\qquad Date \qquad

Math 10250 Review for Exam 1

1. (a) Determine the natural domain of $f(x)=\frac{2-x}{x-1}$, find also its inverse $g(x)$.
(b) What is the natural domain of $f(x)=\sqrt{3-2 x}$, and what is its inverse?

Ans. $x \leq 3 / 2 ; g(x)=\frac{3}{2}-\frac{1}{2} x^{2}$
2. A brand of sunglasses selling for $\$ 50$ each has a demand of 1,500 units. However, when the price is increased by $\$ 5$, its demand is decreased by 100 units. Find its demand assuming that is a linear function.

Ans. $q=D(p)=-20 p+2,500$
3. Complete the square for each quadratic and then sketch its graph.
(i) $f(x)=-3 x^{2}+12 x$

Ans. (i) $f(x)=-3(x-2)^{2}+12$; (ii) $f(x)=2(x-3)^{2}-8$
4. When the price p of a particular computer is $\$ 2,000$ then the demand x is 50,000 units per week. However, when the price drops by $\$ 500$ then the demand rises by 25,000 units. On the cost side, the company making these computers has $\$ 40,000,000$ fixed cost and $\$ 600$ expenses per unit. Assuming that the demand is linear, find the profit function P in terms of x and its maximum value.

$$
\text { Ans. } P=-0.02 x^{2}+2,400 x-40,000,000=-0.02(x-60,000)^{2}+32,000,000
$$

5. (a) $\lim _{h \rightarrow 0} \frac{5(1+h)^{2}-5}{h} \stackrel{?}{=}$
(b) $\lim _{h \rightarrow 0} \frac{\frac{1}{2+h}-\frac{1}{2}}{h} \stackrel{?}{=}$

Ans. (a) $10 ;$ (b) $-\frac{1}{4}$
6. The graph of the function $f(x)$ is given in the next Figure.

Which of the following statements is NOT true?
(a) $\lim _{x \rightarrow 2} f(x)=4$
(b) $\lim _{x \rightarrow 4^{-}} f(x)=2$ and $\lim _{x \rightarrow 4^{+}} f(x)=0$
(c) $f(x)$ has limit at $x=4$.
(d) $f(x)$ is continuous except at the points $x=2,4$.
(e) $\lim _{x \rightarrow 0} f(x)=1$.

7. Let $f(x)$ be the function whose graph is shown above. Compute $\lim _{x \rightarrow 2} \frac{5 x^{2}+3 x+4}{\sqrt{x^{3} f(x)+68}}$.
8. If $x \neq 2$ then $f(x)=\frac{x^{2}+2 x-8}{x-2}$. Define $f(2)$ so that $f(x)$ is a continuous function.
9. In which of the following intervals you can be sure that the function $f(x)=x^{4}+2 x^{3}-3 x^{2}-2 x+3$ takes the value 2 ? (i.e the equation $f(x)=2$ has a solution.) $[-3,-2],[-2,-1],[-1,0],[0,1],[1,2],[2,3]$
10. For each function below, find vertical asymptote(s), horizontal asymptote(s), y-intercept, its zero(s), and then sketch its graph.

Ans. (a) v.a: $x= \pm 1$; h.a: $y=1$; zeros: $x= \pm 4$, y-intercept: 16 ; (b) v.a: $x=-1$; h.a: $y=0$; zeroes: None, y-intercept: $y=1$
(a) $f(x)=\frac{x^{2}-16}{x^{2}-1}$
(b) $f(x)=\frac{x-4}{x^{2}-3 x-4}$
11. Suppose that you put $\$ 100$ in an account paying 2% annual interest, compounded daily. How much will you have at the end of 1 day? 2 days? and 3 days? Ans. $100\left(1+\frac{0.02}{365}\right) ; 100\left(1+\frac{0.02}{365}\right)^{2} ; 100\left(1+\frac{0.02}{365}\right)^{3}$
12. Suppose that you have an account paying interest, compounded weekly, has balance given by $P(t)=8000(1.0004)^{52 t}$. What is its principal and annual interest rate?
13. Imagine that you just got that great jobs, which among many good things it offers you one million dollars 45 years from now as a retirement benefit. What is the present value of this amount assuming annual interest of 6% compunded daily. Ans. \$67,220
14. Find the Future value in 20 years of $\$ 100$ deposited into an account paying 5% interest, compounded continuously. Ans. $F V=100 e$
15. A population of bacteria on a growing medium is initially 10 million. Three hours later the number of bacteria is numbered at 15 million. Write down a formula for the population $P(t)$ at time t in hours if the population is growing exponentially. Ans. $P(t)=10(1.145)^{t}$
16. Match the following functions with the given graphs without using your calculator:

$$
\begin{array}{lll}
f_{1}(x)=-x^{1 / 3} & f_{2}(x)=x^{2 / 3} & f_{3}(x)=x^{4}-x-5 \\
f_{4}(x)=\frac{5 x^{4}-25}{x^{2}+5} & f_{5}(x)=\frac{5 x^{3}-25}{x^{2}+5} & f_{6}(x)=\frac{5 x^{2}-25}{x^{2}+5}
\end{array}
$$

17. Match the graphs to the given quadratic functions. Some graphs are superfluous.

$$
\begin{array}{lll}
f_{1}(x)=(x-5)^{2}+2 & f_{2}(x)=a(x-3)^{2}+1 & (a<0) \\
f_{3}(x)=b(x+3)^{2}-1 & (b>0) & f_{4}(x)=(x+5)^{2}+2
\end{array}
$$

(1)

(3)
$x^{(4)}$

(6)
18. A private health club has determined that the number of members depends on the price of a membership, and they are related by an equation of the form $q=3000-20 p$, where q is the number of members and p is the annual price of a membership. The club has a fixed costs of $\$ 20,000$ per year plus an average annual cost of $\$ 40$ per member.
(a) Write the club's revenue R as a function of the price p.

Ans. $R=3000 p-20 p^{2}$
(b) Write the club's profit P as a function of the price p.

Ans. $P=-20 p^{2}+3800 p-140000$
(c) What membership price should the club set to maximize its profit?
(d) Find the break-even point. Interpret your answer.
19. Find the equilibrium price p_{e} and equilibrium quantity q_{e} for each pair of demand and supply functions. Make a sketch of the graphs marking the coordinates of intersection point.
(a) $q=D(p)=-p+12$ and $q=S(p)=2 p-3$ for $p \geq 0$

Ans. $p_{e}=5, q_{e}=7$
(b) $p=D(q)=0.005(q-100)^{2}$ and $p=S(q)=0.1 q+2$ for $0 \leq q \leq 100$

Ans. $p_{e}=8, q_{e}=60$
(c) $q=D(p)=\frac{8}{p+1}$ and $q=S(p)=\frac{1}{3} p+1$

Ans. $p_{e}=3, q_{e}=2$
20. If $\$ 3,000$ is deposited in an account paying 6% annual interest, compounded continuously. How long it will take for the balance to reach $\$ 6,000$?
21. How much money must you invest in an account paying 3% annual interest compounded continuously in order to have a balance of $\$ 20,000$ in 10 years? (Ans. 20000e $e^{-0.3}$)
22. Compare the magnitude 8.0 earthquake which occurred near Samoan on September 29, 2009, with the 7.0 earthquake which occurred in San Francisco on October 17, 1989. (Hint: See Example 2.3.2, p. 140)

