, which leads to the desired conclusion. This concludes
the proof of Lemma 4.3.8. B

Proof of Lemma 4.3.9 Suppose we are given
fn € L/IJj,Zexvaoofn € TlGoo
such that

~ L2 .
(4.3.2) Le,(1fn) = (,1a), n — co.
We have to show there exists

if e LY2 0o f € TG

e
such that

L, (if) = (&.1).
First of all, observe that it suffices to consider only the case

Do fn = 0.

Indeed, we can write

f n = f 7(1) + aoof n
and

e, (ifn) = Le, (1) + L, (1000 fn) = ¢, (1f7) + (exp(i000 fn) 0, 0).

A subsequence of Oy fn converges modulo 277 to a constant w and clearly

(exp(iw)tdo, 0) = L¢, (iw).

Thus, it suffices to consider only the situation fn € L}j2. The condition
(4.3.2) implies
. L2
df, - —a.
Now observe that we have the following
A priori estimate There exists C' > 0 such that
(4'3'3) Hg|‘L}L’2(R+><N) < CHdQHLﬁ(R_‘_xN)v

~ 1,2
Vg < LZ<R+ X N) leoc(R+ X N)
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To prove the above inequality we will use a trick? in [151, Prop. (2.39)].
Observe first that we only need to prove a Li—bound for g since

112 A2 74112
191252 = 1313 + ldal3s

Set b:= CZQ and observe that

d
—q = b
g9 =0
which implies
9(0)] = 19(t) = g(o0)| < /t [b(s)|ds.

Thus

00 00 oo 9
/ 19(1)2e24bdt < / ( / \b(s)|ds) ety
0 0 t

(use the Cauchy-Schwarz inequality for the interior integral, 0 < v < p)

< /OOO </too |B(s)|262”8ds> (/too e_QVSds) et

_ i > 5 2 2us 2(u—v)t
=%/ </t |b(s)|%e ds)e dt

(switch the order of integration)

1 (e.¢] S R
= — (/ 62(“_”)tdt> b(s)|?e**ds
2v 0 0

_ i > ; 2(p—v)s 7 2 2us
= 21//0 =) (e 1)[b(s)|*e**ds

= m([)m |l;(s)\2ez:sds - /000 |B(8)|262V8d5)
< m</o ]3(3)\262“5d3>.

To obtain the a priori estimate we only need to integrate the above inequality
over N. i

Using (4.3.3) we deduce
an - meL};Q(RxN) < CHQn - @mHLﬁ(RJrXN)a Vn,m > 0.
Since (a,,) is Li-Cauchy sequence we deduce that (f,) converges in the L}L’Q-
norm to f satisfying (weakly) the differential equation
df = —a.
This shows £¢ (if) = (@, ia), which concludes the proof of Lemma 4.3.9. B

21 am indebted to Stephen Bulloch for drawing my attention to this trick.
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Remark 4.3.11. (a) Observe that if § € Llloi(N) is such that dgj € Li then
the above proof shows that § € L2, (N) and

19 — Osoiillzz < Clldg 2

This is essentially the content of the key technical result [132, Lemma 5.2]
proved there by entirely different means.

(b) Suppose E — N is a Hermitian vector bundle equipped with a cylindrical
structure (19,@0). Fix g > 0. The above proof shows that there exists a
positive constant C' with the following property: for every u € L? (E) such
that VOu € Li(T*N@E) we have HaHLﬁ < CH@OiLHLi. Iterating the above
procedure to the bundles T*N®* @ E we deduce

(4.3.4) lillzs < Cell(V°)%*all 13
for all 4 € L*(E).
Exercise 4.3.3. Prove the claims in the above remark.

) 3k %

We can now complete the proof of Proposition 4.3.7. We need to prove
that there exists a small Go-invariant neighborhood Vof0e SC such that

every Smem(Coo) orbit intersects Co +V along at most one orbit. In other
words, we need to prove that, for V' as above, each fiber of the map

F: Gpen(Coo) X V — 0.1(Coo)

consists of a single Go-orbit. Observe that according to Lemma 4.3.8 this
statement is true for the restriction of F to a Gy-invariant neighborhood
Uo x Vo of (1,0) € Gy ex(Coo) X Sg,. We will argue by contradiction.

Suppose there exist sequences (zﬁn, iay), (gﬁn, 1l;n) € Vp and An € §M,e$(Coo)
with the following properties.

(4.3.5) (Yn, i), ($n,ibp) — 0 in L2

We will show that 4, € Go, Vn > 0. We will rely on the following auxiliary
result.

Lemma 4.3.12. 4, belongs to the identity component of §N,em(coo) for all
n > 0.
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Let us first show why this result implies 4, € Go for all n > 0. Using
Lemma 4.3.12 we can write

An = exp(ifn), fn € Liize;p

We can also assume that the constant function f,, := 0 fn lies in the interval
[0, 27]. By extracting a subsequence we can assume

Using (4.3.6) we deduce
(4.3.7) d(fr = fr) = by — .
The a priori estimate (4.3.3) implies
1 = fall g2 < Cllbn = iz — 0.
The equality (4.3.7) also implies

HCR]?R - fn)HLiﬁQ < Hi)n — d””Li‘z'

We conclude that fn converges in Li%x to the constant function foo = foo-
Using (4.3.6) we deduce

exp(ifso) - Co = Co
so that exp(i foo) e Go. This proves that, for large mn, 4, lies in the
Go-invariant neighborhood Uy of 1 € Gu,ex(Coo). Thus, for all n > 0
(1, (¢n,iay)) and (4, (¢n,1ib,)) lie in the same fiber of the restriction of

F to Uy x Vy. This shows 4, € Gq, thus completing the proof of Proposition
4.3.7. 1

Proof of Lemma 4.3.12 The equality (4.3.6) shows that

1(d4n) /Anllzz — 0O
so that it suffices to prove that there exists ¢ > 0 such that
Ll >c

v

(4.3.8) ‘

for all 4 € §u7em(Coo) which do not lie in the component of 1.

Observe that €25 := (a?’y) /7 is closed and 4 lies in the identity component
of Smex(éoo) if and only if there exists f € ijQ such that

Qs = idf.
Set
L LA(N) = R, [ ||Q +idf]| 2
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This functional is smooth, strictly convex, and coercive, i.e.
L(f) — o0 as [[fll 12 — oo

(The coercivity is a consequence of (4.3.3).) The variational principle [19,

I11.20] (or [105, Prop. 9.3.16]) implies there exists a unique f@ € Lll;2 such

that
||Q@ + idf&”Li = minI@.

f:, is characterized by the variational equation
ddf, = id Q.
Arguing exactly as in the proof of Lemma 4.3.10 we deduce f:y € Li’Q. Set
9] := exp(ifs)d, [Qs] = Q).

Observe [4] is in the same component as 4 but
1195 e < 19515
Notice also that the assumption (4.3.1) implies that [2] lies in the finite-
dimensional kernel of the Fredholm operator
(d+d™) : LAGAT*N) —: L2(AT*N).
The set R
{[Qﬁ]a v € gu,em(coo)}
is an Abelian subgroup S of ker(cf + aAl*f‘) isomorphic to the discrete group
of components of G, ¢»(Cs). The constant c in (4.3.8) is given by

inf{[|s||rz2; s €S\{0}}>0. W

It is now time to put together the results we proved so far to describe
a topology on the set émm / §u7ex- The results we proved so far amount es-
sentially to a “straightening statement”: each orbit has an open invariant
neighborhood equivariantly dlffeomorphlc to an open invariant nelghbor—
hood of the zero section of a 9 uez-equivariant vector bundle over 9# ex- L€t
us provide the details.

Fix Cy € émem and set Coo := 00Co. To describe a neighborhood of
§H73$ . Co we need to fix several objects.

e A small open neighborhood Uy of 0 € Sc, such that every G,-orbit
intersects Coo + U along at most one Go-orbit.

e A small open neighborhood V of 0 € SCO such that every §M7em(coo)—orbit
on 931 (Co) intersects Co + V along at most one Go-orbit. Set

Up :=Up(V,Us) = V +igUss
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where i : €, — C’Mez is the extension map defined as in §4.1.4.

Lemma 4.3.13. The set W := §M7e$-ffo s an open neighborhood of/S\uw-Co
in Cpex-

Sketch of proof Since W is §uvex—invariant it suffices to show that there
exists an open neighborhood V of Cy such that W = G wez - V. To construct
the neighborhood V we consider as in Lemma 4.3.8 a map
F: g,u,,e:v X (70 - éu,(ﬂa g(:}lv 1[)7 id) = (:)/(1&0 + 1&)7 ‘210 +ia — 262;)//’3/)

Using the implicit function theorem (whose applicability can be established
using the same arguments as in the proof of Lemma 4.3.8) we can then show
there exists a neighborhood N of 1 € G,ex such that the restriction of J to
N x Uy is a submersion. Then V := F(N x Up) is an open neighborhood of
CoinCspyand W=G, e -V. B

There is a tautological left gu,ex—action on §H,er X Uo and the above map

Fis §M7€m—equivariant. Observe that the group Gy acts freely on /S\Mex x Uy
by

fAYO : (’?)g) = (rA}/ : fAY()_l)’AYO g)
Y99 € Go, A€ /S\M,ew, Ce ﬁo. This action commutes with the above /S\H,ex ac-

tion and, moreover, F is Go-invariant. We let the reader check the following
fact.

Exercise 4.3.4. Each fiber of F consists of a single Go-orbit.

We deduce the following local linearization statement.
Proposition 4.3.14. The induced map
J: (/Q\M,ex X UO)/GO —W
s a §u7em—equivariant diffeomorphism.
A neighborhood of (1,0) € ((@u,ex X UO)/CJO)/@,W is homeomorphic to
Uo / Go. This has the following consequence.

Corollary 4.3.15. A neighborhood of Co in W//S\uyex (equipped with the
quotient topology) is homeomorphic to (70/@0.

Sometimes it is convenient to have a based version of this result. Fix a
base point * € N and form the groups

So(x) :== {7y € Go; (x) =1}
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and R
g,u,ea:(*) = ao_ol (90(*))

Using the short exact sequence
l— 9u,ex(*) — gu,eaz - Sl —1

(where the second arrow is given by 4 — O0y(*)) we obtain a fibration
Gprea(¥) = Gpea x Up
P
St x Up.
The projection p is Go-equivariant and we get a fibration

g\y,ex(*) — (/g\,u,em X UO)/GO

(S* x Uy)/Go.
The last diagram has the following consequence.

Corollary 4.3.16. The based gauge group §M7m(*) acts freely on (:35,7# and
the quotient is naturally a smooth Banach manifold equipped with a smooth
Sl-action. A neighborhood of Co in this based quotient is Sl-equivariantly
diffeomorphic to

(Sl X Uo)/é’o

Moreover, we have a natural homeomorphism

Cop/Gpen = (é&,u /§u7m(*)) /51,

A

The asymptotic boundary map O : Cs,, — Co fits nicely in this picture.
Observe first that
Doo(7 - €) = (909) - (0C), V4 € Au(%)

and thus we get a smooth map

(439) aoo : é&,u/gp,em(*) - 60/92(*)
This map is locally described by
O : Uy — Usg

which is clearly a submersion. Observe also that the map (4.3.9) is onto.
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4.3.2. The Kuranishi picture. The ambient configuration space

ép,ex/g,u,ex

has a rich local and infinitesimal structure. We now want to analyze whether
the set of gauge equivalence classes of finite energy monopoles has a natural
local structure compatible in a natural way with the local structure of the
ambient space.

We first need to define the appropriate functional set-up for the Seiberg-
Witten map (whose zeros will be our finite energy monopoles). To construct
such a set-up we will rely on the nondegeneracy assumption (N). Denote
by Z, C C, the set of 3-monopoles on N. The nondegeneracy assumption
implies that Z, is a Banach manifold.

Define
Cpsw = 0 (Zo)
and
9, := LLA(S; @in2TN).
Observe that émsw is a smooth gmem—invariant submanifold of émex.

At this point we want to draw the attention to a very confusing fact
having to do with the cylindrical structure of iAiT *N described in Example
4.1.24 of §4.1.6. Recall that along the neck R} x N we have the bundle
1sometry

T:A2T*N S 7*A'T*N, w— V2w
where 7 is the natural projection R x N — N.
The following fact indicates that, for essentially metric reasons, we have

to be very careful how we interpret the term ¢(¢), as an endomorphism or
as a differential form.

Exercise 4.3.5. (a) Show that if e!,e?, €3 is a local oriented orthonormal
frame of T*N then for every ¢ € I'(S,) we have
1

e (@) = 5 D (b e(e)e”

1

(b) Show that for every ¢ > 0 and every 1 ~ (¥(t)) € F(S:) =T(7*Ss)
VI (&7 (g(@)) o= (g (1)) ).

Hint for (b): Use part (a) and the identity in Exercise 1.3.2.

The Seiberg-Witten equations define a natural map

SW i Cugwr = Yy (9, A) > D g0 0 (VA(FS = 567 (a(0))).

1
2
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Using Exercise 4.3.5 the reader can immediately check that indeed SW Q) e
9 u for all Ce é% sw and that SW is twice continuously differentiable. Set

My = S (0)/Spear Mu(x) = SW (0)/Gpuea(%).

We want to analyze the local structure of ﬁu and ﬁ“(*)

Suppose Co is a smooth finite energy monopole. The results in §4.2.4
show that, modulo a L?O’z—gauge transformation, we can assume Co € émsw.
Denote by @ & the linearization of SW at Co. We obtain a differential
complex

) __
1e, R SWe,

~ [=A A

(’CCO) 0— Tl/g\u,eac — Téoeu,sw E— Toyu — 0.

Proposition 4.3.17. The complex ’ECO is Fredholm.

Proof Let us first introduce a bit of terminology. A Hilbert complex is a
differential complex

0— Hy L H L Hy— -

in which the spaces of cochains H; are Hilbert spaces and the differentials
are bounded linear maps. A Fredholm complex is a Hilbert complex with
finite-dimensional cohomology. (For more on Hilbert complexes we refer to
[20].) The following result is left to the reader as an exercise.

Lemma 4.3.18. Suppose
0 (Co,do) £ (C1,d1) % (Ca,dz) — 0

is a short exact sequence of Fredholm complexes where the morphisms f and
g are bounded linear maps with closed ranges. If two of the compleres are
Fredholm then so is the third and, moreover,

X(C1,d1) = x(Co,do) + x(C2,d2)

where x denotes the Fuler-Poincaré characteristic of the associated Z-graded
cohomology space.

The complex (Ieéo)ﬁts in a short exact sequence

(E) 0> FSKe 2=Boo
0

defined as follows.

[ ] F = FCOZ

(F)

N ~ L A N SW,
0= L3*(N,iR) = 1§, —% L22(S{ & iT"N) = Tp 05! (Coo) — Y — 0.
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e B=DB(Cy):
%Ecoo
(B) 0—-"T9, — Tc_Z2s —0—0.

Denote by d(Cs) the dimension of the component of 9, containing Cu.
We leave the reader to check the following elementary facts.

Exercise 4.3.6. (a) Prove that (E) is exact and the maps ¢ and 0 have
closed ranges.

(b) Prove that B is Fredholm and x(B) = dim Stab(Cy) — d(Coo).

We see that Proposition 4.3.17 is a consequence of the following result.

Lemma 4.3.19. The differential complex F is Fredholm if 0 < p < po(o, g).

Proof The arguments in the proof of Lemma 4.3.9 (especially the estimate
(4.3.3)) show that the differential £ in F has closed range if

0 < p < po(o,g9). Moreover kerECO = TlStab(Co). Thus it suffices to
show that

SW : L2*(ST @iT*N) — Y,
has closed, finite codimensional range and dim (ker SW ¢,/Range (£60)> <
00.

Using Lemma 4.3.10 we deduce that any C € LZ2(S: @ iT*N) decom-
poses uniquely as

Al
otC

@k

C=
where N
C € Range(L¢,) C ker SWe

and

Co € LS @iT*N), £/ Cy=0.
Thus it suffices to show that the operator
7607/"
is Fredholm. To do so, we will rely on Lockhart-McOwen Theorem 4.1.16.

VT3, ]- * & oIk N7 (] .
= SWe, @ 5L L2*(Sf @iT*N) — Y, & L*(N,iR)

Let us first observe that ﬁéo L is an a-APS operator. Set

CO = (1[}0@)7140)7 Coo = (wOOaAoo) = aooé()
and A
¥(t) Li*(SY)
€ D
idt A u(t) + ia(t) LE2(iT*(Ry x N))

(@F
Il
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Along the neck we can write Ay = Ao +idt A v(t) +ia(t), v,a € Lﬁ’Q for all

—

keZy,0<p< pg. The operator S—WCO P %22“ has the form
0
(W/A ® e 2migy 2’“) (¢(t) @ idt Au(t) + i (t))
SWe, @ ;e € P i u ia
P 4,0 (8) + Se(idt Au(t) +ia(t) )vo

_ | V2Tt Aut) +ia(t) — L& (4o, 1))

] —ia?*(dt Au(t) + Q(t)) + 2ipu(t) — %3“1( &0;%) |

(use Exercise 4.3.5 and the computations in Example 4.1.24)

J 0 0 [ @?g(t) - (Z)Aoo% + %(C(Q(t)) - u(t))Q&O) +%U(t)%(t)
=0 10 i(Bra(t) + +da(t) — du(t)) —3¢71q(o, )
00t (o - da) + 2uu(r)) —3am{do.v)
J 00 ¥(t) [ D4, O 0 17 %@
=10 10 Oy l ia(t) | — 0 —xd d ia(t) }
0 01 iu(t) | 0 d —2p | | iu(t)
[ L(e(a(t)) — u(t) )o(t) ] , ]
) 1v2(t)J 00 g(t)
— | teq(Wo(t), (1)) +1 0 00 ia(t)
) 0 0 0] [ iu@®
$Im(eo(t), ¥(t))

Propositio_n 4.2.35 shows that ||1/J(t5 — Yool ez + llall pr2 + [0 12 < oo,
w w w
for all k € Z. The above computation now implies that ‘J'CO 4 is an a-APS
operator and, using (4.2.2), we deduce
SWc o —38c,

aOOTCo,u = TCoorp i= o )
T2%Cy —ap

We want to show that ker(u+ Tc ) =0 forall 0 < u < p_(o,g).
Suppose C & if € ker(v + Tcoon), v € R. This means
SWe_ (€) - 8. (if) = —viC

(4.3.10) :
L (C) +4pif = 2vif
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Observe that £¢_SW¢ = (SWc_£c.. )" = 0. If we apply £¢__ to the first
equation in (4.3.10) we deduce

£c L (if) = QVEEOOC =4v(v —2u)(if).
Let us now require that v is such that
dv(v —2pu) < 0.
This implies f = 0 and forces
ge C=0, SW¢_(C)=-vC.
Suppose additionally that
0<v<p_(o,9) <p(Cx).
This implies C = 0.

Now, if v := u < p—_(0,g) then automatically both requirements are
satisfied because

dv(v —2p) = —4u® < 0.
We deduce that ker(pu + Tc ) = 0 as soon as 0 < u < po(o,g). The
Lockhart-McOwen Theorem 4.1.16 now implies that ‘TCO is Fredholm if 0 <

< po(o,9) < p—(o,g). This completes the proof of Lemma 4.3.18 and of
Proposition 4.3.17. B

Set
HY = H'(Ke,), i=0,1,2

The finite-dimensional space Hé is called the obstruction space at Co. Ob-
0

serve also that
H9 ~ 7, Gy.

The results in §4.3.1 show that the quotient GH sw/ 9 pex equ1pped with
the quotient topology has a nice local structure. Suppose Co € GM sw 1S &
finite energy monopole. Set

Sélovo =8¢, NTc Zo.

Then there exist a small neighborhood Vi of 0 € S¢¥ and a small neigh-
borhood VO of 0 € SCO such that if

Uo = Co +V+iovoo

then a neighborhood of [Cg] in éwsw / gu,ex is homeomorphic to the quotient
Uy/Gp. The results in §4.3.1 show that additionally

Te, Cusw = (Se, +10(SE2) ) + Range (£¢, : TiGuer — Te, Gy
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and
(5’@0 + io(SéZ’o)> N Range (SCO : T1Spex — Téoéu,sw> =0.

Thus, to understand the nature of a small neighborhood of [Co] in ﬁﬂ it
suffices to understand the nature of the set of small solutions of the nonlinear
equation

(4.3.11) F(C) =0

where
F . (sc + io(sgg;)) — 0, F(C) = SW(Co +C).

Proposition 4.3.17 shows that the linearization of F at 0 is a Fredholm map
and, moreover,

ker DyJF = Hlo, coker DyF = Hgo.

