Math 10250 Activity 8: Exponential Functions (Section 2.1)

GOAL: Learn exponential functions with different bases and use them to model real-world situations.

▶ Exponential functions are of the form : $f(x) = b^x$, where b > 0 is called the base, like $f(x) = 2^x$.

Q1: Where do they appear?

A1: Everywhere! For example, if we put \$1 in an account paying 5% interest, compounded annually, then t years later it will become $f(t) = (1.05)^t$, which is an exponential function with base b = 1.05.

▶ The laws of exponents. For b > 0 and u and v any numbers, we have

(1) $b^{u+v} \stackrel{?}{=} b^{u} \cdot b^{v}$; e.g., $2^{3+2} \stackrel{?}{=} 2^{3} \cdot 2^{2}$ and $2^{3} \cdot 2^{2} \stackrel{?}{=} 2^{3+2}$ (2) $b^{u-v} \stackrel{?}{=} \frac{b^{u}}{b^{v}}$; e.g., $2^{3-2} \stackrel{?}{=} \frac{2^{3}}{2^{2}}$ and $\frac{2^{3}}{2^{2}} \stackrel{?}{=} 2^{3-2} = 2$

(3) $b^{ru} \stackrel{?}{=} (b^u)^r$ for any real number r; e.g., $2^{3 \cdot 2} \stackrel{?}{=} (2^3)^2$ and $(2^2)^3 \stackrel{?}{=} 2^{2 \cdot 3}$

- (4) $b^0 \stackrel{?}{=} 1$
- (5) $b^{-v} \stackrel{?}{=} \frac{1}{b^{v}};$ e.g., $2^{-2} \stackrel{?}{=} \frac{1}{2^{2}} = \frac{1}{4}$

Example 1 If $b^u = 2$ and $b^v = 3$ then $b^{u-v} \stackrel{?}{=} \frac{b^u}{b^v} = \frac{2}{3}$

• Graph of $y = b^x$

Case 1: b > 1

For example, $y = 2^x$.

(i) Complete the table below:

	x	-1	-0.5	0	0.5	1
	2^x	0.5	0.71	1	1.41	2
Truncate answers to 2 decimal places						

(ii) Plot the points and sketch graph:

- (iii) Properties of b^x when b > 1:
- $b^0 \stackrel{?}{=} 1$
- domain[?] all numbers range[?] all positive numbers
- $\lim_{x \to -\infty} b^x \stackrel{?}{=} 0$ $\lim_{x \to \infty} b^x \stackrel{?}{=} \infty$
- Asymptote: y = 0

Case 2: 0 < b < 1

For example, $y = (1/2)^x$.

(i) Complete the table below:

(ii) Plot the points and sketch graph:

- (iii) Properties of b^x when 0 < b < 1:
- b⁰ [?] = 1
 domain [?] = all numbers range[?] = all pos. numb.
- domain = au numbers range= au pos. num
- $\lim_{x \to -\infty} b^x \stackrel{?}{=} \infty \quad \lim_{x \to \infty} b^x \stackrel{?}{=} 0$
- Asymptote: y = 0

▶ Three applications of the exponential function

1 Compound interest

Example 1 If \$1,000 is invested in an account paying 5% interest, how much will it grow in 10 years if the interest is compounded monthly?

• Compounding per vear = $n \stackrel{?}{=} 12$ • Annual rate = $r \stackrel{?}{=} 0.05$ (in **decimals**) • Compounding rate $=\frac{r}{n} \stackrel{?}{=} \frac{0.05}{12}$ • Time = $t \stackrel{?}{=} 10$ (in years) At the end of 1st period have: $A_1 = 1000 + 1000 \frac{0.05}{12} = 1000 \left(1 + \frac{0.05}{12}\right)^1$ At the end of 2nd period have: $A_2 = A_1 + A_1 \cdot \frac{0.05}{12} = A_1 \left(1 + \frac{0.05}{12}\right)^1 = 1000 \left(1 + \frac{0.05}{12}\right)^2$ At the end of 3th period have: $A_3 = A_2 + A_2 \cdot \frac{0.05}{12} = A_2 \left(1 + \frac{0.05}{12}\right)^1 = 1000 \left(1 + \frac{0.05}{12}\right)^3$ At the end of 12th period have: $A_{12} = A_{11} + A_{11} \cdot \frac{0.05}{12} = A_{11} \left(1 + \frac{0.05}{12}\right)^1 = 1000 \left(1 + \frac{0.05}{12}\right)^{12}$ Interest compounded 12 times a year over t years At the end of 1 year (12 periods) have: $A(1) = 1000 \left(1 + \frac{0.05}{12}\right)^{12 \cdot 1}$ At the end of 2 years (24 periods) have: $A(2) = A(1) + A(1) \left(1 + \frac{0.05}{12}\right)^{12 \cdot 1} = 1000 \left(1 + \frac{0.05}{12}\right)^{12 \cdot 2}$ At the end of t years have: $\underline{A(t) = 1000 \left(1 + \frac{0.05}{12}\right)^{12 \cdot t}}$ • annually $\longrightarrow n = 1$ $A(t) = P\left(1 + \frac{r}{n}\right)^{tn} \quad \text{or} \quad FV = PV\left(1 + \frac{r}{n}\right)^{tn} \quad \bullet \text{ monthly} \rightarrow n = 12$ $\bullet \text{ weekly} \rightarrow n = 52$ General formula: o daily $\longrightarrow n = 365$

Example 2 If \$8,000 is invested in an account paying 3% interest, how much will it grow in 15 years if the interest is compounded quarterly?

 $A(15) = 8000 \left(1 + \frac{0.03}{4}\right)^{15 \cdot 4} \approx 12,525$

2 Population Growth (with unlimited resources)

 $P(t) = P_0 b^t$

Example 3 A certain bacteria culture grows exponentially. In 1 hour the population grows from 300,000 to 500,000. Write a formula expressing the population P as a function of the time t in hours.

Ans. $P(t) = 300, 000(\frac{5}{3})^t$

 $P(t) = 300,000b^{t} \implies b = \frac{5}{3}$ $P(1) = 300,000b^{1} = 500,000 \implies P(t) = 300,000 \left(\frac{5}{3}\right)^{t}$ $3 \quad \underline{\text{Decay of radioactive substances:}} \qquad y = y_{0}b^{t}$

Example 4 Radon gas decays according to the formula $y = y_0(0.835)^t$, where t is measured in days. If there are 500 cubic centimeters left after 7 days, how much was there to begin with?

 $y_0 = 500(0.835)^7 = 500 \Longrightarrow y_0 = 500(0.835)^{-7}$