\qquad Date \qquad
Math 10250 Activity 6: Limits (Section 1.2 continued) and Continuity (Section 1.3)
GOAL: Understand behavior of functions at $\pm \infty$ and horizontal asymptotes. For rational functions the behavior at $\pm \infty$ is determined by the leading terms.

- Limits at infinity and horizontal asymptotes

- We say that $\lim _{x \rightarrow \infty} f(x)=L$ if $f(x) \approx L$ when x is $\mathcal{H} \mathcal{G} \mathcal{E}$
- We say that $\lim _{x \rightarrow-\infty} f(x)=L$ if $f(x) \approx L$ when x is $-\mathcal{H Z G G E}$
- We say that $y=L$ is horizontal asymptote if
- $\lim _{x \rightarrow \infty} f(x)=L$ and/or $\lim _{x \rightarrow-\infty} f(x)=L$

Example 1 For the function shown in Figure 1 find:
(i) $\lim _{x \rightarrow \infty} f(x) \stackrel{?}{=} 6 \quad$ and
(ii) $\lim _{x \rightarrow-\infty} f(x) \stackrel{?}{=} 2$

Also, find the horizontal asymptotes.
$y=6$ and $y=2$

Figure 1

Example 2

(i) $\lim _{x \rightarrow \infty} \frac{x^{2}+x}{3 x^{2}+7} \stackrel{?}{=} \lim _{x \rightarrow \infty} \frac{\frac{x^{2}+x}{x^{2}}}{\frac{3 x^{2}+7}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{1+\frac{1}{x}}{3+\frac{7}{x^{2}}}=\frac{1+0}{3+0}=\frac{1}{3}$.

(ii) $\lim _{x \rightarrow-\infty} \frac{4 x^{3}+7 x^{2}}{x^{4}+2} \stackrel{?}{=} \lim _{x \rightarrow-\infty} \frac{\frac{4 x^{3}+7 x^{2}}{x^{4}}}{\frac{x^{4}+2}{x^{4}}}=\lim _{x \rightarrow-\infty} \frac{\frac{4}{x}+\frac{7}{x^{2}}}{1+\frac{2}{x^{4}}}=\frac{0+0}{1+0}=0$.

(iii) $\lim _{x \rightarrow \infty} \frac{x^{3}-2}{x^{2}+1} \stackrel{?}{=} \lim _{x \rightarrow \infty} \frac{\frac{x^{3}-2}{x^{2}}}{\frac{x^{2}+1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{x-\frac{2}{x^{2}}}{1+\frac{1}{x^{2}}}=\frac{\infty-0}{1+0}=\infty$.

Example 3 A company estimates that when it spends x million dollars to advertise its product, its annual revenue R, in millions of dollars, is modeled by the function $R(x)=400-\frac{800}{x+5}$.
(i) Compute $\lim _{x \rightarrow 0} R(x)$ and $\lim _{x \rightarrow \infty} R(x)$.
$\lim _{x \rightarrow 0} R(x)=400-\frac{800}{0+5}=400-160=240$ and $\lim _{x \rightarrow \infty} R(x)=400-0=400 . \quad \quad \lim _{x \rightarrow 0} R(x)=240$ and $\lim _{x \rightarrow \infty} R(x)=400$
(ii) If the company is currently spending 35 million on advertising, would you recommend increasing it to 40 million? To see this clearly, draw the graph of $R(x)$.

$$
\begin{aligned}
& R(35)=400-\frac{800}{35+5}=400-\frac{800}{40}=380 \\
& R(40)=400-\frac{800}{40+5}=400-\frac{800}{45} \approx 382.3 \\
& \text { Increasing advertising from } 35 \text { to } 40 \text { makes no sense. }
\end{aligned}
$$

- Idea of Continuity: A function is continuous if you never have to lift your pencil while drawing its graph. The discontinuities are where you have to lift your pencil.

Definition of continuity

A function $f(x)$ is continuous at a point a in its domain if

1. $\lim _{x \rightarrow a} f(x)$ exists \Longleftrightarrow no gaps
or $x \approx a \Longrightarrow f(x) \approx f(a)$
2. $\lim _{x \rightarrow a} f(x) \stackrel{?}{=} f(a) \Longleftrightarrow$ no holes

Example 4 Referring to the function f, whose graph is shown in Figure 2, find all the discontinuities of f in the interval (-1.2, 7.2).

- $x=-1$ since $x \approx-1 \Longrightarrow f(x) \approx-2 \neq f(-1)=1$ (hole)
- $x=0$ since $x \approx 0 \Longrightarrow f(x) \not \approx f(0)=1$ (gap)
- $x=1$ since $x \approx 1 \Longrightarrow f(x) \approx 2 \neq f(1)=2($ hole $)$
- $x=3$ since $x \approx 3 \Longrightarrow f(x) \approx 5 \neq f(3)=4$ (fole)
- $x=4 \quad \cdots$
- $x=5$
- $x=6$

Figure 2