Arguing exactly as in §2.2.2 we deduce that there exist a small Go-invariant
open neighborhood N of 0 € Hé and a Gg-invariant map
0

Q¢, N — HZ,
such that QCO (0) = 0 and ngl (0)/Go is homeomorphic to an open neigh-
borhood of [Cp] in M, .
Definition 4.3.20. (a) Tbe monopole Cy is called regular if its obstruction
space is trivial, H(?:O = 0. Cq is called strongly regular if H*(F) = 0.
(b) The integer

d(Co) := —x(Ke¢,) = dimp HE — dimg HY — dimg H_
is called the virtual dimension at Cy of the moduli space ﬁu-

Remark 4.3.21. The long exact sequence associated to (E) shows that
there is a surjective map H?(F) —» Hg so that a strongly regular monopole
0

is also regular.

The above discussion has the following consequence.

Corollary 4.3.22. (a) If Co is a reqular irreducible monopole then a small
neighborhood of [Co] € ﬁu is homeomorphic to RHUCo)

(b) If Co is a strongly regular irreducible then there exist a small neigh-
borhood Uy of [CO] IS ﬁu and a small neighborhood Uy, of Coo € M, such
that Uy = Rd(éo), Uy = 800((70) and the induced map ds : Uy — Us is a
submersion.
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Example 4.3.23. We want to point out some subtleties hidden in (E).
Consider the special situation when (NN, g) is the sphere S3 equipped with
the round metric g of radius 1. Spin®(N) consists of a single structure o
and the pair (o, g) is good since g has positive scalar curvature. 9, consists
of single reducible monopole Cy = (0, Ap). We deduce

HY(B)=R, HY(B)=0.

Suppose Co € éwsw is a smooth irreducible monopole on N. Then 8OOC0 =
Co and the sequence (E) leads to a short exact sequence

(4.3.12) 0— HB)=R— HY(F)— Héo — 0.

A superficial look at the complex (F) might lead one to believe that H'(F)
is intended to be the tangent space at Cy to the fiber of

Oso ﬁﬂ — M.
Thus one would expect that H'(F) would inject into Hé , intended to be
0

TCO§J\T“ — 9M,. However, the sequence (4.3.12) shows that the natural map
HY(F) — Héo is not injective since dim H'(F) = dim Héo + 1. How can
this be possible?

The explanation is simple. The fiber of the map Oy : ﬁ# — 9N, over
Co should be understood as the set of monopoles on N modulo the group

Gpex(Co) = 0} (Stab(Co)).

A careful look at (F') shows that it involves a smaller group §# which fits
in a short exact sequence

1— §u — §u’e$(co) — St 1.

To correct our initial intuition of H'(F) we should think of it as intended
to be the tangent space to the fibers of

Bso : M (%) — My ().
In our case M, (x) = M,.

In the remaining part of this subsection we want to provide alternate
descriptions of the cohomology spaces intervening in the long exact sequence
associated with (E). These interpretations (more precisely Propositions
4.3.28 and 4.3.30) constitute the main difference between the approach to
gluing we propose in this book and the traditional one pioneered by T.
Mrowka, [99]. They are responsible for substantial simplifications to the
whole gluing procedure. Our first result should be obvious.
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Lemma 4.3.24. We have natural isomorphisms

~

HI(FCO) = ker#(‘TCO’#),

2 ~ o
H(Fg,) = keru(ﬂ'c‘;’#).

Lemma 4.3.25. There exists a natural exact sequence

)HHéOHO

A~

0— Uo — kerex(‘J'CO u

where Uy is the kernel of the natural map H' (FCO) — Hé or, equivalently,
0
the cokernel of the map O : T1Go — T1G .

Proof The proof consists of two parts. We will first construct a natural
map

keres(Te, ) — Héo

and then we will prove it leads to the above exact sequence. The details will
be carried out in several steps.

Step1 If C € kere, (T

Co,u) then C € Te, émsw ,i.e. Cis strongly cylindrical.

Suppose that along the neck C has the form
€ = (¥ (0).ialt) + iu(t)de),
Since C € kerw(‘j’@o,u) we deduce
950C = (¥(00), ia(00), iu(c0)) € ker Te__ .-

To prove that u(co) = 0 it suffices to show that if (¢, ia,iu) € ker Tc__ then
u = 0. This follows easily by looking at (4.3.10) in which » = 0. The details
can be safely left to the reader. Thus, we have a well defined map

~

T: kerew(‘J'CO’M) — ker(gﬁfco : TCOémsw — 9#) —» Héo.

Step 2 T is onto. Observe first that the long exact sequence associated
to (E) implies that we can represent each cohomology class 7 € Hé by an
0

element C eT. ¢ é,u,sw such that
SW¢_0,C=0, £¢_0,C=0.
Next observe that since C is strongly cylindrical we have
0o (£2:€) = £2,0:C =0

so that
*ul o TL2(AT
SCOQGLH (N,iR).
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Arguing as in the proof of Lemma 4.3.9 we deduce that the densely defined,
selfadjoint operator

Doy =28, L%*?(N,iR) C L%(N,iR) — L2(N,iR)

has closed range. Clearly its kernel is trivial so that it is also surjective.
Arguing as in the proof of Lemma 4.3.10 we deduce that

1 1,2\ _ 732
ACW(LM )fLH .

Thus we can find ify € Lf’f(N ,iR) such that
Ag, .(ifo) = 22‘;2.
If we set
N N S
C:=C- Sco(lfo)
then SW ¢ C’ = 0 so that C and C’ define the same element in H é . Moreover
0

e =2 C- Ay, ,(ifo) =0

so that C' € ker,, ‘J'éo e This proves that Y is onto.

Step 3 ker Y = ker(H*! (Fe,) — Hé ). From the natural inclusion
0

Hl(FCO) = ker#(‘j'co#) C ker@r(‘jiéow)

we deduce that
ker(Hl(FCO) — Héo) C ker Y.

Conversely, suppose Y(C) =0 € Hé . In particular, this implies
0

8oo§:07
ie. CeL2 <= Ce H'(F,) W

Remark 4.3.26. It is perhaps instructive to describe the image of Uy in

A~

kerey ‘TCO’#. Suppose for simplicity that N is connected, Cy is irreducible

but Cu is reducible. Then Uy C H I(FCO) is spanned by the the infinitesi-
mal variation £¢ (i). To find its harmonic representative (i.e. describe the

element in ker, T¢ i defining the same class in H 1(FCO)) it suffices to solve
the equation

Ag, , (1) = D¢, (D)

with unique solution

32 45 . A—l e
Ly 3 ipg = AC(W (ACO,M(1)>'
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Then the harmonic representative of £¢ (i) is £¢ (i —ipg). Observe that
fo =1 — g is the unique function f € Liifc satisfying the equations

ACO,M(ifO) = 07 6oofo =1. N

Lemma 4.3.25 has one small “defect”. More precisely, it describes a
geometric object, the virtual tangent space Hé , in terms of the quantity
0

ker ‘j'co u which depends on the choice of u dictated by functional analytic
considerations. Our next result will remove this defect. Set

— 1 N
Te, = 5We, ® 58,

Observe that the a-APS operator ‘j'CO can be formally obtained from ﬁ'c
by setting 1 = 0. Moreover, the decomposition

ker‘.Tcoo = Tcooi)ﬁo O T1Gso

produces a decomposition of the boundary map

0,1

Oso : kerey ‘j’CO — ker Tc_,
into components
820 : kere, {j‘Co — T1Gs, 05 :kerey ‘j’co — Tc M.
Remark 4.3.27. Using (4.1.22) of §4.1.5 with G = 1 we deduce that we
have the orthogonal decomposition
820(kerem ‘j'to) &) 820 (kerey ‘j’éo) =T1G0o.

Now observe that if (¥,if) € LL%I S; @ IN2T*N) @ L,lﬂex (iAOT* N) belongs

to kere, T% then if € Tléo (see the the proof of Proposition 4.3.30. Thus
0

C
0% (kerey Te, ) 2 Ti(Goo /050Go).
As an example, suppose Cg is reducible, Co = (0, flo). Then
TCO = @Ao @ ASD.
The above observation implies that any 1-form w € kere; ASD is strongly

cylindrical. This is in perfect agreement with the equality (4.1.28) proved
in Example 4.1.24 of §4.1.6.

Proposition 4.3.28. There exists a natural short exact sequence

(Hy) 0— Héo — kerg, ‘j'co — Tl(Goo/c%oéo) — 0.
In particular ) R
kere, ‘J’C(),M = kere, ‘J’CO.
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Proof We discuss separately three cases.

Case A. Co is reducible. In view of Lemma 4.3.25 we only have to prove

R ~ 77l ~ R
kere, TCO,;L =H & = kere, ‘ICO. Set

V= S; ®iAT*N.
Along the neck it decomposes as
V=S, @ir*AMT*N @ idtn*Ry
where o RJI X N — N is the natural projection. Over the neck, each
section C of V splits as

C = () @ (ial(t) + iu(t)dt).

Denote by T}, the automorphism of V which is the identity off the neck while
along the neck it has the form

T, @(t) @ (ia(t) + iu(t)dt)) = (1) @ (ia(t) + imayu(t)dt).
A simple computation shows that since Cq is reducible we have
2*5; =m_2, &7 Ty
and - R L
S_WéOTMQ = TMS_WéOQ-
We thus have a well defined bijection

ker ‘J'C(W — ker ‘J'CO,

C—T,C
which maps ker_. ‘j’co L injectively into ker_,_. {j‘Co' Its inverse maps the

space ker_,_. ‘TCO injectively into ker_, . TCO e To conclude the proof of
Case A we only need to recall Proposition 4.1.17 which states that if p is
sufficiently small then

kere, (‘TCo,u = ker_. Téo,u =ker_, . TCovu’

kere, (‘TCO =ker_, . (‘TCO'

~

Case B. C is irreducible, and thus so is Co. We have to show ker,, ‘J'CO =

H(I: . Note that any C € kerey ‘J'CO tautologically defines a cohomology class
0

in Hé . We want to show that the induced map kere, ‘j’CO — Hé is an
0 0
isomorphism.

Observe first that this map is 1 — 1. Indeed, if
C € kere, T, and C = £¢ (if)
for some f € Lyg, then A¢ (if) = ¢ L¢,(if) = 0. Multiplying the last

equality by if and integrating by parts on Ny_ we deduce Eéo(if) =0.



4.3. Moduli spaces of finite energy monopoles: Local aspects 389

To show that this map is onto we construct a right inverse I'. More
precisely, if C € T, Co C,,sw satisfies S WCo then we set

B A a—laxp
where we regard ACO as a bounded Fredholm operator

A, : L*2(N) — LY(N).

(It is Fredholm since Ag = A+ i‘lﬁo‘Q and Dstho # 0.) As such it has

trivial index and kernel and AE;(L};Z) c LY

Case C. CO is irreducible but C4, is reducible. In view of Remark 4.3.27 we
only have to prove that

Héo >~ Ky = ker(ago : kere, ‘ATCO — T1G00)~

Clearly Ky C TCOGIMSW’ that is every C e Ky is asymptotically strongly
cylindrical, and thus we get a tautological map

Arguing as in Case B we deduce that this map is 1 — 1. To prove that this
map is onto we construct a right inverse I' formally identical to the one in
Case B,

B A a a—lap
rec=c SCOACO £eC,
where this time we regard ACO as a bounded Fredholm operator

A~

732 1,2
Co - LM - LN

of trivial index and kernel. (Note that since E)ooiﬁg = 0 the operator ACO is

no longer Fredholm in the functional framework L32 — L%2.) B

We conclude this section by presenting a similar description of H? (FCO)

in terms of ker,, ‘J'(i; .
0

Proposition 4.3.30. There exists a natural short exact sequence
Tk 820 5 Ooo
(Hy) 0 — H*(Fg,) — kere, T, — Range(T1Go = T1Goo) — 0

where the upper x denotes the formal adjoint.
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Proof Let us first observe that

H?(Fg,) = ker, ‘.ng# = ker(Te T :L2* — L)

COHM CO,M ’
and
~ ~ — —— % 1
—_— ~ A‘L — A
Téovujéo,u - S—WCOS—WCO @ 4ACo,u
where we recall that
. — fea
ACO# = SCO)ZCO.

Since ker(ACO,M : Ly? — Ly*) = 0 we deduce
(0,if) € ker, (j‘zu — f=0 and S/IX/EO(mQM\II) = 0.
We conclude that the correspondence
ker,, fj‘z“ L2 (0,if) % (my,T,0)
0,

induces a map

- ker, T
¥ P 8o

Tk ot 1 T
— ker,u(‘TCO = SWe, + QSCO) = kerex(‘TCO).

Clearly 9%, o ¢ = 0.

Conversely, suppose
.7 e T 1 .7
(,if) € kereg Te, = SWe (€) + §£€:0(1f) =0

and f € LZ (ie. 8% (¥ @if) =0). Apply L% to both sides of the above
0

equation and use the identity S*C SW EO = 0 to deduce
0
QEOSCO(if) =0.

Since f , SCO (i f ) € LZ we can integrate the last equality by parts over Nrosoo
and we deduce

/N |£Co(if)|2df) =0« Séo(if) —0<= f=0 (since f € L2).
The fact that the map
A o9 PO
(4.3.13) kere, ‘J'zf:o — Range(T1 Gy = T1G )

is onto now follows from Remark 4.3.27. Proposition 4.3.30 is proved. B
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Remark 4.3.31. Proposition 4.3.30 shows that we have a natural map
H 2(F(20) — Tc 9N, which for simplicity we will denote by 0. Observe

also that if Cg is reducible there exists (0, i f ) € kerey ‘j‘éo such that

Osof = 1.
If (Uq, ifl), (Us, ifz) are two such elements then

(\1/1 — Wy, lfl — lfz) € QD(HQ(FCO)) C kerg, ‘jiéo
so that fl = fg. The function fo = fl = fg is uniquely determined by the
equations R X X
fo € Ljitas L8 L¢,(ifo) =0, Oxcfo=1.
Notice also that we have a unitary isomorphism

T+ A 2
Ooo keTey ‘.TCO >~ O H (FCO) & T1Goo.

More precisely, if (U, i f ) € kerey ‘j'é is such that 0o f = 1 then
0

O Ketes Ty = spang { 0o (W, 1), O HA(Fe,) @0}

= spanR{O b i, aooH2(FCO) D 0}

4.3.3. Virtual dimensions. Suppose Cy = (1[10,210) € é,hsw is a mono-
pole. Set Cop = (o0, Ao) = 0, Co and d(Cx) = dimTc_ IM,. We want to
describe a general procedure for computing the virtual dimension d(Cy).

Using Lemma 4.3.18 and Exercise 4.3.6 we deduce
d(Co) = —x(F) + d(Coo) — dim Goo
. o 1 * ~ . * N7 ~N— . * N7 .
— ind (Sﬂco © 5L LS @ INTN) - LLA(S; 0 3TN @ IR))
+d(Coo) — dim G
(use Proposition 4.1.17)

A~

= IAPS(‘ICO,M) + d(Coo) — dim G

(use the excision formula (4.1.19) of §4.1.4)

(4.3.14) = Iups(Te,) +d(Co) — dim Goo — SF(Tc, — T, p)-

To proceed further let us first notice the following result, whose proof will
be presented a bit later.

Lemma 4.3.32.
SF (frcw - Tcoo,ﬂ) — _dimG...
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Thus
(4.3.15) d(Co) = Iups(Te,) + d(Coc)-

Now denote by ‘j{é the operator obtained by setting 1[}0 = 0 in the
0
description of Te,- Observe that along the neck ‘J'(C) has the form
0

¥(t)

T | a(t)

u(t)
J 0o (1) Da. 0 07 o)
—lo1o|lalan | -] 0o —xd dl| i@
00 1 iu(t) 0 d* 0] | iu)

This shows ‘j'g is an a-APS operator and
0

7 &0 _ | Dag 0
e = 80"720_ 0 —SIGN

Set,
Pc, =Tc, — ‘J'goo.

Observe that Pc_ is a zeroth order symmetric operator described by

%( c(@) —u )1/)00

Y
Pc ia | = %C_lq.(d’oo’ﬁ)
iu

]

%jm<7/)om£>

Denote by ¢(Cs) the spectral flow of the family Tgoo + tPc, t € [0,1].
Using the excision formula (4.1.19) we deduce

d(Co) = IAPS(TO ) +d(Coo) — 9(Co)-

‘j'Q is the direct sum of the complex operator 3 Ao and the real operator
ASD Since we are interested in real indices we have

IAPSUO ) =2Iaps(P 4,) + Laps(ASD).
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Denote by 7sign(g) the eta invariant of SIGN and by 74, (Cs) the eta
invariant of ®4_ . We set

F<Coo) = 477d1r(coo) + Tlsign(g)'
Using (4.1.3) of §4.1.2, (4.1.30) of §4.1.6 we deduce
A 1 1 a3 g N 2 .
Laps(38) = 3 [ =501 (V9) + e1(Ag)? — (dime ker D, + nair(Coc)

4 Jx

_%<X]\7 +T]\7 —l—bQ(N) +bl(N)>

Using the signature formula of Atiyah-Patodi-Singer (see [6] and also (4.1.34)
of §4.1.6) we deduce

1 N
/N gpl(vg) = nsign(g) + TN

and we conclude

IAPS(‘ng) = i(/ c1(Ag)? — (2x x5 + 3TN>) - iF(Coo)

N
. 1
—dimcker®y, — 5(170(]\7) + b1 (N)).
Putting together all of the above we obtain the following formula:

d(Co) = i(/ 1(do)” — (2 + 37) ) - %(bo(N) Fh()
(VDim) N 1

+d(Cx) — ¢(Coo) — dimc ker® 4 — ZF(COO)'
The first line in (VDim) consists of the soft terms, those which do not
involve functional analytic terms. The second line consists of the hard terms
and their computation often requires nontrivial analytical work.

Remark 4.3.33. (a) Observe that the integral term in (VDim) would
formally give the virtual dimension of the moduli space if N were compact.
The remaining contribution depends only on the geometry of the asymptotic
boundary N and we will refer to it as the boundary correction. We will
denote it by 3(Cs). The boundary correction is additive with respect to
disjoint unions which shows that formula (VDim) also includes the case
when the asymptotic boundary is disconnected.

(b) Assume N is connected so that by(IN) = 1. If C is reducible then, using
the nondegeneracy assumption (IN), we can simplify somewhat the virtual
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dimension formula because ker® 4 = 0, d(Co) = b1(IN) and ¢(Csx) = 0.
We deduce

(VDimy,) A(Co) = % (/q 1(A)? - (2XN1+ 3TN))
+§<b1(N) - 1) — F(C).

(c) The exact value of the term F(Cy) is very difficult to compute in general
although it is known in many concrete situations; see [107, 108, 115].
Consider more generally the quantity

F: Ay x Metricson N = R, (A,9) — 40(Da) + Nsign(9).
F(A, g) satisfies the variational formula
F(A1, 1) — F(Ao, go) = 4(ho — h1) +8SF(D4,)

1
e N(Al — Ao) N (Fay + Fa,),
where A; := (1—1t)Ao+tA;, g(t) is a smooth path of metrics on g such that
g(i) = gi, 1 = 0,1, D 4, is the Dirac operator determined by A; and the metric
g(t), and hy := dim¢®4,, t = 0,1. In particular, we deduce that F(A, g)
mod 47 is independent of g. Moreover, if Ag, A1 are flat connections then

F(Ao,g9) = F(A1,9) mod 4Z.

When o is defined by a spin structure and A is the trivial connection,
then F(A, g) is a special case of the Kreck-Stolz invariant, [68]. The above
variational formula coupled with the Weitzenbdck formula shows that this
invariant is constant on the path components of the space of metrics of
positive scalar curvature. In the paper [68], M. Kreck and S. Stolz have
shown that the higher dimensional counterpart of F actually distinguishes
such path components.

(d) The notation $(Cs) is a bit misleading since it does not take into ac-
count the dependence of 5(Cy) on the orientation of N. When changing
the orientation we have to replace F(Cy) by —F(Cs). ¢(Co) changes as
well, but in a less obvious fashion (see Exercise 4.3.8). This boundary con-
tribution is not G,-invariant due to the contributions ¢(Cx) and F(Cs).
More precisely, for v € G,, we gave

(4'3'16) (P('Ycoo) + 2SF(©AOO - gAw—de/w) = SO(COO)

where the above spectral flow is viewed as a spectral flow of complex oper-
ators. Using the variational formula in (c) we conclude that

1 1 1
©(7Co0) + ZF(VCoo) = R/Nd’v/vAFAm = /Mv (E)AQ(deW)-
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This computation also shows that §(Cs) is G2-invariant, where G2 denotes

the subgroup of G, consisting of gauge transformations which extend over
N.

Exercise 4.3.7. Prove the equality (4.3.16).

Proof of Lemma 4.3.32 Assume for simplicity that N is connected so
that dim G, € {0,1}. We first need to understand the spectrum of Tc__ 1,
t € [0,1], p positive and very small. Equivalently this means solving the
equation

SWe_ (C) — $€c. (if) = viC

(4.317) Tco i [ ,C } =v [ ,C ] =
£ _(C) +4tpif = —2vif
As in 4.3.2 we deduce

(43.18)  Ac (if) = 26 L (if) = 4l + 2t0)(if).
The spectrum of the symmetric second order elliptic operator Ac__ is discrete

and consists only of nonnegative eigenvalues of finite multiplicities. We will
distinguish two cases.

