\qquad
\qquad

Math 10250 Activity 7: Continuity (Sec. 1.3)

GOAL: Understand the concept of continuity and its basic properties, including the intermediate value theorem.

Idea of Continuity: A function is continuous if you never have to lift your pencil while drawing its graph. The discontinuities are where you have to lift your pencil, i.e, at places where there are gaps or holes.
Example 1 Referring to the function f, whose graph is shown in Figure 1, find all the discontinuities of f in the interval $[-2,5]$.

$$
x=-1,0,1,2,3,4
$$

Figure 1

Definition of continuity

A function $f(x)$ is continuous at a point a in its domain if

1. $\lim _{x \rightarrow a} f(x)$ exists as a finite number (no gap!)
2. $\lim _{x \rightarrow a} f(x)=f(a)$ (no hole!)

Fact: $f(x)=x^{m}$ is continuous everywhere
Theorem (Continuity Rules): If f and g are continuous functions at a then

From this fact and the theorem we get:
1 Polynomials are continuous everywhere.
[2 $\frac{\text { polynomial }}{\text { polynomial }}$ is continuous except at the zeros of denominator .
rational function
Example 2 Determine where the following functions are continuous.
(a) $f(x)=2 x^{5}-3 x^{2}+4 x-15$ For all numbers x
(b) $f(x)=\frac{x^{3}+1}{x^{2}+25}$ For all numbers x
(c) $f(x)=\frac{x^{3}+1}{x^{2}-25}$ For all numbers x except for $x= \pm 5$

Example 3 Find the number c that makes $f(x)=\left\{\begin{array}{ll}\frac{x^{3}-27}{x-3}, & \text { if } x \neq 3 \\ c, & \text { if } x=3\end{array}\right.$ continuous for every x. For $f(x)$ to be continuous at $x=3$, we must have:

$$
\begin{aligned}
c & =f(3)=\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3} \frac{x^{3}-27}{x-3}=\lim _{x \rightarrow 3} \frac{(x-3)\left(x^{2}+3 x+9\right)}{x-3} \\
& =\lim _{x \rightarrow 3}\left(x^{2}+3 x+9\right)=3^{2}+3 \cdot 3+9=27
\end{aligned}
$$

- The intermediate value theorem and zeros of functions

Intermediate Value Theorem (IVT): If f is continuous on $[a, b]$ and k is any number between $f(a)$ and $\overline{f(b)}$ then there is at least one number c in $[a, b]$ such that $f(c)=k$.
$\begin{array}{llll}\text { Good for IVT, } f(b) & - \\ \text { since } f(x) \text { is } \\ \text { continuous! }\end{array}$
Not good for IVT, since $f(x)$ is not continuous!

Pictures: since $f(x)$ is
Existence of Zeros Theorem: Take the above situation where $f(a)$ and $f(b)$ have opposite signs.
Then by IVT, there is at least one number c in (a, b) such that $f(c)=0$. This helps us find zeros of functions (i.e roots).

Example 4 Suppose a continuous function $f(x)$ satisfies the following table of values:

x	-4	-3	-2	-1	0	1	2	3	4
$f(x)$	-2	-3	-2	-1	1	2	1	-1	-2

How many roots can you be sure of $f(x)$ having on the interval $(-4,4)$, and where they are located.
Two roots, one inside the interval $(-1,0)$ and another inside $(2,3)$.
Example 5 Does the equation $x^{4}+8 x^{3}-x^{2}-4 x-1=0$ have a root inside the interval $(0,1)$?
Since $f(0)=-1<0, f(1)=1+8-1-4-1=3>0$, the equation fas a root in $(0,1)$.
Problem Explain why there was a time between the day you were born and today when your height in inches (say 21) was equal to your weight in pounds (say 7).
$(\mathcal{A t} t 18 h=6 f t=72 i n, w=150(6)$

- $f(t)=h(t)-w(t)$
- $f(0)=21-7=14$
- $f(18)=72-150<0$

Since height and weight change continuously.
There is $t^{*}, 0<t^{*}<18$ such that $h\left(t^{*}\right)-w\left(t^{*}\right)=0$ orh $\left(t^{*}\right)=w\left(t^{*}\right)$

Question Is temperature at ND changing continuously? What about the Dow Jones Industrial Average, interest rates, or prices of products?

Yes! Yes! No! No! (Think of more situations)

