Name \qquad Date \qquad

Math 10250 Activity 2: Linear and Quadratic Functions (Sections 0.4 and 0.5)

GOAL: Understand the concept of slope for lines and linear functions and learn how to visualize quadratic functions by completing the square.

- A linear function is is defined by the formula:

$$
f(x)=\underset{\substack{\uparrow \\ \text { slope }}}{m x}+\underset{\substack{\uparrow \text {-intercept }}}{b} \quad \text { where } m \text { and } b \text { are given numbers. }
$$

- Also, it is defined by a non-vertical line, like in Figure 1, having
slope $=m=\frac{\text { rise }}{\text { run }}=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=$ the same! for any $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$

Exercise 1 Find the slope of the line passing through $(-1,1)$ and $(2,7)$.

slope $=\frac{\Delta y}{\Delta x}=\frac{7-1}{2-(-1)}=\frac{6}{3}=2$.
Figure 1

- Equation of line passing through a point $\left(x_{1}, y_{1}\right)$ and with a given slope m : If (x, y) is another point on the line then $\frac{y-y_{1}}{x-x_{1}}=m$. So we have the point-slope form :

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Exercise 2 Find the equation of the line through $(-1,1)$ and with slope 2.

$$
y-1=2 \cdot(x-(-1)) \text { or } y-1=2 x+2 \text { or } y=2 x+3
$$

Exercise 3 A small surf shop has fixed expenses of $\$ 850$ per month. Each surfboard costs $\$ 100$ to make and sells for $\$ 550$.
(a) Write the monthly cost, revenue, and profit as functions of the number x of surfboards made in a month.

$$
\text { Cost function }=C(x) \stackrel{?}{=} 100 \cdot x+850
$$

Revenue function $=R(x) \stackrel{?}{=}($ price $) \cdot($ quantity $)=550 x$
Profit function $=P(x) \stackrel{?}{=}$ Revenue - Cost $=550 x-(100 x+850)=450 x-850$
(b) Find the break-even point. $0=P(x)=450 x-850 \Longrightarrow x=\frac{850}{450} \approx 2$

Exercise 4 The demand curve of bread in a bakery shop is $q=D(p)=-50(p-5)$ and its supply curve is $q=S(p)=50(p-1)$, where the price p is in dollars and the quantity q is in loaves. Find the equilibrium price p_{e} and equilibrium quantity q_{e}.

$$
\begin{aligned}
& \text { Demand }=\text { supply } \Longrightarrow-50(p-5)=50(p-1) \\
\Longrightarrow & p-1+p-5=0 \Longrightarrow 2 p=6 \Longrightarrow p_{e}=3 \\
\Longrightarrow & q_{e}=S\left(p_{e}\right)=50(3-1)=100 \Longrightarrow q_{e}=100
\end{aligned}
$$

- A quadratic function is a function of the form $f(x)=a x^{2}+b x+c$, where $a \neq 0, b$ and c are given numbers.

It can always be written in the informative form $f(x)=a(x-h)^{2}+k$, which is a horizontal translation by h and a vertical translation by k of the simple parabola $f(x)=a x^{2}$.

Exercise 5 Consider the quadratic function $f(x)=-x^{2}+6 x-5$.
(i) Complete the square to write it in the form $f(x)=a(x-h)^{2}+k$.

$$
\begin{aligned}
f(x) & =-\left[x^{2}+6 x\right]-5=-\left[x^{2}-6 x\right]-5 \\
& =-\left[x^{2}-2 \cdot x \cdot 3\right]-5=-\left[x^{2}-2 \cdot x \cdot 3+3^{2}-3^{2}\right]-5 \\
& =-\left[(x-3)^{2}-9\right]-5=-(x-3)^{2}+4
\end{aligned}
$$

Figure 2
(ii) Use (i) to decide whether $f(x)$ has a minimum value or a maximum value and where it is taken.

It has max value 4 when $x=3$.
(iii) Use (i) to find the roots of $f(x)$.

$$
-(x-3)^{2}+4=0 \Longleftrightarrow(x-3)^{2}-2^{2}=0 \Longleftrightarrow(x-3-2)(x-3+2)=0 \Longleftrightarrow(x-5)(x-1)=0 \Longleftrightarrow x=5,1
$$

(iv) Determine the axis of symmetry and the y-intercept and sketch the graph of $f(x)$.

- $x=3$ is the axis of symmetry
- $f(0)=-5$ is the y-intercept

Exercise 6 A furniture company making oak desks has a fixed cost of $\$ 5,000$ per month and a cost per desk of $\$ 500$. Find how many desks per month it should produce to maximize its profit if the price is given by $p=1000-2.5 x$, where x denotes the number of oak desks produced by the company.

$$
\begin{aligned}
R(x) & =x \cdot(1000-2.5 x), \quad C(x)=500 x+5000 \Longrightarrow \\
P(x) & =R(x)-C(x)=x \cdot(1000-2.5 x)-(500 x+5000)=-2.5 x^{2}+500 x-5000 \\
& =-2.5\left(x^{2}-200 x\right)-5000=-2.5\left(x^{2}-2 \cdot x \cdot 100+100^{2}-100^{2}\right)-5000 \\
& =-2.5\left[(x-100)^{2}-10000\right]-5000=-2.5(x-100)^{2}+20000 \\
& \Longrightarrow \text { maxprof. }=20000 \text { when } x=100
\end{aligned}
$$

Exercise 7 Consider the quadratic $f(x)=x^{2}-5 x+4$.
(a) Find its zeros using the quadratic formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4 \cdot 1 \cdot 4}}{2 \cdot 1}=\frac{5 \pm \sqrt{9}}{2}=\frac{5 \pm 3}{2}\left\{\begin{array}{l}
\frac{5+3}{2}=4 \\
\frac{5-3}{2}=1
\end{array}\right.
$$

(b) Factor it. $f(x)=(x-1)(x-4)$
(c) Determine the sign of $f(x)$.

+	1	-	4	+
$x=0$	\vdots	$x=2$	\vdots	$x=5$
$x-1<0$	\vdots	$x-1>0$	\vdots	$x-1>0$
$x-4<0$	\vdots	$x-4<0$	\vdots	$x-4>0$

check signs at $x=5,2$ and 0 .