Case 1 C, is irreducible, so that dim G = 0. In this case we have
ker Ac, =T1Gx = 0.

If Caif e ker TCo,tp then using (4.3.18) we deduce f = 0. Using this
information back in (4.3.17) we deduce

SWec_(C)=0.

This shows that ker Tc__ 4, = ker Tc_, for all ¢ € [0, 1] and thus the spectral
flow of the family Tc_ ;4 is equal to 0 = — dim G.

Case 2 C is reducible, so that dimker Ac_ = dim 771G . Moreover
kerTc. = {C @if; SWe (O @ e (C) =0, Lc(if) = o}.

Fix ¢t € (0,1]. We claim that

(4319)  kerTe = {Coif; f=0, SWc_ (O gE (C)=0}.

Using (4.3.18) with v = 0 we deduce

Ac,.(if) <= Lc. (if) = 0.

Using this information in the first equation of (4.3.17) we deduce SW_ (C) =
0. Now apply £c, to both sides of the second equation in (4.3.17). Using
the equality £¢_ (if) = 0 we conclude

Lc. Lt _(Co) =0.
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We now take the inner product of the above equality with C and then we
integrate by parts over N to deduce that

/ £ ClPdv(g) = 0 £ _C =0,
N

Using the last equality in the second equation of (4.3.17) we deduce
tuf =0<= f=0
which proves our claim.

The equality (4.3.19) shows that there is no contribution to the spectral
flow of the family Tc__ ¢, for t € (0,1]. The only contribution to the spectral
flow can occur at t = 0. Since

dimker Jc — dimker Tc_ 4, =1
and since the spectral flow contributions at ¢ = 0 are nonpositive we deduce
that this contribution is either 0 or —1.

To decide which is the correct alternative we need to understand the
eigenvalues vy of ker Tc__ 4, such that

vy /0 ast\, 0.

If vy is such an eigenvalue then 4y (14 + 2t) must be a very small eigenvalue
of Ac_,, so that

vi(vy + 2tp) = 0.
The requirement v; < 0 forces vy = —2tp and L£c_ (if) = 0. Applying £c_,
to both sides of the second equation in (4.3.17) we deduce as before that

£ C=0+=CeSc..
Using the first equation in (4.3.17) we deduce
SWc (€)= —2tuC, CeSc,

so that C is an eigenvector of SWc_ :Sc,, — Sc,, corresponding to —2tpu.
Since

2tp < 2p < p—(g9) < p—(Coo)
(where —p— (Coo) is the negative eigenvalue of SWe_ : Sc . — Sc. closest

to zero) we deduce that C =0. Thus —2tu is a simple eigenvalue of TCoo,tp
and the corresponding eigenspace is

{Caif; C==0, f=-const.}.
This shows that the spectral flow contribution at ¢ = 0 is —1 and thus
SF(Tcoau;t€10,1]) =—1=—dimGs. N
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Example 4.3.34. Suppose (NN, g) is the sphere S equipped with the round
metric. There exists a unique spin® structure o on N and the pair (o, g)
is good. Denote by Cy the unique (modulo G,) monopole on N. Cy is
reducible, Co = (0, Ag). Observe also that (4.1.37) (with ¢ = —1) implies
that F(Cp) = 0. Alternatively, S® admits an orientation reversing isometry,
so that the spectra of both ® 4, and SIGN are symmetric with respect to
the origin and thus their eta invariants vanish. Using (VDim,;) we deduce
that the boundary correction determined by Cy is

1

=—— 1
2

B(Co)

Example 4.3.35. Suppose (N, g) is the 3-manifold S* x S? equipped with
the product of the canonical metrics on S' and S?. g has positive scalar
curvature so that (o, g) is good for every o € Spin®(N). Since H'(N,Zy) =
Zo there exist exactly two isomorphism classes of spin structures on N but
the induced spin® structures are isomorphic since H2(N, Z) has no 2-torsion.

Any monopole on N is reducible so that the only spin® structure o for
which there exist monopoles is the class oy induced by the spin structures.
The moduli space My, is diffeomorphic to a circle.

Remark 4.3.33 (c, d) shows that the boundary correction term is Gg,-
invariant and, moreover, it is identical for all C € 9M,,. One can show that
nair(C) = 0 (see [107, Appendix C]) and nsign(g) = 0 (see [67]). Since
b1(N) =1 we deduce from (VDim,) that

B(C)=0, VCeM,,. W

Example 4.3.36. Suppose N =R x N. A finite energy monopole CO over
N is called a tunneling. Observe that 9, N = (—=N)UN. A spin® structure
(0_,04) on N extends to N if and only if o_ = oy = 0. Its asymptotic
limit is a G%-orbit of pairs of o-monopoles (C_,C,), where G? consists of
pairs (7—,7v+) € Gs X G such that y_ and v belong to the same component
of v,. We want to emphasize that a priori it is possible that C_ and C4
may be §,-equivalent. Set

Ot Cy:=Cy
and

G+ = Stab (Cy).

Modulo a gauge transformation we can assume Cy is temporal:

Co = (C(t))ser-
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The operator ‘j‘CO has the APS form G(9; — Tc(). Using (4.3.14) and
Lemma 4.3.32 we deduce

d(Co) = Taps(Te,) +d(C_) +d(Cy)

(4.1.16) _ dimker Tc — SF(‘TC(t)) +d(C-) +d(Cy)

(dimkerTc. =d(C_)+dimG_)

= —SF(Tcwy) +d(Cy) —dimG_.
In particular, if d(C4+) = 0 then

d(Co) = —SF(Tc(py) — dimG_. W

As indicated in Remark 4.3.33 (e), the term ¢(Cy ) behaves less trivially
when changing the orientation of N. One can use the computations in the
above example to describe this behavior.

Exercise 4.3.8. Suppose N is a compact, connected, orientable 3-manifold
and C, is an irreducible monopole on N. Denote by ¢4 (Cs) the contribu-
tions ¢ in (VDim) corresponding to the two choices of orientation on N.
Show that

¢+(Coo) + ¢—(Coo) = dimp ker Tc_ — dimp ker T¢ _
= d(Cs) — dimp ker T_.

4.3.4. Reducible finite energy monopoles Assume for simplicity that
N is connected and suppose Co = (0 Ao) € (‘,’H sw 1s a reducible monopole.
This is equivalent to requiring that Ay is strongly a-cylindrical and

+ _
F i = 0.
Then
Te, = P, ©ASD.
Using Proposition 4.3.28 and the computations in Example 4.1.24 we deduce
Héo > kerey @AO @ ker., ASD = ker,, C}DAO &) kerez(d + cz*) ‘91(1\7)
(use (4.1.28)
(4.3.20) = kere, P 5, ® H'(N,N) & L,

Denote by H? (N V) the self-dual part of kerj2(d + d* )\QQ (&) Using Proposi-
tion 4.3.30 and the computations in Example 4.1.24 we deduce

H*(F(Cy)) & kere, @%@ kere, ASD”

(4.3.21) ) )
= kerex’}Z)AO ® HI(N)® Ltop
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We deduce the following consequence.
Corollary 4.3.37. If kere; @% =0, Lf,, = 0 and by := dim H2(N) =0

then Cq is strongly reqular.

We now want to investigate in greater detail the subset
red <=
ot C M,
consisting of reducible monopoles. Observe that
f)ﬁzed = {(07A> € eu,sw§ Fj{ = O}/gu,ez-

Observe first that it is a connected space since it is a quotient of the linear
affine subspace

+ —
FA_O.

Set

~ A~

Ay sw = {A; (O,fl) € éu,sw}.
There exists a natural affine map
F: Apsw — LN T*N), A F;{

and ﬁ:’f‘i can be identified with

F1(0)/Spca-
Given A € F71(0) we get as in §4.3.2 a Fredholm complex
(K) 1 Ty Gpen — TyApsw — LY2AALT*N) — 0.
We denote its cohomology by H fi and we set

X(K) := H% — Hil + Hi

Observe that H% is the tangent space to the stabilizer of A, which is S.
Thus
dim HY = 1.
Since F is affine we deduce that the Kuranishi map associated to this defor-
mation picture is trivial. On the other hand, the stabilizer of A acts trivially
on Hii and thus, if nonempty, 53\126‘1 is a connected, smooth manifold of di-
mension
dimﬁ;ed = dimeli - dimei =—x(K)+ 1.

As in §4.3.2 we can embed (K) in an exact sequence of Fredholm complexes
similar to (E). Denote by 97¢? the similar space of reducible o-monopoles
on dsN. Arguing ezactly as in the proof of (4.3.15) of §4.3.3 we deduce that

—x(K) = I1ps(ASD) + dim 97¢?
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L0 1
B2 -2 (e + T+ BN + B (N) ) + Bu(Y)

= *%(XNJrTNJrl*bl(N)).

We have thus proved the following result.

Proposition 4.3.38. If ﬁ:ﬁd 1s nonempty then it is a smooth, connected
manifold of dimension

ﬁzed _ %(bl(N) +1-xgz _TN)'

In the next section we will have more to say about the existence of
reducibles.

Example 4.3.39. Consider again the manifold ]\74, ¢ = —1, discussed in
Example 4.1.27. Recall that N_; is obtained from a disk bundle D_; of
degree —1 over S? by attaching an infinite cylinder

Ry x dD_; =R, x S3.
Since H'(S%) = H?*(S%) = 0 we deduce Lj,, = L7,, = 0 and since the
intersection form of N_; is negative definite we deduce B+ = 0. Moreover,
HY(N_1,N;) =0
Fix a spin® structure 6 on N_;. In Example 4.1.27 we have equipped
N_1 with a positive scalar curvature cylindrical metric and we have shown

that for every reducible finite energy é-monopole Coy = (O,flo) on N_; we
have

kerex @AO =0.
Set Co := 95Co. Arguing exactly as in the proof of (4.1.36) we obtain

8dimkere, P = F(Co) + 75 —/ c1(Ag)? = -1 —/ c1(Ag)2.

N_4 N_1

Thus H é =0 and Cp is strongly regular if and only if
0

c1(6) - e1(6) :/ c1(Ag)? = —1.

N_1
If we identify H?(Dy,Z) = H*(D_1,0D_1;7) = Z with generator ug, the
Poincaré dual of the zero section of Dy, we see that the above equality is
possible if and only if
Cl(ﬁ ) = :|:u().

We now want to prove that for any spin® structure & over N_; there
exists a unique (modulo G, ;) finite energy 6-monopole, which necessarily
is reducible.
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Observe first that according to Proposition 4.3.38 the space of reducibles
is either empty or a smooth, connected manifold of dimension
1
2
so that it consists of at most one point.

(14 by(S%) — XN, —T5.,) =0

Denote by o the unique spin®-structure on Ny = DsoN_1 = S3 and
denote by Ag the trivial connection on the trivial line bundle det(c). We
can form the energy functional defined in (2.4.8)

Ext ) =5 [ (A=A A Fatg [ e (@i

The energy of the unique o-monopole Cy = (0, Ag) is 0. Now extend Ag to a
strongly cylindrical connection Ay on det(d). If C = (¢, A) is a finite energy
6-monopole then according to Proposition 4.3.2 we have

o (RGP + Sl + 1F4P + 3107 do
-1

= E(C) = / FinNF; < / |F4|2do.
N_l N—l
Since § > 0 we conclude that 1& =0.
To establish the existence part it suffices to show there exists ia €
L2?(iIA'T*N_;) such that if A := Ag + ia then
+ _ sits ot
FA =0« id"a= FAO‘
Look at the operator
ASD : L2*(A'T*N_y) — LE2(1(A2 @ AO)T*N_y).
According to Proposition 4.1.17 its cokernel is isomorphic to ker., ASD* =
0, which shows that the above operator is onto. Since F} € L,l,j2 (it has
0
compact support) we can find a € LZ72(A1T*N_1) such that
id"a=—F}! and d"a=0<= ASD(ia) = (—-vV2F] ) @0,
0 0
This proves that reducible monopoles do exist.

Suppose Co is the unique finite energy 6-monopole. Thus the reducibles
are isolated points in 9,. Using the virtual dimension formula (VDim,)
we deduce that

¢ 1 3 1 1 1 . 3
i) =7 [ el =G (2v, +amg ) -5 =1 [ atir-F<o

If we denote by &, the spin® structure such that ¢1(6,,) = (2n + 1)ug then
the above formula becomes

(4.3.22) d(Co,6,) = —(n® +n+1).
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This formula covers all spin® classes on N_ since the intersection form of
N_1 is odd.

Example 4.3.40. Consider the cylindrical manifold N diffeomorphic to the
unit open ball B* ¢ R?* equipped with a positive scalar curvature metric §
such that D, is the round metric on dsoN = S3. Spin®(N) consists of
a single structure ¢ and, exactly as in the previous example we deduce
that modulo gauge there exists a unique finite energy monopole Co which is
reducible, Co = (0, Ao). Set Co = D Co.

Since g has positive scalar curvature we deduce as before that ker., ¥ Ay =
0. Moreover, as in the previous example we have

~

8 dim kere, ®% = F(Co) + 75 - / e1(Ag)? = 0.
N

Using Corollary 4.3.37 we deduce that Co is a strongly regular, reducible
monopole.

Example 4.3.41. Consider the disk bundle D? x §? — S2%. It is a 4-
manifold with boundary N := S! x S§? which we equip with the product
metric g as in Example 4.3.35. We form N by attaching the cylinder Ry x N
to the boundary of D? x S?. As in Example 4.1.27 we can equip N with
a cylindrical metric g of positive scalar curvature which along the neck has
the form dt? + g.

The only spin® structure on N which admits monopoles is the structure
oop induced by the spin structures on N. In this case all monopoles are
reducible and

M, = S*.
The structure og on N is induced by pullback from S? and thus it can be
extended to N. On the other hand, since the map

H*(N,Z) — H*(N,Z)

is one-to-one there exists exactly one extension &¢ of gy to N satisfying
C1 (50) =0.
Arguing as in Example 4.3.39 we deduce that all finite energy é-monopoles
are reducible. According to Proposition 4.3.38, the expected dimension of
ﬁred is
g 1

§(b1(N) +1-2)=0
so that there exists at most one finite energy &-monopole which must be
reducible. Reducibles do exist because det(dg) admits flat connections.

Suppose Co = (0, /10) is a reducible monopole so that Ay is flat. From the
long exact cohomology sequence of (N, N) we deduce that H'(N,N) = 0
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and the morphism H?(D? x S?) — H?(S! x N) is onto, i.e. L%op = R. Thus

Co is not strongly regular.

If Cy := OOOCO then exactly as in the previous example we deduce
8(flinr1kerem’)25j‘40 =F(Co) + 715 — / 01(1210)2.
N

In Example 4.3.35 we have shown that F(Cy) = 0 and since 7,5y = 0 we
deduce

C1 (Ao)z = 0.

N_1

8 dim ker,,, C}Zﬁzo = — /

According to (VDim,) we have
1

d(Co) = 1

(QXN + 37']\7) + %(bl(N) — 1) = —1.

4.4. Moduli spaces of finite energy monopoles:
Global aspects

We now have quite a detailed understanding of the local structure of the
moduli space of finite energy monopoles. For applications to topology we
need to know some facts about the global structure of this space.

In this section we will discuss some global problems. As always we will
work under the nondegeneracy assumption (N).

4.4.1. Genericity results. In 4.3.2 we developed criteria to recognize
when the moduli space of finite energy monopoles is smooth. As in the
compact case, there are two sources of singularities. The main problem is
due to the obstruction spaces Héo and a second, less serious, problem is due
to the presence of reducibles. We will deal first with the reducibles issue.

In the compact case we found a cheap way to avoid the reducibles by
perturbing the Seiberg-Witten equations. We follow a similar strategy in
the noncompact case.

Fix a cylindrical spin®-structure & on N with o := 9,6 such that there
exists at least one reducible finite energy monopole Co = (0, Ap). For ev-
ery sufficiently regular, compactly supported 2-form n on N we form the
perturbed Seiberg-Witten equations

o D=0
SWy(h,A) =0 =
S(FF +in) = Lq(¥)
We will refer to the solutions of these equations as n-monopoles. Since
7 is supported away from the neck the finite energy n-monopoles can be
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organized in the same fashion as the unperturbed ones and we obtain a
moduli space 9M,,(n).

The reducible n-monopoles are described by the zeros of the map
Fy: Apsw — Ly (INT*N), A FE+int.
If F,,(Ag + ia) = 0 then
dta=—n".

~

To decide whether the above equation admits a solution ia € T AO‘A#,Sw we
need to understand the cokernel of the map

(4.4.1) A T Ay sw — Ly (GA*T*N).

This map is part of the complex (K) and thus it has closed range and its
cokernel is isomorphic to Hio.

To compute its dimension observe that
dim HY — dim H% = %(bl(N) +1—xy —7)
and, exactly as in Proposition 4.3.28, we have
dim H}lo = dimker.;, ASD.
The computations in Example 4.1.24 imply that
dim ker.,, ASD = dim ker;> ASD + dim 9 ker, ASD = b3+ 1.

Referring to the notations in Example 4.1.24 we can further write
bl +1-— X N T N

dim H3 = b2+
0

2
:63+l1_b1—62—6++l§,+61+l§3
2
_ll_b1—62—8++13_+131—63
n 2
_ by —2by —r+ 11— 13
T 2

(r=P 1" +12=by, =0)

2+ P+ B -y
B 2
Thus if b+ = 0 then Hji = 0 and, exactly as in the compact case, the

- Z)+.

0
reducible cannot be perturbed away because JF, is surjective.

Suppose now lﬂ > 0. We can identify Hio with the Li—orthogonal

complement of the range of the map (4.4.1). This is a finite-dimensional
space X
V C L2(IALT*N).



4.4. Moduli spaces of finite energy monopoles: Global aspects 405

Now, fix a sufficiently large positive integer kg and define
N = {77 € LZ’O,2<iA2T*N); JveV: <77+’U>Li # 0, supp () Nneck = @}

We see that AV is the complement of a finite dimensional subspace of Lﬁo’z (IA2T*N)
and for any € N there are no reducible n-monopoles.

Using the Sard-Smale transversality theorem as in §2.2.3 we can prove
the following genericity result.

Proposition 4.4.1. Suppose ?)+ > 0. There exists a generic subset N C N
such that if n € N all n-monopoles are irreducible and strongly regular.
In particular, for n € N the moduli space M, (n) is a smooth manifold.

Idea of proof Denote by A the diagonal of M, x M, and consider
F:N x éggw@ﬂm X My — gu X My X My,

F(n,C,C) = (SW,(C),05C, C).

One has to show that F is transversal to 0 x A C Qu X My; X M, and then
apply Sard-Smale to the natural projection

mi N x fo;w/SM’ez XMy = N

restricted to the smooth submanifold F71(0 x A). The details are very
similar to the proof in §2.2.3 with a slight complication arising from the
noncompact background. It should be a good exercise for the reader to
practice the techniques developed in this chapter. B

Remark 4.4.2. The strong regularity implies more than the smoothness of
the moduli spaces of finite energy monopoles. Assume 13+ > (0 and suppose
for simplicity that 0 € N so that each finite energy monopole Co € 5)\1# is
strongly regular. Set Coo = 950Co. The sequence (E) leads to a long exact
sequence

(4.4.2) 0 T1Goo — HY (F(Cy)) — H{ —Tc, —0.
Now set MY := 2,/92. M, is a quotient of M? modulo the action of the
discrete group
H'(N,Z)/H'(N, Z)
and we have a natural map
O : ﬁu —m?.

The sequence (4.4.2) shows that the strong regularity forces the above map
to be a submersion.
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4.4.2. Compactness properties. Because the background space N is
noncompact it is a priori (and a posteriori) possible that the moduli space
ﬁu is noncompact. In the present subsection we will try to understand in
some detail the main sources of noncompactness.

Fix a cylindrical spin® structure ¢ on N with ¢ := 9s6. For 0 < w <
to(o, g) we denote by 53\?# the moduli space of gu,em—orbits of finite energy

o-monopoles topologized with the Li’,%m—topology.

Recall that in 4.2.3 we have introduced the quotient M, := Z, /G
where Gl denotes the identity component of G,. 9, is a covering space of
M2 and we denote by

T My — smﬁ
the natural projection. The group H'(N,Z) of components of G, acts on
M, with quotient 9M,. Similarly, szj is a quotient of M, modulo a dis-
crete group: the image of H'(N,Z) in H'(N,Z). The map Js induces a
continuous map
Oso : M, — mo.

We already see one (mild) source of noncompactness: the moduli space 2.

The three-dimensional energy functional € defines a continuous function
on M, with discrete range

el <E<E <

Denote by 95?07;@ the subset of ifftg where £ = &;.. Set
fmgk = 7r<92~n(,7k>.

Since £ is invariant under the gauge transformations on N which extend
to N it descends to a continuous function on 9MM? and the sets szzk are
precisely its fibers.

