\qquad Date \qquad

Math 10250 Activity 12: The Slope of a Graph (Section 3.1)

GOAL: Understand the fundamental concept of the slope to a curve using limits and slope of lines. Also realize that slope to a curve is the same as instantaneous rate of change.

The slope at the point $(a, f(a))$ on the graph of $y=f(x)$ is the slope of the tangent line to the graph at $(a, f(a))$. We need three key concepts to find the slope at each point on the graph of $y=f(x)$:

- Slope of line (Already done!)
- Limits (Already done!)
- Average rate of change (To be done!).

- Average Rate of Change

Definition: The average rate of change of $f(x)$ over the interval $[a, b]=$ $[a, a+h]$ is:

$$
\frac{\Delta y}{\Delta x}=\frac{f(b)-f(a)}{b-a}=\frac{f(a+h)-f(a)}{h}=*
$$

Graphical Interpretation: Use the graph here to explain the graphical meaning of average rate of change of $f(x)$ over an interval $[\mathrm{a}, \mathrm{b}]$.
Linear Models: $f(x)=m x+b$

Example 1 Find the average rate of change of $f(x)=2 x-1$ at $x=a$.
For any a and h, we fave: $\frac{\Delta y}{\Delta x}=\frac{[2(a+h)-1]-[2 a-1]}{h}=\frac{2 h}{h}=2$ same!
Note: In the general case $f(x)=m x+b$ we have $\frac{\Delta y}{\Delta x}=m$, the same! for any a and h.

Nonlinear Model of Galileo: It can be shown experimentally that the distance travelled by a stone released at rest from the top of a building is given by $f(t)=16 t^{2}$.
Q1: Compute the following:
(a) Average speed over $1 \leq t \leq 3=\frac{\text { Change in distance }}{\text { Change in time }}=\frac{f(3)-f(1)}{3-1}=64$
(b) Average speed over $1 \leq t \leq 1+h=\frac{f(1+h)-f(1)}{h}=\frac{16(1+h)^{2}-16 \cdot 1}{h}=$?
(c) Complete the table:

h	-0.01	-0.001	0	0.001	0.01
$\frac{f(1+h)-f(1)}{h}$	31.984	31.9984	$?$	32.0016	32.016

Note: The average rate of change is not the same!
Q2: What is the value of $L=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$? What physical quantity does L represents?
Since: $*=\frac{16\left(1+2 h+h^{2}\right)-16}{h}=\frac{32 h+16 h^{2}}{h}=\frac{h(32+16 h)}{h}=32+16 h$
We have: $L=\lim _{h \rightarrow 0}(32+16 h)=32=$ velocity $=$ speed.
Remark: We also call the value L the instantaneous rate of change of $f(t)=16 t^{2}$ at $t=1$.

Use the graph here to give a graphical interpretation of the value of $L=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$.

- Instantaneous Rate of Change

Definition: The instantaneous rate of change of $f(x)$ at $x=a$ is the value of the limit

$$
\text { Instantaneous rate }=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Remark: Graphically, the instantaneous rate of change of $f(x)$ at $x=a$ is the slope of the tangent line to the curve $y=f(x)$ at the point $(a, f(a))$.

Example 2 Consider the function $f(x)=x^{2}-5 x+4$.
(i) Find the instantaneous rate of change of $f(x)$ at $x=3$ using limits.

Step 1: Find (form) the average rate of change from 3 to $3+h$ (or the slope of the secant line joining $(3, f(3)$) and $(3+h, f(3+h))$.

$$
\frac{f(3+h)-f(3)}{h} \stackrel{(1)}{=} \frac{\left[(3+h)^{2}-5(3+h)+4\right]-\left[3^{2}-5 \cdot 3+4\right]}{h}
$$

Step 2: Simplify!

$$
\frac{f(3+h)-f(3)}{h} \stackrel{(2)}{=} \frac{9+6 h+h^{2}-15-5 h+4-9+15-4}{h}=\frac{h+h^{2}}{h}=1+h
$$

Step 3: Let $h \rightarrow 0$ in the average rate of change (or the slope of the secant $\operatorname{line}^{\text {en }} . \lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h} \stackrel{(3)}{=} \lim _{h \rightarrow 0}(1+h)=1$
Conclusion: Instantaneous rate of change of $f(x)$ at $x=3$ is 1
(ii) What is the equation of tangent line to the graph of $y=f(x)$ at $x=3$?

When $x=3, y=f(3)=3^{2}-5 \cdot 3+4=9-15+4=-2$. Also, slope is 1 . Thus equation of tangent line $y-(-2)=$ $1 \cdot(x-3) \Longrightarrow y=x-5$
(iii) Using the steps in (i), find an expression for the slope of the graph $y=f(x)$ at any given x.

Step 1: $\frac{f(x+h)-f(x)}{h} \xlongequal{(1)} \frac{(x+h)^{2}-5(x+h)+4-\left(x^{2}-5 x+4\right)}{h} \stackrel{(2)}{=} \frac{x^{2}+2 x h+h^{2}-5 x-5 h+4-x^{2}+5 x-4}{h}=\frac{h(2 x+h-5)}{h}=2 x+h-5$
Step 2: $\lim _{h \rightarrow 0}(2 x+h-5)=2 x-5$
Example 3 Using limits, find a formula for the instantaneous rate of change and slope of the following important functions:

- $f(x)=x^{2}$, for any x.

Ans. $2 x$
$\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \stackrel{(1)}{=} \lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \stackrel{(2)}{=}$
$\lim _{h \rightarrow 0} \frac{x^{2}+2 h x+h^{2}-x^{2}}{h}=\lim _{h \rightarrow 0}(2 x+h) \stackrel{(3)}{=} 2 x$.

- $f(x)=\sqrt{x}$, for any $x>0$. (In economics it could be a utility function with x being wealth.) Ans. $\frac{1}{2 \sqrt{x}}$

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x) \stackrel{1}{=}}{h} \lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x} \stackrel{2}{=} \lim _{h \rightarrow 0} \frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})}}{h(x+h)} \\
= & \lim _{h \rightarrow 0} \frac{(\sqrt{x+h})^{2}-(\sqrt{x})^{2}}{h(\sqrt{x+h}+\sqrt{x})}=\lim _{h \rightarrow 0} \frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}} \stackrel{(3)}{=} \frac{1}{2 \sqrt{x}} .
\end{aligned}
$$

