Math 10250 Activity 1: Functions and Their Geometric Properties¹ (Sections 0.2–0.3)

GOAL: Understand the fundamental concept of function as a relation between variables expressed by a formula, a graph, or a table and use it to model change.

Q1: What is a variable? What is a function?

A1: Variable models a changing quantity Function models a relationship between two variables, say x and y

- x independent variable,
- y dependent variable,
- to an x corresponding only one y

Example Assume that you have just deposited \$500 in your bank account at the ND Credit Union that pays annual interest 2% compounded daily, and you want to know what will be your amount at any future day. Use variables and functions to model it.

Figure 1: Not a function
 Figure 2: a function, but not 1-1
 Figure 3: a 1-1 function

 Also Himman (a Also Herman Colorida Index I

¹Alex Himonas & Alan Howard: Calculus, Ideas and Applications, Wiley (2003).

Exercise 4 Find the inverse of the function y = f(x) = 2x + 1 and sketch its graph.

Step 1. Solve y = 2x + 1 for x

We have
$$y - 1 = 2x$$
 or $x = \frac{1}{2}(y - 1)$

Step 2. Interchange x and y

$$y = \frac{1}{2}(x-1)$$
 inverse

Exercise 5 For the function shown in Figure 2 determine where it is increasing and where it is decreasing.

- Function in Figure 2 is increasing for x > 0, since $0 < x_1 < x_2 \Longrightarrow f(x_1) < f(x_2)$.
- Function in Figure 2 is decreasing for x < 0, since $x_1 < x_2 < 0 \Longrightarrow f(x_1) > f(x_2)$.

Exercise 6 Is the function $f(x) = x^4 - 3x^2$ even or odd? What about $f(x) = x^3 + x$ and $f(x) = x^3 - x^2$?

Exercise 7 For the function f(x), whose graph is shown in Figure 4, sketch the following vertical and horizontal translations

(a)
$$y = f(x) + 3$$
 (b) $y = f(x) - 1$ (c) $y = f(x - 1)$ (d) $y = f(x + 2)$ (e) $y = f(x + 2) + 3$

on the same system of Cartesian plane.

(a) vertical translation (v.t.) of graph of f(x), up 3 units
(b) v.t. of graph of f(x), down 1 unit
(c) horizontal translation (h.t.) of graph of f(x), right by 1 unit
(d) h.t. of graph f(x), left 2 units
(e) h.t. of graph of f(x), left 2 units and v.t., up 3 units.

Figure 4

Exercise 8 Sketch the graph of the functions $y = x^2$ and $y = (x - 3)^2 + 1$.