The energy functional defines a continuous function
E:Ms — R, C— E(Q).
Proposition 4.3.2 shows that E (C) depends only on the component of i)ﬁg i

containing 95oC. We conclude that the range of E is discrete since it injects
into the set of critical values of the three-dimensional energy functional &,.
We will refer to the range of E as the (6)-energy spectrum. The energy
spectrum is

{c+&s kez}
where C' is a constant independent of k. Now denote by ﬁfj the subspace

ank . a—lqmo
sm“ =04 EUIU,,C.
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Clearly, if the energy spectrum is infinite then the moduli space 53\”(“ cannot
be compact for obvious reasons. We would like to investigate the compact-
ness properties of the energy level sets.

As in §4.2.3 define the energy density
p: M, — C®(N,R),
C=(, A) = pe = VAP + Sla(B)P + [F41° + 10
The Main Energy Identity in Lemma 2.4.4 shows that for every Ce ﬁu
the density pe is positive on the cylindrical neck. Remarkably, the Key
Estimate in Lemma 2.2.3 continues to hold in the noncompact situation as
well. More precisely, we have

(4.4.3) sup [1h(z)]? < 2 sup |3(z)).
161\7 xeN

To prove (4.4.3) we set u(z) := |[¢)(x)[2. As in Lemma 2.2.3 we observe
that u satisfies the differential inequality

If we compactify NtoN by adding {co} x N then u extends to a continuous
function on N and thus it achieves a maximum at a point xq € N. If To € N
then we conclude exactly as in the proof of Lemma 2.2.3. If xg € {c0} X N
then since 12) lcox N 18 & 3-monopole we deduce from Remark 4.2.4 in §4.2.2
that
u(xo) < 2sup |s(x)| <28y, Sp:= sup|s(z)].
zeN zeN
Set Ny := N\ (T,00) x N and fix Ey > 0. If E(C) < Ej then since pe is
positive on the neck we deduce
—Sgvol (Nr) < / (IvA912 + é\q(u?)P + |F3?)do — Svol ()
Np

(4.4.3)
< / p(:df) < Ej.
No

Thus, there exists a constant Cy which depends only on the geometry of N,
FEy and T such that

i P i
@iy [ pedor [ (I9AOP+ Glah) + E4P)ds < Co,
R+XN NT

vC e STTM st. BE(C) < Ey. To proceed further we need the following
technical result. Fix a smooth, strongly cylindrical, reference connection A
on det(d).



408 4. Gluing Techniques

Lemma 4.4.3. Fiz the constants Ey, T > 0. Then there exists a positive
constant C' > 0 which depends only on Ey, T, Ay and the geometry of N
with the following property.

For every C = (1, A) € ﬁu satisfying E(C) < Ey there exists 4 € §H,m
such that if (¢, B) =4 - C then

”B - AOHL?"2(NT) S C.

Roughly speaking, the above lemma states that if the energy of (1/1, )
on Ny is not too large then the gauge orbit of A cannot be too far from the
gauge orbit of the reference connection Ag. Thus, high (but) finite energy
monopoles are far away from the reference configuration.

Proof Assume for simplicity that 7' = 0. The proof relies on elements
of the Hodge theory for manifolds with boundary as presented, e.g., in [98,
Chap. 7]. Set ia := A — Ay. The 1-form a decomposes uniquely as a sum of
mutually L?-orthogonal terms

G = 2du+ 2d*b + 29
where u € LY2(Ny), b € LM2(A2T*Ny), Q € LY2(A'T*Ny) are constrained
by the conditions
g, =0, diblyg, =0, d2=d"Q=0.
Q defines an element in the group H*(Np,R), which can be identified with
the vector space spanned by the harmonic 1-forms in L2(AT*N;). Denote

by [€] a harmonic 1-form representing an element in H*(Ny, 27Z) closest to
Q). We can find a map 4 : N; — S! (smooth up to the boundary) such that

2d
,3/
where & € L*2(N1,R), 9| o, = 0. Consider the gauge transformation

b= elli0ls,

= 2ido + 2i[Q)]

Observe that

A2 _ Ay %idth+ 2i(Q — Q).

Using [98, Thm. 7.7.9] we deduce that there exists a positive constant v
depending only on the geometry of Nj such that

HCZ*B||L2(]\71) é VHJJ*BHLQ(]\AH) = V||FA - F

AO ||L2(N1)'
Using (4.4.4) we deduce
I1Fall oy < €
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so that
2d3

‘ A~

= Aoll 2y < COL+ 112 = [l 25,)) < C
(&) (R)

where C' is a positive constant depending only on the geometry of N; and
Ep. We can now find a gauge transformation 41 € G, ¢, such that

41=0 on N1/2 = N\ (1/2,00) x N.
Set (¢, B) :==4 - C and i6
46 =0, do=—i(Fg—Fy), H5HL2<N1/2) <

B — Ay. Observe that on N /2 we have

Using interior elliptic estimates for the operator d 4 d* we deduce
18100y < (18 @ d* B2, ) + 18155, ) < €

We can now bootstrap the a priori L''?-bound to a L*?-bound using the
Seiberg-Witten equations, as we have done many times in this chapter. B

Remark 4.4.4. We only want to mention that one can use the techniques
in [141] to give a different (albeit related) proof of Lemma 4.4.3. The results
in [141] require LP-bounds on curvature where p > 2. However, since our
gauge group is Abelian the arguments in [141] extend without difficulty to
L?-bounds as well.

Using Lemma 4.4.3 and the estimate (4.4.3) we can obtain after a stan-
dard bootstrap the following result.

Lemma 4.4.5. Fiz Ey, T > 0. Then there exists C' which depends only
on Ey, T and the geometry of N such that, for every C = (w, )
satisfying E(C) < Ey, there exists 4 € 9%6m such that dt7 =0 fort> T + 2

~

and if we set (¢, B) := 4 - C then
d*(B — 1210) =0 on NT-{-I

and
||B - A0||L3«2(NT) + ||¢||L3,2(NT) <C.

Along the neck any C € éwsw has the form

(¥(t), A + ia(t) +if (t)dt)
where (9o, A + ia(0)) € Z,. For T' > 0 we set

Sr(C) = |ly(t) — () 132 (17,00 vy T 1a(t) = a(00) | 132 17,00y )
HIFON 32 (,00)xn -
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It induces a function
[S1): Ty — Ry, [S71((C]) i= {875 C)s 5 € Gpea
According to Theorem 4.2.33 [S7]([C]) < oo for all C € ﬁ#.
Lemma 4.4.6. Fiz T > 0. For any constants Ey, Sg > 0 the set
{1 ey B(C) < By, 1S1(C) < S0}
18 precompact.

Proof Consider a sequence of smooth monopoles
Cn = (&TL? An) € é#,sw
such that
E(Co) < Ey, S7(Cp) <81:=85+1.

Set ia, := fln — Ag. According to Lemma 4.4.5 we can assume there exists
a constant depending only on Ey and the geometry of Ny such that

(4-4-5) ||dnHL3,2(NT) + ”@Z)nHLs,z(NT) <C, Vn.
Along the neck we write a,, = a,(t) + f,(t)dt and set
Cp := (Yn(00), Ag + ian(00)).

We can also assume d*a,(co0) = 0, for otherwise we can replace C,, by €/ C,
for a suitable function f: N —R. (For any € > 0 we can extend f to f on
N such that, for all n, |S7(ei/C,) — S7(C,)| < e.) We then deduce that Vn

lan(o0)lL2(ny < lan(T)llL2(v) + llan(T) = an(00)||L2(n)

< llan(D)| r2(x) + const - Sr(Cp)
and
[¥n(00) |l L2(vy < N19n (D)l L2 vy + 190 (T) = Pn(00) || L2(w)
< ¥ (0)| 2y + comst - Sp(C).
On the other hand, the estimate (4.4.5) implies that
lan(T) L2(ny + [V (T) | L2(ay < €5 Vn.
Thus
lan(00)[|L2(ny + 1¥n(00) | L2(n) < €, Vn.
Since (¢, (00), Ag + ian(00)) is a 3-monopole and d*a,(c0) = 0 we deduce
[lan(00) || 5.2y + [[¥n(0) [ 52y < €, Vn.

We can now conclude using the compact embeddings

Lj’;z(N) = L%Q(N), L>*(N) — L**(N). m
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In Theorem 4.2.37 we have introduced the capture level 2 > 0 and a
constant t > 0 such that if C € €, 5, is a smooth monopole satisfying

/ pe <h
[T,00)x N

[Sr]([C]) < t.
For every C € /E))}M define T(C) > 0 as the smallest nonnegative number T

such that
/ pedd < h.
[T,00)x N

We will refer to T(C) as the capture moment of C. Lemma 4.4.6 has the
following consequence.

then

Lemma 4.4.7. The set
[Ce My B(O) < By, TC) < T}

18 precompact.

The last results indicate that in order to proceed further we need a
detailed study of the finite energy monopoles on cylinders of longer and
longer lengths. This study will also be relevant when we discuss the gluing
problem.

For each positive integer n consider a tube
Cyp = (an,by) X N, —o0 < a, <b, < o0,

such that ¢, := (b, — a,) — o0 as n — oo. Continue to denote by o the
spin® structure induced by ¢ on C),. Consider now for each n a o-monopole
C,, on C,, such that

-0 < B, :=E(C,) <0
and F, — E, € R}y as n — oo. Define a density u, on R by

%fth pénvav te [anabn]
pin(t) =
0 otherwise

Observe that s, are nonnegative L!'-functions on R and

1
/,un(t)dt =_—FE,.
R 2
Observe also that if ¢ € (ap, by) then
pn(t) == |SW(Ca() 172 )-
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Tight-compact
Hn

Vanishing Hn

Dichotomy

Figure 4.7. Concentration compactness alternatives

According to the concentration-compactness principle of P.L. Lions [80,
81], we have the following alternatives as n — co.

There ezists a subsequence of p, (which we continue to denote by i)
satisfying one and only one of the following possibilities (see Figure 4.7).

e Tight-compactness There exists a sequence t, € R such that

Ve >0, 41T > 0: / tn(t)dt > Eso —e, VYn > n(e).
[tn— Ryt +T]
e Vanishing

lim sup/ pn(t)dt =0, VT > 0.
[T—T,7+T)

n—=00 rcR

e Dichotomy There exists 0 < A < Eo such that for all € > 0 there exists
ne >0, R, t, =t € R and d,, := d,,  satisfying for n > n.

tn+R5 tn+R€+dn
‘fn_Rs Undt — )\‘ < g, “ftn_Rs_dn Mndt - A < £,

(4.4.6)

dp,e — 00.
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We call A above the splitting level of the dichotomy.

Remark 4.4.8. In [103] it is proved that the sequences ¢, . can be chosen
independent of e, which is what we will assume in the sequel.

Lemma 4.4.9. The Vanishing alternative cannot occur if Eoo > 0.

Proof Suppose vanishing occurs. Then for every ¢ > 0 we can find n(e) >
0 such that for all n > n(e) the integral of u,, over any interval of length 4
is < €. Using Corollary 4.2.15 we deduce that if ¢ is sufficiently small then

tn(t) < Ce, Vte [ap+1,b, —1].

This shows that the path t — C ltx v stays in a small neighborhood of a
connected component of M, for ¢t € [a,, + 1,b, — 1]. Thus

A N

0<&(C(b,—1))—&(Clap, +1)) < C;
where C; — 0 as ¢ — 0. This leads to a contradiction since
E, = E¢ (lan,an +1]) + E¢ ([an +1,bp — 1]) + B¢ ([bn — 1,b4])
<2+C.. R

Lemma 4.4.10. If the sequence uy, is tight then by extracting a subsequence
we can find a sequence t, € R such that a, —t, — A € [—00,00], by —t, —
By € [—00,00] , a sequence of gauge transformations 4, on C, and a
monopole C on [Aso, Boo] X N such that

E(C) = Es

and

(3in - Ca)(t + 1) — C
in L2 ([Ase; Boo] X N).

loc

Proof The Seiberg-Witten equations on cylinders are translation invari-
ant so that by suitable translations we can assume the sequence %, in the
description of Tight-compactness is identically zero. Also, assume for
simplicity that A,, = —0c0 and By, = 00.

Fix € > 0 smaller than the capture level h. We deduce that there exists
T > 1 such that for all n > 0

—T+1 ) T+2
[ mder [ mdr<e [ iz B
— 0 T—1 -T-2

Arguing as in the proof of Lemma 4.4.6 we deduce that there exists
An € §W$(R x N) such that 4, - C,, is bounded in L32([-T—1,T+1] x N).
Relabel Cn = Y - Cn so that, in the new notation, Cn is bounded in
L32([-T,T] x N).
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Figure 4.8. Multiple splittings

The arguments in §4.2.4 and in the proof of Lemma 4.4.6 show that
there exist smooth 3-monopoles C:' and a smooth function

fo:Rx N>R

such that f, = 0 on [-T,7] x N and eifn . C,(t) stays in a tiny L>2-
neighborhood of C, for all t € [a,, —T + 1] and eifn . C,.(t) stays in a tiny
neighborhood of C for all t € [T — 1, by,).

Lemma 4.2.24 (or rather (4.2.44) in §4.2.5) shows that there exists a
constant C' > 0 independent of n such that for every interval I C R of
length < 1 the L22(I x N)-norm of C, is bounded from above by C. It
is now clear that a subsequence of eifn . C,, converges strongly in Lllfﬁ to a
monopole C on R x N. The tightness condition implies E(C) =FE,o. 1

Exercise 4.4.1. Prove that the convergence in the above result can be
improved to a strong Liﬁ—convergenee.

Remark 4.4.11. The above Lfo’i—convergence has a built-in uniformity.
More precisely, the rate of convergence on cylindrical pieces of length 1
is bounded from above, meaning that for any € > 0 there exists n. > 0 such
that ) )

[¥nCr(® +tn) — C(O)| L22(rr11xv) <€
for all n > n. and any admissible 7.

We now have to deal with the dichotomy alternative. The “di-” prefix
may be misleading. It is possible that the energy splits in several “bumps”
each carrying a nontrivial amount of energy as in Figure 4.8. We want to
first show that there are nontrivial constraints on how the dichotomy can
oceur.

If the energy spectrum consists of at least two values we define the energy
gap
6:= min{é’m —&; m > k}
Observe that the compactness of M, coupled with the gauge change law
(2.4.9) implies that 6 > 0. For every sufficiently small y surround the closed
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sets QNRU’;C by tiny, mutually disjoint open neighborhoods O (x) such that if
C € Oy, then

£(C) — &l < 6/8

and

diStLZ’Q([C]vma,k) <X, V[C] € Ok(X)
According to Proposition 4.2.16 we can find A(x) > 0 such that if ||[SW (C) |7, <
Ai(x) then C modulo G belongs to one of the open sets O(x).
Suppose now that the dichotomy occurs. Fix a very small xy > 0 and
e > 0 such that 0 < ¢ < h(x). Set
Ap = min(ly, dy,).

By suitable t-translations we can arrange that the sequence t,, in the defi-
nition of dichotomy is identically zero. For each n > 0 we have

R6+dn 7R€
(4.4.7) / ()t + / ()t < &
€ 7R57dn
and
R
(4.4.8) A—e< / pn(t)dt < X +e.
“R.
We can now split the interval I,, = [ay, by] into several parts:

Il = [an, b)) N [—Re — M\ /2, Re + M\ /2], Jp =1, \ ..

The set J, has at most two components and the dichotomy assumption
guarantees that as n — oo the measure of J, increases indefinitely. We
cannot exclude the possibility that one of the components of J,, has bounded
size as n — oo. Define JU as the union of I!, with the (possibly empty)
asymptotically bounded component of .J,,. We set

[en, dp) := JO.
Observe that
)\—5</ fn(t) < X+ 2e.
J?

I, \ JO has at most two components and each of them increase indefinitely
as n — oo.Three situations can occur (see Figure 4.9).

A. I, \ J? has two components J£! and their sizes increases indefinitely as
n — 00.

B. The complement of [—R., R.] in I,, consists of two intervals of indefinitely
increasing sizes but I, \ Jy is an interval J! whose size increases indefinitely
as n — 00.
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%/\/‘,\ AN
410

Case A
0
I Case B

a AN by

ﬁ Case C

Figure 4.9. Dichotomy alternatives

C. Exactly one of the components of the complement of [—R., R.] in I,
increases indefinitely as n — oo.

We will discuss the three cases separately.

A. Using (4.4.8) and Corollary 4.2.15 we deduce that C,, |57, xn is very close
to a pair of critical points of £. Since the energy of C, over J? x N (which
is &~ \) can be expressed as

B ([en,dn] x N) = £(Ca(dn)) — €(Calcn))

we deduce that it is very close to the difference of two critical values of £.
Since A > 0 these two critical values have to be distinct. We reach the
conclusion that

A>6/2.

Thus the splitting energy A is bounded from below by a strictly positive
constant which depends only on the geometry of N.

B. We argue as before to conclude that for large n the energy on the two
intervals JO and J! is bounded from below by §/2.
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C. The restriction C% of C, to J? x N defines a new sequence of monopoles
on larger and larger domains. This sequence is tightly-compact and thus it
converges to a nontrivial finite energy monopole on a semi-infinite interval.

Definition 4.4.12. A right semi-tunneling is a finite energy monopole on
a cylinder [a,00) x N. A left semi-tunneling is a finite energy monopole on
a cylinder (—oo,b) X N.

In Figure 4.9 C?l converges to a right semi-tunneling. If we time reverse
the situations depicted in this figure we see that left semi-tunnelings are also
possible.

The next result summarizes the previous discussion.
Lemma 4.4.13. If Dichotomy occurs then we can partition [a,,by] into
k < 3 intervals J!, 1 <1 < k, with the following properties.
(a) 4
lim length(J;) = occ.
n—oo
(b) If we set Ci := C, |7i xnv then either (Ci) is tight and converges to a
nontrivial (semi)-tunneling or (C1) is not tight and E(C) > §/2.

If we iterate this discussion we deduce that there exist a positive integer

k constrained by
2F

k< T +2
and a partition I, = [ay,, by] into k intervals
L,=Iur?u...uIk

such that ‘

lim length(l)) =00, V1 <j<k

n—oo
and CJ, := (Cn ;i) 18 tight. Modulo gauge transformations and time
translations the sequences ((A:fl) converge Liﬁ to nontrivial (semi-)tunnelings
CI, with the following properties.
o lim, oo E(C)) = E(CL,), Vj.
e Clisa tunneling for every 1 < j < k.

° (A:éo is either a tunneling or a right semi-tunneling while C’;O is either a
tunneling or a left semi-tunneling.

0 9Ll =0 Gt forall 1 < j < k.

o If a, = —oo (resp. b, = o) for all n then CL (resp. CF ) must be a
tunneling.



418 4. Gluing Techniques

The above discussion has the following important consequence

Proposition 4.4.14. If ﬁﬁ is noncompact then there exists a nontrivial

tunneling Co such that
8:060 S iﬁtg,k.

Proof Suppose i/)J\TI’j is not compact. Pick a sequence C, € 53\153 with no

convergent subsequence. Lemma 4.4.7 shows that the sequence Cn Ir +XN
cannot be tight and vanishing cannot occur. Dichotomy is the only alter-
native and the previous discussion implies the existence of tunnelings with
the required properties. l

We want to present a few applications of the above result. Suppose o is
such that cj(det o) is a torsion class. Then &, is G,-invariant and since I,
is compact we deduce that £ has only finitely many critical values

S <& < <.
Corollary 4.4.15. The space
{[Gem; 0(C) =&}
18 compact.
Proof If C is a nontrivial o-tunneling then [8£C] € M, and
£(0LC) — £(oLM) > 0.

In particular, there cannot exist tunnelings towards o-monopoles of smallest
energy. The corollary now follows from Proposition 4.4.14. B

Corollary 4.4.16. Suppose the metric g on N has positive scalar curvature.
Then for every o € Spin®(N), 6 € Spin®(N) such that 06 = o the space
M, (6) is either compact or empty.

Proof If 53\1#((}) # () then M, # (. Since g has positive scalar curvature
all the o-monopoles are reducibles and thus ¢;(det o) is a torsion class.
Moreover, according to Proposition 4.2.10 91, is a by (N)-dimensional torus.
The energy functional &£, has only one critical value. The compactness now
follows from the previous corollary. Bl
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4.4.3. Orientability issues. When the background manifold N is com-
pact, we established the orientability of the moduli space of monopoles re-
lying on two facts.

e The moduli space of monopoles is compact.

e The family of linearizations {‘J’C; Ce 53\1(,} of the Seiberg-Witten equa-

tion can be deformed through Fredholm operators to an orientable family of
Fredholm operators.

When N is a cylindrical manifold none of the above facts is true in
general and thus a general approach to orientability requires new techniques.
The possible noncompactness is not a very serious obstacle since one can
naturally embed the moduli spaces of finite energy monopoles into some
compact metric spaces. The deformation issue is a more serious problem
and requires delicate analysis. The references we are aware of at this time
(July 1999) are rather sketchy on the orientability issue which is discussed
in special cases by ad-hoc methods.

