Name \qquad Date \qquad

Math 10250 Activity 15: The Derivative as a Rate (Section 3.3 continued)

GOAL: To learn that when the function is cost, revenue and profit then its derivative is called marginal and realize that the derivative has different names in different situations.

Example 1 Suppose you are driving due east on a straight road towards New York. At 1:00 pm (set $t=0$) you drive by a gas station (set $s=0$) at the speed of 60 miles per hour (1 mile per minute) and begin to decelerate for 1 minute, reaching a full stop. You pause for 2 minutes to check your map then start moving again eastward, accelerating for 1 minute reaching the speed of 60 miles per hour again. Draw a graph illustrating your position $s(t)$ beginning at $1: 00 \mathrm{pm}$. Measure position in miles and time in minutes.

- The second derivative of $f(x) \longmapsto f^{\prime \prime}(x)=\left(f^{\prime}(x)\right)^{\prime}$

Example 2 For the functions $f(t)=3 t^{3}+6 t^{2}+7 t+11$ and $h(t)=t^{4}-\frac{1}{t^{2}}$ below, find the indicated higher order derivative and evaluate it at $t=1$.
(a) $f^{\prime \prime}(t)=\left(9 t^{2}+12 t+7\right)^{\prime}$ $=18 t+12$
$f^{\prime \prime}(1) \stackrel{?}{=} 18 \cdot 1+12=30$

$$
\begin{aligned}
(\mathrm{b}) & \begin{aligned}
h^{\prime \prime \prime}(t) & = \\
& =\left(4 t^{3}+2 t^{-3}\right)^{\prime \prime} \\
& \left.=24 t+24 t^{2}-6 t^{-4}\right)^{\prime} \\
h^{\prime \prime \prime}(1) \stackrel{?}{=} 24 & +24=48
\end{aligned}
\end{aligned}
$$

- Marginal functions are the derivatives (rate of change) of:
- Cost function $=C(x)=$ cost of producing x items.
- Revenue function $=R(x)=$ income earned from the sale of x items.
- Profit function $=P(x) \stackrel{?}{=} R(x)-C(x)$.
marginal cost $=M C(x)=C^{\prime}(x) \leftarrow$ rate at which cost is changing
marginal revenue $=M R(x)=R^{\prime}(x) \leftarrow$ rate at which revenue is changing
marginal profit $=M P(x)=P^{\prime}(x)=R^{\prime}(x)-C^{\prime}(x) \leftarrow$ rate at which profit is changing
Example 3 The revenue function of a certain company is $R(x)=40 x-0.2 x^{2}$ and its cost function is $C(x)=20 x+100$. Find the marginal revenue, marginal cost and marginal profit functions.

$$
\begin{gathered}
M R(x)=R^{\prime}(x)=40-0.4 x, \quad M C(x)=C^{\prime}(x)=20 \\
M P(x)=P^{\prime}(x)=R^{\prime}(x)-C^{\prime}(x)=40-0.4 x-20=20-0.4 x
\end{gathered}
$$

Example 4 The marginal cost and revenue for a certain footwear manufacturer are given by $M C(x)=500$ and $M R(x)=1000-3 x$, where x is the number of pairs of shoes produced and sold per week.
4(a) What is the marginal profit? $P^{\prime}(x)=R^{\prime}(x)-C^{\prime}(x)=1000-3 x-500=500-3 x$
4(b) If the company is currently producing 100 pairs per week, should it increase or decrease production in order to raise its profit? Explain your answer.
$P^{\prime}(100)=500-3 \cdot 100=200>0 \Longrightarrow$ Increasing production is good! since then profit is rising! (Gaving positive slope).

4(c) What if the company is currently producing 150 pairs per week? 200 pairs per week?
$P^{\prime}(150)=500-3 \cdot 150=500-450=50>0 \Longrightarrow \quad$ Increase production is good! again!
$P^{\prime}(200)=500-3 \cdot 200=500-600=-100<0 \Longrightarrow$ Decreasing production is good! since then profit is falling! (having negative slope).

Marginal Profit Rule:

- If $M P(x)>0$ then increasing production is beneficial.
- If $M P(x)<0$ then decreasing production is beneficial.

- Modeling population growth

For very simple populations, the growth rate of the population $P(t)$ is proportional to its size at any given time

t. This is expressed by the following differential equation: $\frac{d P}{d t}=k P \quad$| $k=\begin{array}{c}\text { proportionality } \\ \text { constant }\end{array}$ |
| :---: |

Example 5 Assume that the U.S. population P increases at a rate equal to 0.02 of its size at any given time t. Write a differential equation modeling this situtation.

Later we will solve this equation and will find the familiar formula

$$
P(t)=P_{0} e^{0.02 t}
$$

where P_{0} is the initial population.
Example 6 Suppose $P_{A}(t)$ and $P_{B}(t)$ are the population sizes of two colonies of insects, both of which are functions of time (in days). Translate each of the following statements into a formula involving the functions and/or their derivatives:
(a) Initially, Colony B is three times as large as colony $A . P_{B}(0)=3 P_{A}(0)$
(b) Colony B is three times as large as colony A at all times. $P_{B}(t)=3 P_{A}(t)$
(c) Colony A is growing at three times the rate of colony B at all times. $P_{A}^{\prime}(t)=3 P_{B}^{\prime}(t)$
(d) Colony A is growing at a rate of 1000 insects per day after three weeks. $P_{A}^{\prime}(21)=1000$
(e) The rate at which colony B grows is proportional to its size. $\frac{d P_{B}}{d t}=r P_{B}$

- Another example of rates

Example 7 A kettle filled with water at temperature $100^{\circ} \mathrm{C}$ is set in a kitchen. The temperature of the kitchen is $20^{\circ} \mathrm{C}$. Let $H(t)$ be the temperature (in ${ }^{\circ} \mathrm{C}$) of the water at time t (in minutes). If the graph of the derivative of $H(t)$ is given in the figure, answer the following questions:
(a) Is the water cooling off or heating up? Explain your answer.

Since H^{\prime} is negative, which means the slope of the graph of the temperature $H(t)$ is negative, we know that $H(t)$ is sloping down, i.e. the water is cooling.
(b) Sketch a graph for the temperature $H(t)$ in the axes provided. Explain your answer.

Water temperature decreases and approaches room temperature.

