\qquad
\qquad
Math 10250 Activity 10: Logarithmic Functions (Section 2.3)

GOAL: Learn logarithmic functions as inverses of exponential functions and use them to model various interesting situations, like intensity of earthquakes, noise level, and acidity of beer.

Q1: What "undoes" the exponential function $f(x)=b^{x}$? (For example, if $f(x)=2^{x}$ then $3 \stackrel{f}{\mapsto} 2^{3}=8$.)
A1: The logarithmic function with base \boldsymbol{b}, denoted $\log _{b}$. (If $g(x)=\log _{2} x$ then $8 \stackrel{g}{\mapsto} \log _{2} 8=3$.)
Definition: $\log _{b}$ (for $b>0, b \neq 1$) is defined by

$$
\log _{b} x=y \quad \Leftrightarrow b^{y}=x, x>0
$$

Example 1 Express the following logarithms as an integer or fraction without using a calculator.
(a) $\log _{3} 9=y \Longleftrightarrow 3^{y}=9=3^{2} \Longleftrightarrow y=2$
(b) $\log _{(0.1)} 1000=y \Longleftrightarrow(0.1)^{y}=1000 \Longleftrightarrow(10)^{-y}=10^{3}$
$\Longleftrightarrow y=-3$

- The graph of $\log _{b} x$ for $b>1$

As an example, first graph $y=2^{x}$ and obtain the graph of $y=\log _{2} x$.

Properties of logarithmic functions

- $\log _{b} 1 \stackrel{?}{=} 0$
- domain $\stackrel{?}{=}(0, \infty)$ and range $\stackrel{?}{=}(-\infty, \infty)$
- It's continuous and increasing.
- $\lim _{x \rightarrow \infty} \log _{b} x \stackrel{?}{=} \infty$ and $\lim _{x \rightarrow 0^{+}} \log _{b} x \stackrel{?}{=}-\infty$

Note: The most common choices for b are $10, e$ and 2 .

- The laws of logarithms. (Reversing the laws of exponents) Let $s, t>0$. Then
(1) $\log _{b}(s t) \stackrel{?}{=} \log _{b} s+\log _{b} t$;e.g., $\log _{2}(3 \cdot 8) \stackrel{?}{=} \log _{2} 3+\log _{2} 8$
(2) $\log _{b}\left(\frac{s}{t}\right) \stackrel{?}{=} \log _{b} s-\log _{b} t$;e.g., $\log _{2}\left(\frac{3}{8}\right) \stackrel{?}{=} \log _{2} 3-\log _{2} 8$
(3) $\log _{b}\left(t^{r}\right) \stackrel{?}{=} r \log _{b} t \quad$ for any number $r \quad$;e.g., $\log _{2}\left(3^{7}\right) \stackrel{?}{=} 7 \log _{2} 3$
(4) $\log _{b} 1 \stackrel{?}{=} 0$
(5) $\log _{b}\left(\frac{1}{t}\right) \stackrel{?}{=}-\log _{b} t \quad$;e.g., $\log _{2}\left(\frac{1}{8}\right) \stackrel{?}{=}-\log _{2} 8=-3$

Q2: Can you explain property (1)? It follows from the corresponding law of exponent.
A2: Letting $u=\log _{b} s$ and $v=\log _{b} t$, we fave $s=b^{u}$ and $t=b^{v}$. So $s \cdot t=b^{u} \cdot b^{v} \stackrel{(1)}{\stackrel{(1)}{e x p}} b^{u+v} \Longleftrightarrow \log _{b} s \cdot t \stackrel{\text { def }}{=} u+v=$ $\log _{b} s+\log _{b} t$.

Example 2 Use the approximation $\log _{10} 0.5 \approx-0.301$ to estimate $\log _{10} 20$.

$$
\log _{10} 20=\log _{10}\left(\frac{10}{0.5}\right)=\log _{10} 10-\log _{10} 0.5 \approx 1-(-0.301)=1+0.301=1.301
$$

Example 3 Use the approximation $\log _{2} 3 \approx 1.585$ and $\log _{2} 5 \approx 2.322$ to estimate $\log _{2} 45$.

$$
\log _{2} 45=\log _{2}(5 \cdot 9)=\log _{2} 5+\log _{2} 3^{2}=\log _{2} 5+2 \log _{2} 3 \approx 2.322+2 \times 1.585=5.492
$$

Example 4 Suppose A and b are positive numbers with $\log _{3} A=b$. Write $\log _{3}\left(\frac{3}{\sqrt[3]{A}}\right)$ in terms of b.

$$
\log _{3}\left(\frac{3}{A^{\frac{1}{3}}}\right)=\log _{3} 3-\log _{3} A^{\frac{1}{3}}=1-\frac{1}{3} \log A=1-\frac{b}{3}
$$

Example 5 A bank teller claims that a saving account with principal of $\$ 1000$ earning interest at a annual rate of 1.3%, compounded weekly, after T years would at least double. What is the smallest possible T in whole years?

$$
\begin{aligned}
& A=1000\left(1+\frac{0.013}{52}\right)^{52 \cdot t} \stackrel{\text { must }}{=} 2000 \Longrightarrow\left(1+\frac{0.013}{52}\right)^{52 \cdot t}=2 \\
\Longrightarrow & 52 \cdot t \log _{2}\left(1+\frac{0.013}{52}\right)=\log _{2} 2=1 \Longrightarrow t=\frac{1}{52 \log _{2}\left(1+\frac{0.013}{52}\right)}
\end{aligned}
$$

- Logarithms with base 10

Logarithms with base 10, called common logarithms, are used in many well-known applications.
1 The Richter scale

$$
\text { Richter value }=\log _{10}\left(\frac{x}{A}\right)
$$

where A is the amplitude of the seismic wave of a reference earthquake and x is the amplitude of the seismic wave of the earthquake in question.

Example 6 One of the worst earthquakes in history occurred in Tokyo and registered 8.3 on the Richter scale. A more recent earthquake in California in 1989 registered 7.2. How much more severe was the earthquake in Tokyo in terms of the amplitude of its seismic wave?

Ans. $10^{1.1}$ larger.
$\left.\begin{array}{l}8.3=\log _{10}\left(\frac{X_{T}}{A}\right) \Longrightarrow \frac{X_{T}}{A}=10^{8.3} \\ 7.2=\log _{10}\left(\frac{X_{C}}{A}\right) \Longrightarrow \frac{X_{C}}{A}=10^{7.2}\end{array}\right\} \Longrightarrow \frac{X_{T}}{X_{C}}=10^{8.3-7.2}=10^{1.1} \Longrightarrow X_{T}=10^{1.1} X_{C} \Longrightarrow X_{T}=12.59 X_{C}$
2 The decibel scale
Noise level in decibels $=10 \log _{10}\left(\frac{x}{I}\right)$,
where I is the amplitude of a minimal audible sound wave and x is the amplitude of another sound wave. Read Text Example 2.3.3 (p. 141).

3 The pH scale $\quad \mathrm{pH}$ value $=-\log _{10}\left[\mathrm{H}^{+}\right]$,
where $\left[\mathrm{H}^{+}\right]$is the concentration of hydrogen ions in a solution. Read Text Example 2.3.4 (p. 142).