We will not attempt to provide a comprehensive treatment of this prob-
lem since it is beyond the scope of these notes. Instead, we will discuss
in detail only the situations arising in the topological applications we will
present later on.

Suppose (]\7 ,g) is a cylindrical manifold such that lﬂ(N ) > 0 and
(N, g) := 0s0(N, ) has positive scalar curvature. (The concrete examples
we have in mind are N = 53, St x §? with their natural metrics.) Assume &
is a spin® structure on N such that o := 956 supports reducible monopoles
(i.e. ci(deto) is a torsion class). The moduli space M, consists only of
reducible monopoles and is diffeomorphic to a by (IV)-dimensional torus. We
assume that we have generically perturbed the Seiber;g\—Witten equations on
N as in §4.3.1 such that the resulting moduli space M, (6) consists only of
strongly regular irreducible monopoles. This implies that ﬁu(&) is a smooth
manifold, the asymptotic boundary map

Ono : M, (6) — M2

is a submersion and the dimension of each component of ﬁu is given by the
virtual dimension formula. We want to warn the reader that, contrary to
the compact case, the moduli space S/D\tu may consist of several components
of different virtual (and in this case actual) dimensions. We assume for
simplicity that n = 0 is such a generic perturbation.

Before we proceed with our orientability discussion let us first point out
an interesting result. We will present some of its topological implications in
§4.6.2.
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Corollary 4.4.17. If N is equipped with a metric of positive scalar curva-
ture and the image of H'(N,Z) in H'(N,Z) has infinite index then

—

M, (5) = 0.

Proof Set G := H'(N,Z)/H"(N,Z). The universal cover of M2 is M, =
H!'(N,g) (= monopoles modulo gauge transformations homotopic to the
identity). We deduce that 92 is connected and

M, :=M?2/G.

In particular, we deduce that mt? is noncompact and connected. Thus, there
cannot exist submersions from a compact smooth manifold M to M so that

ﬁu(&) must be empty. B

For each C € M with Coo = GOOC, the tangent space Tcﬁu fits in a long
exact sequence derived from (E),

0— HY(F(C)) — TeM,, — Tc, M, — 0.

To describe orientations on TCSJT“ we need to describe orientations on

HY(F(C)) and T9M,. It is clear that 91, can be oriented by specifying
an orientation on H!(N,R).

To orient H'(F(C)) observe that
det H'(F(C)) = det T¢,

where we regard ‘j'é as an unbounded Fredholm operator LZ — Li. Thus,
we need to study the orientability of the family of Fredholm operators

o~

SﬁHBCH‘j’éM.

The computations in §4.3.2 show that if C = (1), A) and Cog = (0, Aoo)
(oo = 0 since all monopoles on N are reducible) then we can write

T ) S b,
70#‘[ 0 AsD, | "¢

where ASD,, := V2dt @& (—d**) and j)é is a zeroth order operator. Set
‘j'é L ’j'é u (1 —s)j)é. We let the reader check that the family of operators

[0,1] x ﬁu 3 (s,C) — ‘j"éu € Bounded Operators L};Q — Li
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is continuous. Since

is independent of s we deduce that all the operators ‘j'é# are Fredholm.3

The orientability of C ‘j'é i is thus equivalent to the orientability of
0 .| Pi 0
Té,u T [ 0 ASD, |’

The first component of the above operator acts on complex spaces and thus
defines a naturally oriented family. The second component is independent of
C and thus is orientable. To fix an orientation we need to specify orientations
on ker, ASD, and ker, ASD;“. Arguing as in the proofs of Propositions
4.3.28 and 4.3.30 we deduce

ker, ASD,, 2 ker., ASD, ker, ASD}/ = kere, ASD/H'(N,R).
The computations in Example 4.1.24 show that ker., ASD/H?(N,R) fits
in a short exact sequence
0 — H?(N) — kere; ASD/HY(N,R) — L7, — 0
where L%op denotes the image of H2(N,R) in H2(N, R) while H? (N) denotes
a maximal positive subspace of the intersection form on H 2(]\Af ,N;R).
Similarly ker.,, ASD can be included in a short exact sequence

0 — HJ2(N) — kerey ASD — Lj,,

where Hb(N) denotes the image of H'(N,N;R) — H'(N,R) while Liyp
denotes the image of H'(N,R) — H'(N,R).

— 0

Proposition 4.4.18. Suppose (N,g) has positive scalar curvature. Then

M, is orientable. We can fix an orientation on it by choosing orientations
on

(4.4.9) HY(N,R), L}

2
top> L

top» HiQ(N)v H—?—(N)
Remark 4.4.19. Using the long exact sequence of the pair (N ,N) we see
that the spaces in the above proposition are naturally related. We let the

reader to verify that a choice of orientations on H 1(1\7 ,R), H'(N,R) and
H?(N,R) naturally induces orientations on the spaces (4.4.9).

3Warning: If C were irreducible then the operator ‘j’g i may not be Fredholm for all s.
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4.5. Cutting and pasting of monopoles

We have traveled a long road and we have gathered a lot of information
about the finite energy monopoles. This section is the culmination of all
this work. We will describe how to glue two finite energy monopoles into a
monopole on a closed compact manifold (pasting) and then we will explain
why all monopoles on a closed manifold partitioned by a hypersurface split
into finite energy monopoles (cutting).

4.5.1. Some basic gluing constructions. Consider again the situation
in §4.1.5. Suppose (N, §) is a cylindrical manifold, (N, g) := 0 (N, §). We
want to emphasize one aspect relating to the notion of cylindrical structure
which was muted in our original definition. More precisely, a cylindrical
structure presupposes the existence of an isometry ¢ between the comple-
ment of a precompact open set D C N and the cylinder Ry x N. The
complete notation of a cylindrical structure ought to be

(N,D,N,§,g,%)

but that would push the pedantry to dangerous levels. This notation (which
will certainly not be used in the sequel) has one conceptual advantage. It
shows that there is a “quasi”’-action by pullback of the group of diffeomor-
phisms of NV on the space of cylindrical structures. We use the term “quasi”
since a diffeomorphism f of N may not extend to a diffeomorphism of Ny.
However, there will always exist a metric gy on Ny such that

aflo <= dt* + f*g.

This “quasi”-action induces a genuine action on the space of equivalence
classes of cylindrical manifolds where we declare two cylindrical manifolds
N; and Ny to be equivalent when there exists an orientation preserving
diffeomorphism ¥ : Ni — Ny which restricts to an isometry along the necks.

Similarly, if (E, 9, F) is a cylindrical vector bundle on N with E := ..F
there exists a natural action of Aut (F) on the space of isomorphism classes
of cylindrical structures on E.

As in §4.1.5, consider two cylindrical manifolds
(Ni, Di, Ni, §iy gis i), (Niy 9i) = 0(N3, §3), 1= 1,2,

Recall that (N, §;) are compatible if Nj 2 — Ny (as oriented manifolds) and
g1 = g2. More precisely, this means there exists an orientation reversing
isometry

¢ 1 0o(N1,§1) = Doo(Na, §2).-
We set N := N1(= —Na). Observe that the above “quasi”-action is hidden
inside the above definition of compatibility.
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For every r > 0 we chop the half-cylinders (r + 2,00) x N; and glue
the resulting manifolds N;(r + 2) over a cylinder (r,r + 2) x N to form a
closed manifold N (r) with a long cylinder. The diffeomorphism class of
N (r) depends on ¢ but in order to simplify the notation we will not indicate
this in writing.

A simple rescaling argument shows that there exists a constant C' > 0
which depends only on the geometry of N; such that for all r > 100 we have

1,1 ~
45.1) Nl gy < Cr2te ull 125 yys Vo € LN (1), 1<p<6.

Suppose (Ej, 9;, E;) — Nj are compatible cylindrical manifolds as de-
fined in §4.1.5. They can be glued in an obvious fashion to form a bundle
E(r) — N(r). For every p € (1,00), k € Z, and p > 0 there exists a natural
linear map

A= A(Ey, Ey) : L2 (Fy) x LF? (Ey) — LFP(E),

ex [hex
A(l1, U2) = Oooll] — Osolia.
The pairs of sections (1, ug) € ker A(E4, E9) are called compatible pairs. In
4.1.5 we have constructed a gluing map
#r o ker A(Ey, Ey) — LiP(E(r)), (in, G2) — da#ds
defined by the cut off construction (4.1.20) (see Figure 4.10)

al #Tﬂz = ’lALl (T)#T’[LQ (T‘) .

The gluing construction extends to compatible asymptotically cylindri-
cal first order p.d.o. L; to produce a first order p.d.o. Li#,Ly on E(r).

Lemma 4.5.1. Suppose L; are compatible asymptotically cylindrical opera-
tors. For anyk € Z4 and any p € (1,00), u > 0 there exists a constant which
depends only on k., p, i and the coefficients of L; such that if i; € Lﬁt;p(ﬁ’z)
satisfy

Osolin = Ouolia, Liti; =0, i=1,2,
then

Vot La(in i) o ey < Ce™ (Il s + 2l s ).

Proof For simplicity we will consider only the case k = 0. Fix p € (1, 00)
and g > 0. We can write

Ly := L(l) + Ay
where i}(l) is a cylindrical operator and A is a bundle morphism which be-
longs to ¢z, Li™
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Figure 4.10. Gluing compatible sections

> NO gl SO
\-l 1

Figure 4.11. The three regions of N(r)

The manifold N(r) consists of three parts (see Figure 4.11):

N(r)~ =2 N\ (r,00) x N, N(r)* = Ny \ (r,00) x N

and the overlap region
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Over N(r)~ we have
Li#teLy = Ly, ety = .

A similar thing happens over N(r)*. Thus, the section le#rf/Q(ﬁl#raQ) is
supported on Ny(r). To ease the presentation identify the region

Ny () := (=1,0) x N C No(r)
with the region (7,7 4+ 1) x N C Ny. Over ]\75 (r) we have
ity = at =) (i = Ouin ) + Doci
and
Li#, Lo = Ly = B(t —r) Ay = LY + a(t — ) A,
where «a(t) and [((t) are depicted in Figure 4.4 of §4.1.4. A symmetric
statement is true over Ny (1) := (0,1) x N C N(r)°.

To simplify the presentation we will use the symbol g; ~ ¢2 to denote
two quantities g1, g2 over N(7)" such that

g — (J2HLp(N(T)0) < Ce_MO’ﬁlHLL’Ex + Ha2HLLz;x>

where C > 0 is a constant depending only on p, ¢ > 0 and the coefficients
of Lz
We deduce that over N& (r) we have
L# Lo(iin#,p) = <ﬁ1 - /8141)(05(al — Osoll1) + Osotly )
= ﬁl(a(ﬂl — 800ﬁ1)) + ﬁlamﬁl — ﬂfll(a(ﬁl — 800111) + Ol )
~ Li(a(in — dxtin)) + L18soits = Li(aviiy + BOoiin)
(a+ B =1, [0t — ﬁ1HL1,17(1§1(;(T)) < C’e_WHleHme)

A

= IAq’lALl + ﬁl(ﬁ(aooﬁl — 121)) = Ll(ﬁ(a)oﬁl — ’111)> ~0. 1

Remark 4.5.2. Completely similar arguments can be used to prove the
more general estimate

| Lt o) @ nte) — (Eyin)tte(Laiin)

(4.5.2) Lk (N (r)

< Ce () e + el )

Exercise 4.5.1. Prove the estimate in the above remark.
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Exercise 4.5.2. Suppose w1, ws are two compatlble asymptotically strongly
cylindrical differential forms on Ni and No respectively. Show that

d(wi#,w1) = (dw1)#(dws).

Finally, we would like to explain how to glue cylindrical spin®-structures.
We refer back to §4.1.1 for the detailed description of the notion of cylin-
drical spin® structure. To figure out what to expect we begin with a simple
argument.

Suppose we have two compatible cylindrical manifolds ]\71, Ns. As be-
fore, form N(r) for 7 > 0. Let us (noncanonically) identify Spin¢(N(r))
with H2(N(r),Z) or, equivalently, with the group Pic>®(N(r)) of isomor-
phism classes of smooth complex line bundles over N (r). This group can be
recovered from the two pieces of the decomposition using the Mayer-Vietoris
sequence

HY(N(r),Z) — HY(Ny,Z) & H' (N, Z) 2% H'(N, Z)
2 HA(N (), Z) 22 HA(Ny, Z) @ H2(Ny, Z) 22 H2(N, 7).

The arrow 7 indicates that a line bundle & on N (r) induces by restriction
line bundles ¢; on N; while the arrow Ay shows that these line bundles
induce isomorphic line bundles on the dividing hypersurface N. Denote by
o this isomorphism class. The arrow d; shows that in order to recover & we
need to glue &; using an automorphism ¢ of o
G = 01#,02.

On the space of automorphisms of o we can now define an equivalence
relation ~ generated by

v o 7 Lis homotopic to an automorphism of o
which decomposes as a product between

L an automorphism which extends over Ny and

an automorphism which extends over Ns.

The arrow d; shows that the isomorphism class of 714,62 depends only on
the equivalence class of ¢. (Can you see this directly?) If we set

G := H'(N,Z) and G;:=Range(H'(N;,Z) — G),

then we deduce that the space of ~-equivalence classes is isomorphic to
G/(Gy + G3). Then the restriction map 79 defines a fibration

Pic®(N(r)) — ker A
with fiber the space of gluing parameters H'(N,Z)/(G1 + G2),
G /(G + Gy) — Pic®(N(r)) — ker A.
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Let us now refine this construction. Denote by C' the cylinder (—1,1) x N.
We can regard it in a tautological way as a cylindrical manifold with two
cylindrical ends. A cylindrical structure on line bundle L over C is then a
quadruple (Ly,¥+) where Ly is a line bundle over {1} x N and ¥4 is an
isomorphism
Ut Llfr1yxn— Lz

Observe that the forgetful morphism Picgy,(C) — Pic™(C) is onto and its
kernel is isomorphic to G

0 — G — Picsy(C) — Pic™(C) — 0.

eyl
The above is a naturally split sequence, with splitting map
§: Pic®(C) — Picyy(C), L (L; L|gz1pun, 1)-
We have a natural difference map
Ayt ¢ PicS(N7) x Pic®

(No) — Pic%(C),

cyl
((Ll’ L17 191)3 (L27 L27 192)) =

— (([Azz & IA/T) ‘c, (ﬁg ®1A}T ‘,1><N, 1), (LQ & LT |1><N7192 ®”l91_1)).

cyl cyl

Two cylindrical line bundles (lA}Z, L;,9;) on NZ are called compatible if
(L1, Ly) € ker Ayl
More precisely, this means that there exist isomorphisms
@ : Hom(L1 |c, L2 |c) — C,
¢_ :Hom(Ly, Lo) |—1xnv— C, ¢4 : Hom(Ly, Ly) 1xy— C

such that the diagram below is commutative
S .. 9297 "
Hom (L1, Lo)|_1xn —— Hom(L1, Lo)|c ——— Hom(L1, Ly) [1xn

- | [

o—
C_ 4 Ce Cixn

Intuitively but less rigorously, if we think of cylindrical line bundles as bun-
dles with a given “framing” at infinity, then two cylindrical line bundles
are compatible if the framings are homotopic. We will write the pairs of
compatible cylindrical line bundles in the form

((L1, L, 91), (L2, L, 92) ).

Such a pair can be glued using the trivial automorphism 1 : L — L to
produce a line bundle

(IAzl, L, ﬁl)#r(zg, L, 192) € PICOO(N(T))
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We thus have a surjective morphism called the gluing map
#, tker Ay — Pic™® (N (r)).
Its kernel consists of pairs

((gNlagN,ﬁl)a (QN25QN7192))

with the property that there exist maps 4; : N; — Sl i=12andy: N — C
such that the diagram below is commutative

Cy 2y <2 cy
Y1 M A2
Y
Cy

This implies
1Yz [n= P21 |V -

Since we are interested only in homotopy classes of such 4; we deduce that
the kernel of the above map is (G + G2)/(G1 N G2). We can express this
more suggestively in terms of the asymptotic twisting action. Define an
action of G1 + G2 on ker A,y by

(Cl + 02) : ((f/leuﬁl)) (f/QuLar&Q)) = ((f/luLaCQﬁl)u (ﬁQ)chlﬁQ) )7

where the above actions of ¢y, co are given by the asymptotic twisting oper-
ation defined in §4.1.1. This action is not free. The stabilizer of an element
in ker A.,; is precisely the subgroup G1 N G2 corresponding to the homotopy
classes of gauge transformations over N which extend over N (r). The orbits
of this action are precisely the fibers of the gluing map #,. Thus the gluing
operation is well defined on the space of orbits of this G; + Gs-action. We
will also refer to this operation as the connected sum of an orbit of compatible
cylindrical line bundles.

Proposition 4.5.3. For any complex line bundle L on N(r) there exists a
unique G —i—Gg:orbitAof compatible cylindrical line bundles Ly — N;, 1 = 1,2,
such that L = Li#,Lo.
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Exercise 4.5.3. Prove that we have the following commutative diagram,
with exact rows, column and diagonal.

G G1+Go
Gi1 NGy ’ G1 NG
ker Acyl
«—— Pic(N(r)) ker A

G1+ Ga

We can now define the notion of cylindrical spin®-structure on N; in
an obvious fashion. The space of isomorphism classes of such structures is
a Picgzl(]vi)—torsor. By fixing one such structure we can now reduce the
decomposition problem for spin®-structures to the analogous problem for

line bundles. We have the following result.

Proposition 4.5.4. Any spin® structure on N(r) can be written as the con-
nect sum of a unique G1+ Ga-orbit of compatible cylindrical spin® structures
on N;.

4.5.2. Gluing monopoles: Local theory. Consider two compatible cylin-
drical 4-manifolds N7 and Na. Suppose (N, g) satisfies the nondegeneracy
assumption (N). Fix g > 0 sufficiently small. Form the closed manifold
N(r), >0, and fix 6 € Spin®(N(r)) so that

6 = o146
where 1 and 692 are compatible cylindrical spin®-structures on Ni and N,

respectively. Now choose strongly cylindrical connections flo,i on det(d;)
and set

Ag = Ag(r) := Ag1#-Ag o
IfC; € éﬂ,m(m) we set
ICillep = 1Ci = (0, Aol 1 -
Suppose CZ € éwsw(Ni, ;) are two smooth monopoles such that
9oC1 = oo Ca.

As in the previous subsection we can form

Cr = (b, Ay) = Cr#,.Co = (b1 #,abe, A1#, A).
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The configuration C, € €4(N(r)) may not be a monopole but it almost
satisfies the Seiberg-Witten equations. Arguing as in the proof of Lemma
4.5.1 we deduce the following result.

Lemma 4.5.5. There exist constants C > 0 and rg > 0 which depend only
on the geometry of N; such that

R 1 . 0 R
19 4,9 gy + IFL = 5000 pnagua < Ce™ (ICu 20 + 1 Callzz ).
Vr > 0.

Exercise 4.5.4. Prove Lemma 4.5.5.

Naturally, we would like to know whether there exist genuine monopoles
near C,. In other words, we would like to investigate the L?2-small solutions
C of the nonlinear equation

SW(C +0) =0, ££ (O =0.

Form the nonlinear map
Nﬂﬁ%%@ﬁWﬁDeLm@ﬁmﬁﬁNm>

given by

N©) = S, + O 08 (©)
Denote by T, = ‘j'(:r the linearization of N at 0
T.(C) = SWe (O & €2 (C).
Observe that
(4.5.3) Ty o= Te #:Te,
Now set

R(C) := N(C) = N(0) — T,.C.

Using (4.5.1) with p = 4 we deduce the following result.

Lemma 4.5.6. There exists a constant C > 0 which depends only on the
geometry of N; such that

1ROl sy < O gy VE € L22(SF @ AT N ()

”R(Ql) - R(QQ)”LM (N(r))
< C’]“ /Q(HC ”L22 N('F + HC2HL2 2(N )HC1 CQHLZQ(N(T)V

VQQEH%$@WWM)
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To shorten the presentation we set
X = L2 (ST 0T N () ), X5 = 152(87 @ AT N () ),

X =xk o xk.
According to Lemma 4.5.6, N is a continuous map %i — XL differentiable
at 0.

We can now form the closed, densely defined operator

L,:x%— x°
with block decomposition
L, = p Tr
T 0

L, is the analytical realization of a Dirac type operator. It is selfadjoint and
induces bounded Fredholm operators

xk—&-l N xk:
Denote by H, the subspace of X? spanned by the eigenvectors of L, corre-

sponding to eigenvalues in the interval (—r~2,772). H, consists entirely of
smooth sections. The decomposition X° = %g ®X° induces a decomposition

H, =H S H, .

We denote by Y(r) the orthogonal complement of H, in X°. Y(r) is also
equipped with a Sobolev filtration

Ye(r) ==Y n Xk
Again we have a decomposition
Yo(r) ==Y (r) @ YE(r).
Denote by Py the orthogonal projection X4 — H;® and set Q4 := 1 — Py.
Observe that
Q= (X") = Yi(r).

