\qquad Date \qquad

Math 10250 Activity 1: Functions and Their Geometric Properties ${ }^{1}$ (Sections 0.2-0.3)

GOAL: Understand the fundamental concept of function as a relation between variables expressed by a formula, a graph, or a table and use it to model change.

Q1: What is a variable? What is a function?

A1: Variable models a changing quantity
Function models a relationship between two variables, say x and y

- x independent variable,
- y dependent variable,
- to an x corresponding only one y.

Example Assume that you have just deposited $\$ 500$ in your bank account at the ND Credit Union that pays annual interest 2% compounded daily, and you want to know what will be your amount at any future day. Use variables and functions to model it.

Exercise 1 Consider the function $f(x)=x^{2}+1$.
(a) Compute the following table of its values:

x	-3	-2	-1	0	1	2	3
$y=f(x)$	10	5	2	1	2	5	10

(b) Compute $f(1+h)=(1+h)^{2}+1=1+2 h+h^{2}+1=2+2 h+h^{2}$
(c) Find the (natural) domain of f. all numbers
(d) Find the range of f. all numbers ≥ 1 since $y=x^{2}+1 \geq 0+1$
(e) Sketch the graph of f. It consists of all points $(x, f(x))$.

Exercise 2 What is the natural domain of $f(x)=\frac{5}{x^{2}-9}$?
Not to violate the laws of arithmetic, we must fave $x^{2}-9 \neq 0$ or $(x-3)(x+3) \neq 0$ or $x \neq \pm 3$.
Exercise 3 Which of the curves below:
(a) is the graph of a function?

Figure 1: Not a function
(b) is the graph of a 1-1 function?

Figure 2: a function, but not 1-1

Figure 3: a 1-1 function

[^0]Exercise 4 Find the inverse of the function $y=f(x)=2 x+1$ and sketch its graph.
Step 1. Solve $y=2 x+1$ for x

$$
\text { We fave } y-1=2 x \text { or } x=\frac{1}{2}(y-1)
$$

Step 2. Interchange x and y

$$
y=\frac{1}{2}(x-1) \quad \text { inverse }
$$

Exercise 5 For the function shown in Figure 2 determine where it is increasing and where it is decreasing.

- Function in Figure 2 is increasing for $x>0$, since $0<x_{1}<x_{2} \Longrightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$.
- Function in Figure 2 is decreasing for $x<0$, since $x_{1}<x_{2}<0 \Longrightarrow f\left(x_{1}\right)>f\left(x_{2}\right)$.

Exercise 6 Is the function $f(x)=x^{4}-3 x^{2}$ even or odd? What about $f(x)=x^{3}+x$ and $f(x)=x^{3}-x^{2}$?

$$
\begin{aligned}
& \left.\qquad \begin{array}{l}
f(-x) \\
=(-x)^{4}-3(-x)^{2} \\
=
\end{array}\right) \\
& \text { So } f(x) \text { is even } \Longrightarrow \\
& \text { graph symmetric w.r.t } y
\end{aligned}
$$

Exercise 7 For the the function $f(x)$, whose graph is shown in Figure 4, sketch the following vertical and horizontal translations
(a) $y=f(x)+3$
(b) $y=f(x)-1$
(c) $y=f(x-1)$
(d) $y=f(x+2)$
(e) $y=f(x+2)+3$
on the same system of Cartesian plane.

(a) vertical translation (v.t.) of graph of $f(x)$, up 3 units
(b) v.t. of graph of $f(x)$, down 1 unit
(c) forizontal translation (f.t.) of graph of $f(x)$, right by 1 unit
(d) f.t. of graph $f(x)$, left 2 units
(e) f.t. of graph of $f(x)$, left 2 units and v.t., up 3 units.

Figure 4
Exercise 8 Sketch the graph of the functions $y=x^{2}$ and $y=(x-3)^{2}+1$.

[^0]: ${ }^{1}$ Alex Himonas \& Alan Howard: Calculus, Ideas and Applications, Wiley (2003).