For each C S 3{3 we set

Co=P.C, = Q+C.
Observe that
(4.5.4) P_3,(C) = T,(Co). Q-(T,0) =T,.C.

Moreover, for every k € Z, ‘j} induces a bounded operator

k+1 k
y_gj_ _>Id_
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with bounded inverse S and there exists C' = Cj > 0 such that
(4.5.5) 1Sull vz gy < Crrllull praggeyys V€ Y2

The equation N/ (C) = 0 is equivalent to the pair of equations
P_N(C)=0 and Q_N(C) =0.

Using the identities (4.5.4) we can rewrite the above equations as

(4.5.60) QN©0)+5,C" +Q_R(EC +Cy) =0

(4.5.6b) PN(0)+5,Co+ P-R(C +Cy)
Set UL := —SQ_N(0). Fix C;. We can rewrite (4.5.6a) as an equation for
QJ_

(4.5.7) (o (o

)i= Ut = SQ_R(C +C).
One should think of F as a family of functions Fc, (CL) parameterized by

C,. Using Lemma 4.5.6 and (4.5.5) we deduce
1F(CH) = F(C) |22
(4.5.8)

~ L N ~ L o ~ N
< O (1€ + Collaz + 11Cy + Collz2 ) [1C1 — Gl
Lemma 4.5.1 coupled with (4.5.5) shows that

[70)]l22 < Cr2e.

Thus X .
1F(CH) 122 < 1F(0) |22 + [ F(CH) — F(0) |22

< Or2e M 4 C'7“5/2||§L + Qo 2,9 §L||2,2-
Observe that there exists r = r(u) > 0 such that for all » > r(u) we have
Fe, {1 2o <770} < {IC 2 < v}, VG ll20 <772
Moreover, according to (4.5.8) the induced map
Fe,  {I€ Nl <r 7} = {I€ oz <77
is a contraction. Set
B = {I€ b <772} C W2 ),

Bo(r=®) i= {Collaa < v~ | < 2

For each Cy € Bo(r~3) the fixed point equation (4.5.7) has an unique solution
Ct=a(Cy) € BL(r ).
We let the reader verify that ® depends differentiably upon Co.
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Now define the Kuranishi map Cq — mr(éo) by making the substitution
Ct — a(Co)
in (4.5.6b), that is
ko 2 Bo(r™3) — H,,
Co— P-N(0) +T,Cy + P-R(®(Cy) + Cp)
- P_SW(CT +Co+ @(QO)).

The space H, is called the obstruction space. The Kuranishi map «, has
the following significance. The part of the graph of ® sitting above the zero
set k, 1(0) consists of all the monopoles on N, located in the local slice at
CT at a L>2-distance < r~3 from Cr. If k. = 0 (in which case we say that
the gluing is unobstructed ) then the set of monopoles near C, is described
by the graph of ®.

The results in §4.1.5 give more accurate information on the size and
location of the Hilbert subspaces H;". More precisely, we have the short
asymptotically exact sequence

0 — M, —"kere, Te, @ kerey Te, = L +LF — 0

where I:j is the range of the asymptotic boundary map O : kere, ‘j‘c —
ker Tc_ . Similarly, we have a short asymptotically exact sequence

. - A - N
0 — H, —"kere, ‘J'a @ kere, ‘J'EZ —'—= LT +L;, —0

where ﬁ; is the range of O : kerey ‘j'é — ker Tc__. Using the notation and
results in §4.3.2 we set

L?‘ = 05, kerey ’j'é_ — Tc My,

(‘Zj = 820 kere, TCi — TG = coker(Tléi % T1Go),
L; = 05 kere, ‘j'é — Tc My,
Q:; = 820 kerex ‘j‘(:l — TlGoo = Range(Tléi 8—o>o TlGoo)
The results in Propositions 4.3.28 and 4.3.30 imply that we can identify Hé

with the subspace ker(ﬁgo : kere, ‘j’ci — T1G») and

L =05 HE , Ly = 05 H(Fy).
To put the above facts in some geometric perspective we need to recall the
results in Propositions 4.3.28 and 4.3.30. Denote by G; the stabilizer of C;
and by G the stabilizer of C,. We then have the following commutative
diagrams in which both the rows and the columns are exact. S, denotes the
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splitting map defined in §4.1.5 while A denotes the difference between the
asymptotic limits.

o Virtual tangent space diagram

0 0 0
0—kerAS —  HL @ HL " Lf 4+ Lf -0

Sy 5 3 . X
(T) 0 — H, —— kere, Te, ® keres “TCQ A, Li+Li—0

JVTI@TQ
0

0o ke A — P L efgel —— b+ -0

0 0 0

o Obstruction diagram

0 0 0

o
0 —ker A 2 H(Fp )@ H*(Fp)) — Ly + Ly — 0
Sr Tk Tk F— F—
(0) 0 —Hy — = kere, T2 @keree T2 25 L 4+ Ly —0
la&@a&
0 Sr Al
0 — ker AZ g o, —— ¢ +¢ =0
0 0 0

The Lagrangian condition (4.1.22) establishes certain relationships be-
tween the above two sequences.

o Complementarity equations

(L) LI oLy =T My, € ©¢ =T1Go,

¢F = coker(T1Gi 22 T1Goo), € = Range(T1 Gy 22 TyGoo), i=1,2,
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L = <Lj)L, ¢ = (c:j)L.

Suppose that at least one of the monopoles C, is irreducible, say C,.
Then ¢i = 0 and ker A = 0. The diagram (O) implies

M, Zker A° C H?(Fp ) & H*(Fp,).
Our next result summarizes the facts we have established so far. A local
gluing result of this nature was proved for the first time by Tom Mrowka

in his dissertation [99], in a slightly different form and in the Yang-Mills
context, relying on conceptually different methods.

Theorem 4.5.7. (Local gluing theorem) Suppose G € émsw(Ni,&i),
1 = 1,2, are two finite energy monopoles with compatible asymptotic limits
such that at least one of them is irreducible. Then the following hold.

(a)
M, =ker A°C H*(Fg ) @ H*(Fy,).
(b) There exists ro > 0 (depending only on the geometry of N; and ||C;il2.2)
with the following property. For every r > rg there exist smooth maps
kr: Bo(r™3) CHE = H,, ®:Bo(r ) cHS —Y(r)"

such that the variety
€=+l €< m(@) =0, € =0(C)}

coincides with the set of monopoles C on N(r) satisfying
€ (€=C)=0, [E=Cfap<r?
where C, := Cl#rég and Hﬂ[ are determined from the diagram (T).

Remark 4.5.8. The obstruction space H, can also be described as the
space spanned by the eigenvectors of ‘j}‘j’;f corresponding to very small eigen-
values, i.e. eigenvalues in [0,77%). (As pointed out in §4.1.5 the eigenvalues
determining ;" are in reality a lot smaller than 7%, in fact smaller than
any r~ " as r — 00.) Notice that

o S, @iAZT*N(r) S, @iAZT*N(r)
USSR e ® — L? <
iAOT* N (r) iAOT*N (r)

has the block decomposition

ST

T, T = .
£ oSW,  £f £

T r
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where STW » denotes the linearization of the Seiberg-Witten equations at C,.
Now witness a small miracle.

_ d —
S_Wr o Sér(lf) = E |t:0 SW(@ tf . CT)

- %'tzo (¢ 2,00, VOFS ~ %qw?r)) = (i/®.4,0r.0).

This shows that the off-diagonal terms in the above description of j}‘j': are
zeroth order operators !!! Since

||@A7.¢T‘HL2,2(N(T)) < Ce M

we deduce that their norm is exponentially small. We can now write

g5 — SW,SW, *O CW = VW,
0 £2 £
¢ ~¢,
where W, is bounded, symmetric and ||W,|| = O(e™"). Denote (temporar-

ily) by 7:[7? the space spanned by the eigenvectors of V,. corresponding to
eigenvalues in [0,7~%). We can now use the perturbation results in [60]
to deduce that the gap distance between M,  and H, converges to zero
as 7 — oo. In applications it thus suffices to work with 7:(; rather than
H;~. The space H, has an additional structure deriving from the diagonal

structure of V... More precisely, Ho splits into a direct sum

r

very small eigenvalues of SW TS’/TX/' j @ very small eigenvalues of 22 Le, -

We deduce from this picture that the operator 2*62 Le. does not have very

small eigenvalues if at least one of C, is irreducible. The reason is simple: any
eigenvector corresponding to such an eigenvalue will contribute nontrivially
to the kernel of AY in the diagram (O). We conclude that for any € > 0
there exists R = R. > 0 such that for all r > R. we have

I8¢, GAIT2 50y = (86, Le, () ) = 21172 5
VfeLY?(N(r)). ®

We left out one technical issue in the above discussion. More precisely,
we cannot a priori eliminate the possibility that some of the monopoles
constructed in Theorem 4.5.7 are gauge equivalent. It is true that they lie
in the slice ker £’(‘: but it is possible that the neighborhood in which they
are situated is so farge that one gauge orbit intersects it several times. We
will now show that this is not the case by providing an ezplicit, r-dependent
estimate of the diameter of the local slice at C,.
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Lemma 4.5.9. There exists rg > 0 such that for allr > rq the configurations
. _3 _
G +5 H‘:‘HL2:2(N(T‘)) =7 2*@: =0

are pairwise gauge inequivalent.

Proof We argue by contradiction. We assume that for all » > 0 there
exist

A€ GYP #1
and Z1, # Ea, such that
(4-5-9) ’A}’r ' (Cr + El,r) = C’r + 52,7"7 'QETEZ',T' = 07 HEZ‘,THLz,z(N(T)) S 7"_3'

Set CT =: (7[17"7‘47’)7 Ei,’/‘ = (%

2y

[1]

" id;,) and Z, := Zp, — Z1,. Observe that

(4.5.10) |Zirll22 = O(r™3) as r — oco.

Denote by ¢, the average value of 4, : N (r) — C. We can regard ¢, as the

orthogonal projection of 4, onto the kernel of d+d*. Using the estimate in
Exercise 4.1.6 of §4.1.6 we deduce

1A = erll3a = O(r*€1dan 22).

The equality (4.5.9) implies

(4.5.11) 2d(3r — ¢,) = 2d%, = V3 (ag, — a1,)
so that
ld4:]l2 = O(r—?).
Hence
(45.12) 15r — /113 = O(=2+°).

Now use (4.5.10), (4.5.12) and interior elliptic estimates for the elliptic equa-
tion (4.5.11) to deduce that there exists C' > 0 such that for any open set
U C N(r) of diameter < 1 we have

19 — erllLse@) < Cr—?/2Fe,

Using the Sobolev embedding L32?(U) — L°(U) (where the embedding
constant can be chosen independent of U and r) we deduce

e = erll ey = O(r/2%9).

The last estimate shows that 4, is very close (in the sup-norm) to being
constant and thus it can be represented as

A~

A = exp(ify).



438 4. Gluing Techniques

Denote by c. the point on the unit circle S* C C and pick ¢, € [0, 27] such
that exp(ip,) = /.. Observe that we can choose f, so that

||fr - SWHLoo(N(r)) = O(T75/2+€)-
We can now rewrite (4.5.9) as
a1, — 2idf, = ids,, expf)(Wr +1, )=+, .
These two equalities have to be supplemented by the slice conditions

0= 2L (Eir) = 2d"ai, + Im(dr, 0, ).

QT
A simple computation leads to the equality
—Ad*df, + Iy, (e = 1)y + P, ).
We can further rewrite the above as

(4.5.13) 4d*dfy = —sin(f) i [2 + Iy, (€ — 1), ).

)

Set & := fr — ¢r. We have

4d*de, = — sin(o, )|y 2 — (sin(fy) — sin(er)) [ + Im(dy, (¢ — 1), ).

Multiply the last equality by 1 and integrate by parts over N (r). Since
b, Iz2 = O(r=3) and ||sin(f,) — sin(g, )|z = O(r=***¢) we deduce

|sin(gpr)|/A |qz)r\2dv01:o(r5/2+f)/ |¢r|2dvol).
Nr) N(r)

Thus

[sin(py)| = O(r~>/2%%).
Thus either |¢,| = O(r=%2%¢) or |¢, — 7| = O(r~%/?*%). We can exclude
the second possibility by using the equality

eifr (12)7“ + @1#) = @Z}r + @2,7"

and the fact that 1), does not vanish identically; better yet, |]1,Z3T||Oo is
bounded away from zero independent of r. (Recall that C, is an almost
monopole obtained by gluing two finite energy monopoles at least one of
which was irreducible.) Hence

(4.5.14) | frllLoe = O(r=>/2%%),
We can rewrite the equality (4.5.13) as

’Qf*érgé(fr) = 462*6sz + WA}T‘J?T
(4.5.15)

~

= (fr — sin(f) i, 2 + Iy, (e — )b, ).

)
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Using interior elliptic estimates for the above equation we deduce that there
exists C' > 0 such that if U C N(r) is an open subset of diameter < 1 then

(4.5.16) el paaqry < Cr=9/24e.
Multiplying the equality (4.5.15) by f» we deduce
(A fr fr) < Cro252| fo]| 2.
Using the eigenvalue estimate in Remark 4.5.8 we deduce
1frl72 < Cr*(Ag, fro fr) 1o

The last two estimates contradict each other for » > 0. This concludes the
proof of Lemma 4.5.9.

We have thus proved the following result.

Corollary 4.5.10. There exist r1 > 0 and for every r > r1 an open neigh-
borhood U, of 0 € V,. such that the set

{Cr +G E*CTQ =0, C=Co+®(Cy), Coels, r(Cy) = 0}
18 homeomorphic to an open set in the moduli space 53\?&1#&2. |

We will refer to the open subsets of S/D\T&l#&z described in the above
corollary as splitting neighborhoods.

Remark 4.5.11. The choice of size 73 in the definition of ®, and &, is
by no means unique or natural. Our proof shows that if we replace r—3 by
r~™ n > 3, everywhere in the statement of Theorem 4.5.7 we will still get a
valid result.

To give the reader an idea of the strength of the gluing theorem we
consider several special cases.

Example 4.5.12. Both Cy and Cy are irreducible, strongly reqular and Coo
is irreducible. In this case, the middle column in (O) is identically zero and
we deduce that the obstruction space H, is trivial. Thus, x, = 0 and the
set of monopoles close to CT = Cl #Téz can be represented as the graph of
a smooth map

®: By(r—?) CcH — Y2 (r)

where C is implicitly defined by the fixed point equation (4.5.7). Moreover,
the dimension and location of H,' can be determined from the diagram (T),
which in this case simplifies to

A
0— Hj'—)ClHél &> HéQ —* Tc M, — 0.
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To see why Lf + Ly = Tc M, observe that in our special case we have
L7 = 0 and thus, using (L), we conclude L; = Te M,. The smooth

)

manifold filled by the monopoles close to C, has dimension
d(Cy) + d(Co) — d(Coy).

Observe that all the monopoles on N (r) constructed in this way are regular.

Example 4.5.13. Both Cy and Cy are wrreducible, strongly regular but Coo
is reducible. The obstruction space H,. is trivial and the monopoles near C,
form a manifold of the same dimension as H,", which is

d(C1) + d(Cy) — d(Cop) + dim Gog.
Again, all the monopoles near C, are irreducible and regular.

Example 4.5.14. Suppose both CZ are strongly regular, Cy is irreducible but
Cy is reducible. Again we deduce that the obstruction space H, vanishes.
The monopoles near C, form a manifold of dimension

dim H; = d(Cy) 4 d(Ca) — d(Coo) + dim Goo.

Set
d(C1)#d(C2) :=d(Cy) + d(C2) — d(Coo) + dim Goo.
The above three examples show that if both C, are strongly regular and at
least one is irreducible then the set of monopoles near C, is a smooth man-
ifold of dimension d(C;)#d(Cy). All these monopoles are both irreducible
and regular. We can formally write

d(C1#,Co) = d(Cy)#d(Cy).

4.5.3. The local surjectivity of the gluing construction. The glu-
ing process described in the previous subsection constructed certain open
subsets (splitting neighborhoods) of the moduli spaces of monopoles on a
4-manifold with a very long neck. This splitting process we are about to
present will show that if the 4-manifold is sufficiently stretched then these
splitting neighborhoods cover the entire moduli space.

Consider again the Riemannian manifold N(r) introduced in the pre-
vious subsection. If C = (¢, A) is a monopole on N(r) then, according to
Proposition 2.1.4, its energy

o .y 1 2 § Ar 2 ~
PO = [ (99 + gl + 74 + X0

4

is a topological invariant, depending only on the spin® structure and not on
the metric. On the other hand, [|$(g, )|z is independent of r and because
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[l < 2/[3(jr)||L We deduce that the energy of C on any open set of
N(r) of volume O(1) as 7 — oo is O(1) as r — oco. If we take this open set
to be the complement of the long neck we conclude that the energy of C on
the long neck is bounded from above by a constant independent of r.

A

The discussion in §4.4.2 shows that any sequence (C,) of monopoles on
N (r, — o0) splits as n — oo into a chain

Co,C1,Cay -+, Chy G
where CO is a finite energy monopole on N 1 Ck+1 is a finite energy monopole
on Ny and Cq,--- ,Ci are tunnelings on R x N such that
0L Ci = 0 Cis1.

Assume for simplicity that tunnelings do not exist. We deduce that
the moduli spaces of finite energy monopoles on N; are compact and, more-
over, as r — 0o the monopoles on N (r) will split into a pair of finite energy
monopoles C; and Cy; with matching asymptotic limits, 0,oCi = 05Cq €
IM,. Denote by P the set of such pairs.

Given such a pair (Cl, Cg), the local gluing theorem postulates the ex-
istence of o = r9(Cy,C2) > 0 and for each r > r( the existence of an open
set Ue, ¢, . C M5(gr) with the property

Ue, ¢ = {C € My (5,); distpz2([C], [C1#.Ca)) < r_3}.
Since P is compact we deduce that there exists Ry > 0 such that
ro(C1,Ca) < Ry, ¥(Cy,Co) € P
For each r > Ry we set
Uy == U uél,éz,r C ﬁo(gr)
(C1,C2)e?
We can now state the main result of this subsection.

Theorem 4.5.15. Assume Ny and Ny are equipped with real analytic
structures. Then there exists R1 > 0 such that

—

U, = Ms(gr), Vr> Ry.

Sketch of proof The method we will employ in the proof is a substantially
sharper variation of the strategy used in [26, Sec. 2.2] to establish a similar
fact.

Consider a sequence Croo Of monopoles on N (r) which splits as r — oo

to a pair (Cl, Cg) € P. Let us explain in some detail the meaning of this
statement.
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Identify the long neck of N(r) with the long cylinder [—r,r] x N. The
splitting implies that thereAexists T>0 independent of r vxiith the following
property: if we denote by C] (resp. Ch) the restriction of C, to the portion

. . i 222
of ])f(r) containing [—7,7] x N (resp. [r,r] x V) then C] converges in L;’~
to C; (with the additional uniformity explained in Remark 4.4.11). Denote
by G; the stabilizer of C;.

We want to prove that for all r > 0 there exists (C1(r), Co(r)) € P such
that

(9OOC1' = aooCz(r) = Coo
and
dist 2.2 ([C,], [C1(r)#,Co(r)]) < 73

Assume for simplicity that 7 = 0. It will be convenient to regard C; as
monopoles on the truncated manifold N;(r) = N; \ (r,00) x N.

N

Define the configurations Cim € éu7sw(Ni) by
Ci,r = ar(j +(1—-0a)Cx

where o, = a(t —r + 1) and « is depicted in Figure 4.4 of 4.1.4.

Using the estimate (4.2.35) in Remark 4.2.29 of §4.2.4 coupled with the
uniform Liﬁ—convergence of CI we deduce after some elementary manipula-
tions that

(4.5.17)  [[SW(Ci)|l 12 = O(e™ ), dist;22(Cs, Ci) = o(1) as 7 — oo.
m W

Exercise 4.5.5. Prove the above estimates.

Hint: Consult [26, Sec. 2.2] for inspiration.

To proceed further we need to use some of the constructions (and nota-
tion) in §4.3.1 and §4.3.2. Denote by S; the global “slice”

SZ‘ = ker SZ‘ N Li’Q.

Using Proposition 4.3.7 we deduce that t}/l\ere exists a Li’Q—small neighbor-
hood V; of 0 € §; such that every (lrbit of G, on Gu7sw(Ni)Ainters?cts 9 + Vi
along at most one point. Modulo §,, we can assume that C;, € C; +V;. Set
Ei,r = éi’r — CZ S 31

Now denote by Y C S; the Li-orthogonal complement of H! (FCI) in
S;, by Y, the Li—orthogonal complement of H? (FCO) in its natural ambient
space and by 9;(C) the moduli space of §,-equivalence classes of finite

energy monopoles C on Ni such that 8OOC = Cs. We have the usual Kuran-
ishi local description of a neighborhood of C; in 9t;(Co). More precisely,
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there exist a small neighborhood U; of 0 € Hl(FCi), a smooth map

CI)Z‘ : Uz — HZ‘, (I)Z(O) =0
and a real analytic map x; : U; — H? (F¢,) such that the set
{Cl +u+ Pi(u); uelU, ki(u) = O}
is homeomorphic to an open neighborhood of Cl IS ﬁi(Coo). Moreover, there

exists C' > 0 such that
(4.5.18) IRi(u)ll 2 < C|ISW(C; + ll 2, Vu € Ui
Exercise 4.5.6. Use the fixed-point strategy in the proof of Theorem 4.5.7
to establish (4.5.18).

Decompose Z;, = E?}r + 5, € H! (FCZ) D 9?. Since S/IX/(CZ +Eir) =
O(e ") and Je, = We @ 22‘: has closed range we deduce

55022 = O™,

Thus
(4.5.19) I1SW (C; + =012 = Oe™).
The iterative construction of ®; via the Banach fixed point theorem shows
that for every u € U; and every sufficiently small =+ € Bj we have

|i(u) = ZH| 22 < CIQ-SW(Ci +u+EY)|| 12
where ()— denotes the orthogonal projection onto Y, . In particular, we
deduce that
(4.5.20) 8:(22,)] 22 = (™).
The estimates (4.5.18) and (4.5.19) imply that
15 (Eir)|| = Oe™).

Since &, is real analytic we can use Lojasewicz’ inequality (see [15, 86]) to
deduce that there exists p > 0 such that

dist(Z7,., k7 '(0) = O([lsi(E7,) 1) = O(e™™") as 7 — oo.
Using (4.5.20) we can now conclude that
distLi,z(Ci,r,ﬁi(Coo)) =0(e™)
for some ¢ > 0. Thus, we can find C;(r) € ﬁi(Coo) such that
dlstLi,z(Cw, Ci(r)) =0(e™ ).
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This implies immediately that there exists R; > 0 which depends only on
the geometry of N; such that for all » > R; we have

dist2.2(Cp, Cy (1) #,-Co(r)) < Ce™ < r73,
This completes the proof of Theorem 4.5.15. B

4.5.4. Gluing monopoles: Global theory. It is now the time to put
together the facts established in the previous two subsections. There is a
wide range of situations possible and we will not attempt to formulate the
most general result. In this subsection we will deal only with two generic
situations which display most of the relevant features of the general gluing
problem.

Again we consider the cylindrical manifolds (N1, §;) and (Na, §2) with
N = &X)Ni, g := 00 g; together with a G1 + Ga-orbit of compatible cylindri-
cal spin® structures 6;, 001 = 002 = 0. For every ¢ € G we denote by cd;
the asymptotic twisting of the spin® structure &; defined in §4.1.1. We will
identify an element c in G with the unique gauge transformation v : N — S*

such that %d'y /7 is the harmonic 1-form in N representing c¢. We form as

before the Riemannian manifold (N (r), §.) with a long cylindrical neck.

CASE 1. We will first consider the situation characterized by the following

conditions.

A (g,0) is good.

Ay There exist no (g,0)-tunnelings on R x N.

A3 by (N;) > 0.

Ay All finite energy monopoles on N; are irreducible and strongly reqular.
Observe that A; and Ay are automatically satisfied if g has positive

scalar curvature. The genericity discussion in §4.4.1 shows that we can ar-

range so that Ay is fulfilled using generic compactly supported perturbations
of the Seiberg-Witten equations. Fix a base point at infinity,

% € N = 0o N1 = O No.
We need to introduce some notation.
e Z C Cy(N) — monopoles on N.
o Gi =G (i), GV = 0:0Gi € G, GV =GN . gM2 C G,

mVi .= 2/N N .= /9",
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The based versions of these spaces are defined in the obvious way. The

space imfv’ is a cover of MY, while MY is a cover of M,. Moreover we have
induced boundary maps

—

Oy - M, 2= omMi _, omV.
O My (%) 22 MV s N ().
e 2. C émez(]\ﬁ, ;) — the set of finite energy d;-monopoles on Nl-,

M; o= 2:/G;, i=1,2.

Define
Z = {(Cl, CQ) S 21 X ZQ; 80061 = 80062 mod 9N},

2(x) = {(Cl, C2) € 21 x 225 9Cy = 0osCo mod 9N(*)},
The group §1 X §2 acts on 2. The quotient Z/§1 X §2 can be given the
following description.
Lemma 4.5.16.
2/81 x G2 = {(IC1],[Cal) € Ty x My 0[C1] = O [Co] € MV,

2(:)/G1(x) x Ga(x) = { (1], [Cal) € Ma(x) x Ma(x); e[Ca] = e [Cal -
In particular, there exist natural maps
Do X Oso 1 2/G1 % Goy — me,
O x By 2(#)/G1(x) x Ga(x) — MY ().
We get a decomposition
2= Zrea U Zirr = (D0 % On) ™ (M),) U (B0 X Boc) ™ (OM1L):
Observe that ) )
Zred = Zred (%),
and we have a trivial fibration
St Zirr = Zirr (%)
where the action of S on ZZ-M is given by
ei¢(Cy, Co) = (Cy, €°Cy).
We have a short split exact sequence

1H§1(*)></9\2(*);>/9\1><§2—»Sl><51—>1,
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where the last arrow is given by the evaluation at *. Set
N:= Z/(51 X 52), N(x) := Z(”‘)/@1(*) x §2(*))
The assumption A4 implies that 2 / §1 X §2 is a Hilbert manifold. Note that
Nirr = Nirr (+)/S", Myed = Nreal(*)/S".
Denote by Ag, 4, () the diagonal of sz(*) X EUIN(*) We deduce
N(x) = (Foo X Foc)(Asy5(¥))s M= (B X Do) " (Asy,5, (%)) /S
The manifold 9 will provide an approximation for the Seiberg-Witten mod-

uli space 53\?(](7(7“), G1#62).

The gluing operation produces a family of S'-equivariant maps
M) — By (+) = C(N(r), al#a—g)/ﬁmr)(*),

([C1], [Ca]) = [Ci]#[Col.
c

More precisely, if (Cl, Cg) Z then there exists a pair 4; € G, such that

Oso¥i(*) = 1 and
9soC1 = 950 Co.
We set
[Ci)#,(Co] := 1 Ci#9aCal.

Let us check that this is a correct definition.

1. Suppose first that (97,%4) € Gy (%) x Ga(x) is another pair with the above
properties. Set d; := 4;/4,. Because the based gauge group G(*) acts freely
on G, we deduce

aoo(;l = 80052,
and
A1Ci#,92C2 = (01#402) - (51 C1#+95Ca)
2. Suppose we have (A’l, C’z) € Z such that there exists a pair (%1,7%) €
G1(*) x Ga(x) with the property
(71C1,45C2) = (C1, Co).
Then 9so91%,C) = Doo¥295Ch

[C#,1Ch] = A C #3295 Ch)

= 11 Ci#42Ca] = [C1]#[Cal.
Denote by M, the moduli space of (614672, §»)-monopoles on N (r).
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Theorem 4.5.17. (Global gluing theorem) There exists o > 0 with the
following properties.

(i) For all v > ro all the monopoles in ﬁT are irreducible and regular.
(i) For all v > 1o the smooth manifolds §J\TT(*) and #T(‘fl(*)) are St-
equivariantly isotopic inside ‘B&JW(NT, *).

Proof Let

N

ZA = {(Cl,éz) C 2(*);80061 = 80062},

and

~

Gax) == {(h1.92) €

Observe that the group §A(*) acts freely on Za and the quotient is ‘ﬁ(*)
We have a gluing map

~ ~

G1(+) X Ga(4); 0281 = 02 .

#r:5a(x) > Gy

which a group morphism. We also have a gluing map
H#r Zn — C N,

which is (§A(*), S &, (*¥)-equivariant. This map descends to the gluing map

#r. For large r, we have an S'-equivariant embedding
By R(x) = By, (4.

We denote its image by 9, (x), and set N, := N,.()/S. For every (C1,Cs) €
ZA we set

Cr =G (Cy, Co) == Ci#:,.Co.
We get a virtual tangent space Ha, described by a diagram of the type (T),
and an obstruction space HE,«’ described by a diagram of the type (O).

Since the moduli spaces 53\167,# are compact these diagrams are asymp-
totically exact (uniformly in C,(Cy,Cg)) as 7 — oo. In particular, we deduce
that there exists Ry > 0 such that HC_ =0,Vr > Ry and all C,. € #,ZA.

Moreover, the diagram (T) shows that 'the map
., (ZA) e CT — dimp Hg <Y/

is continuous and the family {Hé ; CT S #TZA} forms a smooth #Té\A-

equivariant vector bundle H," — #TZA. It descends to a smooth vector
bundle [H;"] on M, = #,25/#.9a. We regard it in a natural way as a

sub-bundle of TB g | -
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A quick inspection of the diagram (T) shows that [H;] = T, in a very
strong sense: there exists 6 : [1,00) — Ry such that 6(r) — 0 as r — oo and
sup gap distz2(T¢ N, [H+]Cr) <4(r), Vr>0.
[Crlem,
Thus, for all intents and purposes we can identify TN, with [H,f].

The space Hi(ér) introduced in the proof of the local gluing theorem is
orthogonal (or uniformly almost orthogonal) to Tér‘ftr, and thus the collec-
tion

v = {¥2(C Get)
defines an infinite-dimensional vector bundle over s)‘AIT: the normal bundle
corresponding to the embedding

sjtr — @&,irr-
We leave the reader to verify that Lemma 4.5.9 implies that the exponential
map Y;" — Bs i defined by the embedding

sjt'r — @&,irr
induces a diffeomorphism from the bundle of disks of radii »—3 of Y to a
tubular neighborhood of N, — B ;.

The local gluing theorem produces for each [CT] € M, a local section
Pe of Y} defined on a neighborhood of radius 7~ centered at [C,]. We can

view ®¢ as a normal pushforward of a r~3-sized neighborhood of C, into a

small tubular neighborhood of ﬁtr — @&,m«- Set

U, (C) = D¢ ().
Since this is an unobstructed gluing problem we deduce that \IIT(CT) is a
genuine g-monopole. Moreover, according to Remark 4.5.11,

dist;22(C,, U,(C,)) <777, Vr>> 0, VC,.

We can now invoke Corollary 4.5.10 and Theorem 4.5.15 to conclude that
for large r the space M5 (g, ) consists only of irreducible, regular monopoles
and the map ¥, is a diffeomorphism

v, : ‘ﬁr — ﬁg(gr)

Clearly T, := W, o #, : N — ﬁ&(gr) is a diffeomorphism. Since this
diffeomorphism is defined by a small pushforward in the normal bundle it
is clear that it can be completed to an isotopy. This construction lifts to an
Sl-equivariant diffeorphism

o~

L N(x) — My (g, +). W
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Remark 4.5.18. The covering space zm{,V — M, may have infinite fibers if
the index of G1 + GG in G is infinite. This would indicate that ’jt, and thus
ﬁ&(gr) may be noncompact, which we know is not the case. How can we
resolve this conflict?

First of all, if these coverings are infinite then it is possible that the
moduli spaces 9M; are empty (see Corollary 4.4.17 for such an example). On

the other hand, the maps duo : M (x (% ) DZTIN (% ) have compact fibers and

may not be onto. The intersection 9’ (i)ﬁN NP (sz ) can then be compact
or even empty.

CASE 2. We now analyze one special case of degenerate gluing. More
precisely, assume the following.

B1 (N, g) is the sphere S3 equipped with the round metric.
B b+(]\71) > 0, b+(N2) =0.
B3 All the finite energy monopoles on Ny are irreducible and strongly reqular.

B4 Up to gauge equwalence there exists a unique finite energy Ga-monopole
Cy = (0, Ag) on Ny which is reducible and satisfies H1 = 0. We denote by

dy its virtual dimension. (Observe that dy < 0.)

Observe that, according to (4.3.20), the condition B4 implies
HY(Ny, N;R) = 0 = H*(Ny,R).
The identity (4.3.21) implies
HQ(FCZ) > kere, P,

H 2(FQ) is a complex vector space, and thus equipped with a natural S'-
action. Set

d0+1

hy := dime H*(Fg,) = — 5

Denote by
£ — M, (Ny,61)
the complex line bundle associated to the principal S L bundle
iﬁu(Nb&l*) — ﬁu(Nbe)

In this case Z() = Z = Zyeq and N = ,‘Z/§1 x Gs.
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Theorem 4.5.19. (Degenerate gluing) There exists ro > 0 with the fol-

lowing property. For every r > ro the moduli space WUI#UQ(N Jr) consists

only of reqular irreducible monopoles and there exists a S'-equivariant map
Sy M, (N7, 61, %) — C2

such that its zero set is a smooth S'-invariant submanifold of ﬁu(Nl, G1, %)

St -equivariantly diffeomorphic to M, 469 (N, Jry*). In particular, this means

there exists a section s, of the vector bundle L"? — imu(](ﬁ, 61) whose zero

locus is a smooth submanifold diffeomorphic to Ms, 44, (N,f]r).

Sketch of proof We use the same notation as in CASE 1. Observe first
that assumption By implies that there exist a unique spin® structure oy
on N and an unique gg-monopole C,, which is reducible and regular. In
particular

Tc My, =0, T1G = R.
Moreover, since G = Hl(N Z) = 0 we deduce that G = G2 = 0, and any
gauge transformation on Ni extends to N.

Suppose (Cl,Cg) € Za. Then we can form C, := C;#,Cs. There are
many cancellations in the diagrams (L) and (O) associated to C,. More
precisely, we have

He =0, Lf =0, € =0, ¢ =0, H*(F)=0.
We deduce that ker AS)F =0, ker A = Hé such that
1
M (Cr) = HE

Observe that Lemma 4.5.9 implies that the subspace H;(C,) C Te é( N,)

and the tangent space to the 9( »)-orbit through C, are transversal. More-
over,

and the assignment

ZA = (Cl,Cz) = 'H+(C1#TC2) c #,Co G(N )

isa Gy &, -equivariant sub-bundle of TC(N,)| 4%, and it descends to a smooth
vector bundle

A

[H,]— M
For large r we have diffeomorphisms
N, = 9= M,
M\oreover, the bundle [H}] — M, is isomorphic to the tangent bundle of
M.
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To see this observe first that TCI§J\T1 = Hé . Next, the compactness of
1

ﬁl implies that we have uniformity with respect to Cy as r — oo in the
Cappell-Lee-Miller gluing theorem. Thus, the family

Za 3 (Cy, ) = HT (G4 Co)
is homotopic as 7 — oo to the family
ZA = (Cl,ég) — Hél = Téli)ﬁl.
Using the obstruction diagram (O) we conclude similarly that
Hy(C) = Y (F).
Fix (C9,CY) € Za and set

V=M (C0#,C0) C Yy i= LV2(S5 45, @IATTEN,).
According to the Cappell Lee-Miller gluing theorem, Theorem 4.1.22, there
exists rg = ro(Cl, Cg) > 0 so that for r > ro(Cl, Cg) the last isomorphism is
described by an explicit map

I +HA(C) = — V0 HQ(FCS).

In fact, since ﬁu(](ﬁ, &1) is compact, we have

Ry:= sup ro(él, Cz) < 00
(€1,E2)ezA

so that for all 7 > Ry there exists an isomorphism ¢ H,(C,) — VP

r

depending continuously on C;. This means that for r > Ry the collection
Za 3 (Cy, Co) = Hy (Gt Co)

forms a trivial complex vector bundle H_ of rank hg over ZA. Using the
diffeomorphism

o ZA — #T(ZA) C é(NT)
we can think of H,  as a vector bundle over #T(ZA).
If (41,42) € Ga then
M, (n#A2) - C) = (o) - Hy (C).
Two configurations in #TZA belong to the same 9( »)-orbit if and only if
they belong to the same #r A-orbit. Since #TZA consists only of irreducible
configurations we can thus think of H~ as a 9( r)- equlvarlant subbundle of
the infinite-dimensional vector bundle W, over 9( r) - #TZA with standard

fiber Y,. Although the bundle H, is trivial, it is not equivariantly trivial.
To see this, we present an alternate description of the bundle H, .
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Denote by Grass the Grassmannian of complex hs-dimensional sub-
spaces of Ll’Q(Sgl#T&Q) C Y,. The action of §(N;) on Y, induces an action
on Grass. The isomorphisms ICT , can be regarded as a #T§A—equivariant
map

¢ : #,.2A — Grass
whose image lies in the §(Nr)—orbit of V0. The bundle H, is defined by the

G(N,)-equivariant extension of ¢
P . §(Nr) - #,.2s — Grass.

The stabilizer of V. € Grass with respect to the action of §(Nr) is the
subgroup S! of constant gauge transformations. It is convenient to think
of S! as given by the obvious inclusion S — §(NT) which splits the short
exact sequence

1 < G(N,, %) — G(N,) &5 5T — 1.
The quotient (:‘;(Nr) . #’I“ZA)//Q\(NTa %) is the space of gauge equivalence

classes of based almost monopoles on N,,
(5(%) - #:25) /8y ) 2= P (0)

The bundle H, descends to a bundle [H, | — M, which is the bundle asso-
ciated to the S!'-fibration

sﬁr(*) — N,
via the natural action of S* on V2,
[HT] 2 M (%) xg1 VI =M, (%) xg1 Ch2 = £h2 91,
Denote by =, the orthogonal complement of H," in TBs, #,69,irr- We can
regard =, as the normal bundle of the embedding
sjt'r — B&l#r&g,irr-
Using the exponential map we can identify a tubular neighborhood U, (of
diameter ~ r~3) of
mr C 8&1#5’2,i7‘r
with a neighborhood V, of the zero section of =,.. Observe that we have

a natural projection 7 : U, — ‘jlr which we can use to pull back H,” to a
vector bundle 7*[H, | — U,.

The Seiberg-Witten equations over N define a section SW of an infi-
nite dimensional vector bundle W, over Bs, 44, i With standard fiber Y,.
According to Remark 4.5.8 we can regard [H, | as a subbundle of W,. We
denote by P_ the L?-orthogonal projection

P_W, —[H,].
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Arguing as in the proof of Theorem 4.5.17 we deduce from the local gluing
theorem that there exists a smooth section ¥, : U, 2V, C =, — [H, ] such
that, for all [C,] € M,, we have

(4.5.21) SW(Cr+ () €M Ie, gey Vo € #rka.

Set
M= {CT 10, (C); G e m} c U,
Observe that
N =N, =M, (N1,61),
and moreover, according to (4.5.21), the restriction of the Seiberg-Witten

section SW to ‘ft’r defines a smooth section of the vector bundle 7*[H,].
This is a smooth section s, of

£he ol =m,.

Its zero set is precisely ﬁ&l#&Q(N , Gr), which is generically a smooth mani-
fold. W

The above theorem has an immediate corollary which will be needed in
the next section. Suppose Nisa compact, smooth, oriented 4-manifold and
Ny is the cylindrical 4-manifold obtained from N by deleting a small ball
and attaching the infinite cylinder Ry x S3. Denote by Ny the cylindrical
4-manifold with positive scalar curvature obtained by attachmg the infinite
cyhnder R, x S3 to a small ball. Observe that Nl#er is dlﬁeomeorphlc
to N. Moreover, if 69 denotes the unique cylindrical spin®-structure on Ny
then the correspondence
(Nl) S 01— &1#62 S Spmc(N)

Sping,

is a bijection. We will denote its inverse, Spinc(N) — Spinc(Nl), by
6= 0lg, -
Corollary 4.5.20. Suppose by (N) > 0. Then the S* bundles
' Ms(N, gr, %) = Ms(N, §y)

and
St M (N1, 65, 4) — MM, )

are naturally tsomorphic.

Proof The conditions B; and By are clearly satisfied. Bs is generically
satisfied. Finally, according to Example 4.3.40 in §4.3.4, condition By is also
satisfied, with ho = 0. The corollary now follows immediately from Theorem
4.5.19. 1
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4.6. Applications

We have some good news for the reader who has survived the avalanche of
technicalities in this chapter. It’s payoff time!

We will illustrate the power of the results we have established so far
by proving some beautiful topological results. All the gluing problems in
Seiberg-Witten theory follow the same pattern.

A major limitation of the cutting and pasting technique has its origin
in the difficulties involved in describing the various terms arising in the
diagrams (T), (O), (L). A good understanding of both the geometric and
topological background is always a make or break factor.

4.6.1. Vanishing results. The simplest topological operation one can per-
form on smooth manifolds is the connected sum. It is natural then to ask
how this operation affects the Seiberg-Witten invariants. The first result of
this section provides the surprisingly simple answer.

Theorem 4.6.1. (Connected sum theorem) Suppose M; and My are
two compact, oriented smooth manifolds such that by (M;) > 0. Then

sSWan 0, (0) =0, Yo € Spin®(Mi#Ms).

Before we present the proof of this result let us mention a surprising
consequence.

Corollary 4.6.2. No compact symplectic 4-manifold M can be decomposed
as a connected sum My#Msy with by (M;) > 0.

Proof  The result is clear if by (M) = 1 since by (Mj#Msy) = by (M) +
by (Ms). If by (M) > 1 then, according to Taubes’ Theorem 3.3.29 not all
the Seiberg-Witten invariants of M are trivial. B

Remark 4.6.3. (a) The smooth 4-manifolds which cannot be decomposed
as Mi#My with by (M;) > 0 are called irreducible. We can rephrase the
above corollary by saying that all the symplectic 4-manifolds are irreducible.
It was believed, or rather hoped, that the symplectic manifolds exhaust
the list of irreducible 4-manifolds and all other can be obtained from them
by some basic topological operations, much as in the two-dimensional case
where all compact oriented surfaces are connected sums of tori.

This belief was shattered by Z. Szabé in [131], who constructed the
first example of a simply connected, irreducible, non-symplectic 4-manifold.
Immediately after that, R. Fintushel and R. Stern showed in [36] that the
phenomenon discovered by Szabd was not singular and developed a very
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elegant machinery to produce irreducible manifolds, most of which are not
symplectic.

(b) Up to this point we knew only one vanishing theorem: positive
scalar curvature = trivial Seiberg-Witten invariants. The connected sum
theorem, however, has a different flavor since the vanishing is a consequence
of a topological condition rather than of a geometric one.

Proof of Theorem 4.6.1  Set N := M;#M>. Observe that b, (N) > 1
so that the Seiberg-Witten invariants of N are metric independent.

Denote by N; the manifold obtained from M; by deleting a small ball
and then attaching the infinite cylinder Ry x S3. Observe that

N gdz‘ffeo NI#S3,TN2-
On S? there exists a single spin® structure and any two cylindrical structures

g; € Spingyl(ﬁi) are compatible. Thus

Spinc(N) = Spingyl(Nl) x Spin(Ny).

The manifolds Ny and Ny (generically) satisfy all the assumptions of the
Global Gluing Theorem 4.5.17 and thus
Myt (N, Gr) 2= MM, (N1, 61, %) x D, (No, Go%) /S,

Moreover, according to the computation in Example 4.5.13 we have (com-
ponentwise)

dimﬁgfl#&Q(N,gr) = dimﬁu(Nl, 5’1) + dimﬁu(ﬁg,é’g) + 1.

The left-hand side of the above equality can be zero if and only if one of the
two dimensions on the right-hand side is negative, forcing the corresponding
moduli space to be (generically) empty. Thus, if € Spin°(N) is such that
the expected dimension d(6) = 0 then the corresponding moduli space is
generically empty so that sw g (6) = 0.

To deal with the case d(61#d2) > 0 we follow an approach we learned
from Frank Connolly. Suppose g = 61462 € Spin(N) is such that d(5¢) =
2n > 0. Then

sw y (60) = /A Qf
Mz,

where Qg € H? (53\1&0, Z) is the first Chern class of the base point fibration
ST X o= My, (%) 2 Ms, .
Denote by ;, ¢ = 1,2, the first Chern class of the base point fibration
S s Xy o= M, (NG, 64, %) 25 M, (N5, 63).
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It is convenient to think of €2;, j = 0,1, 2, as differential forms. The pullbacks
p*(); are exact and there exist 1-forms 6; such that

de = p*Qj
and

Loam= [ enym vmezy, o1z
mté‘j S)j'té'](*)

(Above, we have tacitly used the fact that the manifolds ﬁ&j are orientable.)
The 1-forms 6; have a simple geometric interpretation: they are global an-
gular forms of the corresponding S'-fibrations. In topology these forms also
go by the name of transgression forms.

On the other hand, we can regard 6y as a global angular form for the
diagonal S'-action on

X = ﬁu(Nla 5‘1, *) X i/)j\tu(NQ, 5’2, *)
so that we can choose
1
Oy = 3 (91 + 92) + exact form.

Thus )
sw 5 (00) = onil /X (01 + 02) A (dOy + dB2)"
0

= % /XlxXg(Hl + 02) A (dby + db2)".

For j = 0,1,2 set m; := dim X; and ¢ := 2-(+1) " Observe that when
9, (N;) # 0 its dimension must be nonnegative and we have

(4.6.1) mi,mo >0, mg=n-+1=mq+ ms.

Using Newton’s binomial formula we deduce

sw . (60) = co mil <m0k— 1> ( . 61 A (d@ﬁ’“) </X2(d92)m0—1—’“>

k=0

+eo n}:i: <m°k 1> </><1 (d@l)k> </X2 Ba A (dez)mol’f).

The integrals involving only powers of (df;) vanish because these are exact
forms. We deduce

sw g (60) = co/

01 A (dO1)"™ + Co/ 0o N (dB2)™.
X1

X2
Using (4.6.1) we now deduce n + 1 > max(mj, ma) so that both integrals
above vanish. W
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Remark 4.6.4. For a proof of the connected sum theorem not relying on
gluing and pasting techniques we refer to [120].

We conclude this subsection with another vanishing result implied by a
topological constraint. This result will be considerably strengthened in the
next subsection.

Before we state the result let us mention that an element x of an Abelian
group G is called essential if it generates an infinite cyclic group.

Proposition 4.6.5. Suppose N is a compact, oriented, smooth 4-manifold
satisfying the following conditions.

(a) by (N) > 1.
(b) There exists a smoothly embedded S* — N with trivial self-intersection
and defining an essential element in H*(N,7Z).

Then all the Seiberg- Witten invariants of N are trivial.

Proof Observe that because the self-intersection of S2 < N is trivial it
admits a small tubular neighborhood U diffeomorphic to the trivial disk
bundle D? x $2. Set N := U = S! x $? and equip it with the product
metric g.

Denote by (N1, §1) the manifold obtained from N by removing U and
attaching the infinite cylinder Ry x N. Moreover, we choose g; such that
Osog1 = g. Also, denote by (NQ, g2) the cylindrical manifold obtained by
attaching the cylinder Ry x N to U and such that d,g2 = g.

Observe that N is diffeomorphic to Nl#rNg for any r > 0. Suppose
there exists a spin® structure & on N such that

Since b+(N) > 1 this implies that ﬁ&(N,gr) # (0, Vr > 0. In particular, if
we use the unique decomposition

0 = 01#02
we conclude that 53\1“(](71,61) # (). At this point we want to invoke the
following topological result, whose proof we postpone.

Lemma 4.6.6. The image of H (N1,Z) — H'(N,Z) has infinite index.
The last result and the positivity of the scalar curvature of N now place

us in the setting of Corollary 4.4.17 of §4.4.3 which implies that ﬁ#(m, 71)
is empty. This contradiction completes the proof of Proposition 4.6.5.

Proof of Lemma 4.6.6 Wei will prove the dual homological statement,
namely that the image of H3(Ny, N,Z) — Ha(N,Z) has infinite index.
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Observe that
Hy(N,7Z) = Hy(S' x S*,7Z) = Z
with generator S% < N = S' x §2. Next, notice that the inclusion

N<— N

induces an injection
Hy(N,Z) — Hy(N,Z)

whose image is generated by the cycle S? — N. Denote by k[S?] the
generator of the image H3(Ny, N,Z) — Hs(N,Z). Thus, there exists a
cycle ¢ € H3(N1, N,Z) such that

dc = k[S?] € Hy(N,Z).
This cycle determines a three-dimensional chain ¢ on N such that
dc = k[S? — N

so that k[S? < N] = 0 € Hy(N,Z). Since the homology class [S? — N] is
essential we deduce k = 0 so that the morphism Hs3(Ny, N,Z) — Ha(N,Z)
is trivial. W

4.6.2. Blow-up formula. In the previous subsection we have shown that
the connected sum of two 4-manifolds with positive b ’s has trivial Seiberg-
Witten invariants. This raises the natural question of understanding what
happens when one of the manifolds is negative definite. In this case we know
that the intersection form is diagonal, exactly as the intersection form of a

——2
connected sum of CP"’s.

In this final subsection we will investigate one special case of this new
problem. More precisely, we will determine the Seiberg-Witten invariants
of M #@2 in terms of the Seiberg-Witten invariants of M. As explained in
Chapter 2, the connected sum M #@2 can be interpreted as the blow-up
of M at some point. It is thus natural to refer to the main result of this
subsection as the blow-up formula.

Suppose M is a compact, oriented, smooth 4-manifold such that b4 (M) >

1. Denote by N; the manifold obtained from M by removing a small ball

and then attaching the infinite cylinder Ry x S3. Observe that
Spin(M) = Spmgy,(Nl).

Now denote by N» the manifold obtained from CP’ by removing a small
disk and then attaching the cylinder R, x S3. Again we have

Spin®(CP) = Spin,,(Ny).

cyl
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A~

(N;) are compatible and the

C

_ N .
Moreover, any two spin® structures &; € Spmcyl

induced map

Sping, (N1) x Sping,,(Ny) — Spin®(M#TP"),

(01,02) — G1#02
is a bijection.

The manifold Ny can also be obtained as in Example 4.3.39 in §4.3.4 by
attaching R, x S2 to the boundary of the Hopf disk bundle over S2. If we
now regard S3 as the total space of the degree —1 circle bundle over S? we
can equip it with a metric g of positive scalar curvature as in Example 4.1.27.
(The round metric is included in the constructions of Example 4.1.27.) Fix
cylindrical metrics §; on N; such that go has positive scalar curvature and

0001 = 9 = 00 02-

The manifold @2 is equipped with a canonical spin® structure o.q,
induced by the complex structure on CP?. The map

Spin®(Na) 3 6 — c1(det(5)) € H*(No, Z) 2 7,

is a bijection onto 2Z+1 C Z where the generator of H 2(N2, Z) is chosen such
that ¢1(0can) = 1. For each n € Z denote by 6, the unique cylindrical spin®
structure on No such that ¢; (6n) = (2n+1). Observe that ¢1(Gcan) = —1
so that Geqn = 0—1.

Theorem 4.6.7. (Blow-up Formula) For every 6 € Spin(M) we have

PN 0 if d(6)<xn(n+1)
W 1 g2 (670m)| —{ swar(8) if d(6) > n(n+1)

Corollary 4.6.8. If By, C Spin®(M) denotes the set of basic classes of M
then

B G#60; &€ By, n € Z d(5) Zn(n—i-l)}.

M#CP" — {

In particular, By # ) < ]BM#@Q # .

Proof of the Blow-up Formula The computations in Example 4.3.39
show that the moduli space §J\I(NQ, Gy) consists of a single reducible mono-
pole and the virtual dimension is d,, = —(n?+n+1). Moreover (see Example
4.5.14 in §4.5.2)

d(6#6y,) = d(6)#d(6y) :=d(6) +d(6,) + 1 =d(6) —n(n+1).
We prove first that

5w 52 (0#60)| = [swar(6)
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if n = +1. We want to use Theorem 4.5.19. The computations in Exam-
ple 4.3.39 show that the assumptions B, Bg, B4 are satisfied with hg = 0.
Moreover, B3 is generically satisfied. We deduce that we have an isomor-
phism between the S'-bundles

P = { My (N1,6, %) — M (K1, 6) |
and
Py i= { Moo, (MHTP gy, %) = Mo, (MHTP", 3y) }.
Using Corollary 4.5.20 we obtain an isomorphism of S'-bundles
P = {00, (N1,6,%) = T (N1,5) } = { M (M, g1, ) — T (M, 3,) } = Q.
Thus we have  := ¢;(Q) = ¢1(P),

swir(6) = <(1 ~9) " [ﬁa(M)]>

- i< (1 - cl(Pn)) o [ﬁ&#&n(M#@Q)]> = 5w, (0#0n).

(The above integrations are well defined since all the manifolds involved are
orientable.)

In general, set

o~

Xn = m&#&n(M#@27gT)7 X = ﬁM(Nha-)'

Example 4.3.39 shows that we can apply Theorem 4.5.19 for any spin¢ struc-
ture &, on Na but if n # +1 we will encounter obstructions to gluing. The
manifold X, is thus the smooth zero set of a section s, of the vector bundle
1
Oni= P xg C'2, hy:= @

over X. The cycle determined by X, in X is therefore the Poincaré dual of
the Euler class of this vector bundle. Observe that

e(0,) = c1(P)h2 = Qh2,
Consequently,

w0 = |{ (L= 97 50 )
— (-2 e0,). 1) = (0 - 0, 1))

_ '< 1- ) [X] >‘ = |swp(5).
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Corollary 4.6.9. (Fintushel-Stern [34], Morgan-Szab6-Taubes [97])
Suppose M is a compact, oriented, smooth 4-manifold satisfying the follow-
ing conditions.

(a) by (M) > 1.

(b) There exists an embedding S* — M which determines an essential ele-
ment of Ha(M,Z) with nonnegative self-intersection d.

Then all the Seiberg- Witten invariants of M are trivial, i.e. By = 0.

Proof Denote by My the d-fold blow-up of M, My := M#d@? Each
blow-up decreases self-intersections by 1 so that M, contains an essentially
embedded 2-sphere with trivial self-intersection. According to Proposition
4.6.5 in the preceding subsection we have

Bar, = 0.
We can now invoke Corollary 4.6.8 to conclude that By, = (. B

Remark 4.6.10. The results of C.T.C Wall [144] imply that if M is a sim-
ply connected manifold with indefinite intersection form and ¢ € Hy(M,Z)
is a primitive class (i.e. Ho(M)/Z - c is torsion free) which is represented by
an embedded 2-sphere and ¢? = 0 then

M = N#(S% x S2) or M = N#(CP*#4CP").

In particular, by the connected sum theorem the Seiberg-Witten invariants
of M must vanish. Corollary 4.6.9 shows that the Seiberg-Witten vanishing
holds even without the primitivity assumption.

Remark 4.6.11. We have reduced the proof of Corollary 4.6.9 to the special
case when the embedded sphere S? < M has self-intersection 0.

Stefano Vidussi has shown in [143] that such an essential sphere exists if
and only if there exists a hypersurface N <— M carrying a metric of positive
scalar curvature such that b;(N) > 0 and decomposing M into two parts
M* satisfying

bl(M) + bl(N) > bl(M+> + bl(M_).
We refer the reader to [111, 143] for details and generalizations of Corollary
4.6.9.

The above vanishing corollary has an intriguing topological consequence.
Corollary 4.6.12. Let M be a compact symplectic 4-manifold with

If ¥ — M is an embedded surface representing an essential element in
Hy(M,7Z) with nonnegative self-intersection then its genus must be positive.
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Proof If the genus of X were zero then, according to Corollary 4.6.9, the
Seiberg-Witten invariants of M would vanish. Taubes’ theorem tells us this
is not possible for a symplectic 4-manifold with b, > 1. B

Remark 4.6.13. (a) The above genus estimate is optimal from different
points of view. First of all, the genus bound is optimal since it is achieved
by the fibers of an elliptic fibration. The condition on self-intersection be-
ing nonnegative cannot be relaxed without affecting the genus bound. For
example, the exceptional divisor of the blow-up of a Kahler surface has
self-intersection —1 and it is represented by an embedded sphere.

(b) The above minimal genus estimate has the following generalization
known as the adjunction inequality.

Suppose M is a closed, oriented 4-manifold such that by (M) > 1. If
> — M is an essentially embedded surface such that ¥ -% > 0 then for any
basic class o € By; we have

29(X2) >2+%-3—(ci(det o), X).
(When g(X) > 1 we can drop the essential assumption.) One can imitate the
proof of the Thom conjecture in §2.4.2 to obtain this result (see [119]). For
a different proof, using the full strength of the cutting-and-pasting technique
we refer to [97].
Observe that if M is symplectic and the essential homology class ¢ €

Hy(M,Z) is represented by a symplectically embedded surface ¥y and
¢+ ¢ > 0 then the adjunction equality implies

29(20) =243 29— <cl(det(a)), 20>.

In particular, if 3 is any other embedded surface representing ¢ we deduce
from the adjunction inequality that

9(X0) < g(%).
This shows that if 3 is a symplectically embedded surface such that -3 > 0
then it is genus minimizing in its homology class.

In a remarkable work, [114], P. Ozsvath and Z. Szab6 have shown that
we can remove the nonnegativity assumption X - ¥ > 0 from the statement
of the adjunction inequality provided we assume that g(X) > 0 and X has
simple type, i.e. if o € By is a basic class then d(o) = 0. It is known that
all symplectic manifolds have simple type; see[97].

Exercise 4.6.1. Use the blow-up formula and the techniques in §2.4.2 to
prove the adjunction inequality in the case X - X > 0.

The adjunction inequality implies the following generalization of Corol-
lary 4.6.12.
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Corollary 4.6.14. Suppose M 1is a symplectic manifold and ¥ — M is an
essentially embedded surface such that -3 > 0. Then

1
(4.6.2) g(£) 21+ 385,

In particular, for any n € Z* we have

n2
g(n¥) > 1+ 72 - 2.

Assume by (M) > 1. For every co € Hom (H?(M,Z),R) and every a,b €

R the set

Seo(a) == {x € H*(M,Z); |(z,co)| < a}
represents a strip in the lattice H2(M,Z). The adjunction inequality shows
that we have restrictions on the location of the set of basic classes. More
precisely, for every essentially embedded surface ¥ — M (g(X) > 0if £-3 <
0) we have

c1(Bar) C Sy (u(E)), u(X) = —x(X)-X-X.

If M also happens to be symplectic, then Taubes’ Theorem 3.3.29 also im-
plies

Cl(BM) - —%Cl(KM) + Sw(degw KM)

Exercise 4.6.2. Suppose M is a closed, oriented 4-manifold with by (M) >
1.

(a) Show that if ¢ € Hy(M,Z) is a nontrivial homology class such that
c- ¢ = 0 which is represented by a smoothly embedded torus T2 < M then
By Cct = {o € Spin®(M); (ci(deto),c) =0}.

b) Show that if ¢ € Hy(M,Z) is represented by an embedded 2-torus and

c-c= —2 then either
<cl (BM)7 C> - {_27 0, 2}
or
<Cl (BM)’ C> - {_1’ 1}
(c) Show that the same conclusion continues to hold if ¢- ¢ = —2 and ¢ is
represented by an embedded 2-sphere.

(d) Suppose ¢ is a homology class represented by an essentially embedded
surface . If

1
g(E):1+§c-c>O

then By C ¢t. If moreover 0 < g(X) < 1+ 3¢ ¢ then By = 0.






Epilogue

A whole is that which has a beginning, a middle and an
end.

Aristotle , Poetics

We can now take a step back and enjoy the view. Think of the places
we’ve been and of the surprises we’ve uncovered! I hope this long and
winding road we took has strengthened the idea that Mathematics is One
Huge Question, albeit that it appears in different shapes, colours and flavors
in the minds of the eccentric group of people we call mathematicians.

I think the sights you’ve seen are so breathtaking that even the clumsiest
guide cannot ruin the pleasure of the mathematical tourist. I also have some
good news for the thrill seeker. There is a lot more out there and, hereafter,
you are on your own. Still, I cannot help but mention some of the trails
that have been opened and are now advancing into the Unknown. (This is
obviously a biased selection.)

We’ve learned that counting the monopoles on a 4-manifold can often be
an extremely rewarding endeavour. The example of Kahler surfaces suggests
that individual monopoles are carriers of interesting geometric information.
As explained in [70], even the knowledge that monopoles exist can lead to
nontrivial conclusions. What is then the true nature of a monopole? The
experience with the Seiberg-Witten invariants strongly suggests that the
answers to this vaguely stated question will have a strong geometric flavour.

In dimension four, the remarkable efforts of C.H. Taubes [136, 137, 138,
139], have produced incredibly detailed answers and raised more refined
questions.

465
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One subject we have not mentioned in this book but which naturally
arises when dealing with more sophisticated gluing problems is that of the
gauge theory of 3-manifolds. There is a large body of work on this sub-
ject (see [25, 43, 44, 70, 77, 78, 83, 88, 89, 91, 109, 111] and the
references therein) which has led to unexpected conclusions. The nature of
3-monopoles is a very intriguing subject and there have been some advances
[70, 72, 100, 108], suggesting that these monopoles reflect many shades
of the underlying geometry. These studies also seem to indicate that three-
dimensional contact topology ought to have an important role in elucidating
the nature of monopoles.

One important event unfolding as we are writing these lines is the in-
credible tour de force of Paul Feehan and Thomas Leness, who in a long
sequence of very difficult papers ([33]) are establishing the original predic-
tion of Seiberg and Witten that the “old” Yang-Mills theory is topologically
equivalent to the new Seiberg-Witten theory. While on this subject we
have to mention the equally impressive work in progress of Andrei Teleman
[140] directed towards the same goal but adopting a different tactic. Both
these efforts are loosely based on an idea of Pidstrigach and Tyurin. A new
promising approach to this conjecture has been recently proposed by Adrian
Vajiac [142], based on an entirely different principle.

Gauge theory has told us that the low-dimensional world can be quite
exotic and unruly. At this point there is no one generally accepted suggestion
about how one could classify the smooth 4-manifolds but there is a growing
body of counterexamples to most common sense guesses. Certain trends
have developed and there is a growing acceptance of the fact that geometry
ought to play a role in any classification scheme. In any case, the world is
ready for the next Big Idea.
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