Name \qquad Date \qquad

Math 10250 Activity 16: Differentiability and Linear Approximation (Section 3.4)

GOAL: To approximate a differentiable function near a given point $x=a$ with the equation of its tangent line (a simpler linear function) at $x=a$. Discuss continuity versus differentiablity.

- Differentiability A function $f(x)$ is said to be differentiable if each point of its graph has a non-vertical tangent line. This means that the slope at each point of the graph is a finite number.

Graphically, differentiable means that each small segment of the graph of $f(x)$ is almost identical to a straight line. This is illustrated in Figures 1 through 3 below. As you zoom into the point $(a, f(a))$, the segment of the graph of $f(x)$ near point a becomes more and more like its tangent line at $x=a$.

Q1: Referring to Figure 3, what is the equation of the tangent line to the graph of $y=f(x)$ at $(a, f(a))$?
Using the point-slope formula $y-y_{1}=m\left(x-x_{1}\right)$ with $x_{1}=a, y_{1}=f(a)$ and $m=f^{\prime}(a)$ we see that the equation of the tangent line is: $\quad y-f(a)=f^{\prime}(a)(x-a)$
Since the graph of $f(x)$ near point a is almost the same as its tangent line at a, we have:

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a) \leftarrow \text { Linear approximation of } f(x) \text { near point a }
$$

Remark: If $f(x)$ is a differentiable function at $x=a$, the two values $f(a)$ and $f^{\prime}(a)$ allow us to estimate the value of $f(x)$ when x is close to a !

Example 1 (a) Find the tangent line to $f(x)=x^{2}$ at $x=2$.
Since $f(2)=2^{2}=4, f^{\prime}(x)=2 x \Longrightarrow f^{\prime}(2)=4$ the equation of the tangent line is: $y=4+4(x-2)$
(b) Give the tangent line approximation of $f(x)$ near 2 .

The linear approximation is: $x^{2} \approx 4+4(x-2)$

(c) Using your answer in (b), estimate the following values and comment on their accuracy:
(i) $f(2.01) \stackrel{?}{\approx} 4+4(2.01-2)$
(ii) $f(1.9) \stackrel{?}{\approx} 4+4(1.9-2)$
(iii) $f(3) \stackrel{?}{\approx} 4+4(3-2)$
$=4+4(0.01)$
$=4.04$
$=4+4(-0.1)$
$=3.6$
$=4+4$
$=8$

Example 2 Apply linear approximation to the function $f(x)=x^{1 / 2}=\sqrt{x}$ to estimate $\sqrt{25.5}$.
Agood neighbor of $x=25.5$ is $a=25$ because it is the closest point at which $f(a)$ and $f^{\prime}(a)$ are easy to compute. Thus, $f(x)=\sqrt{x}=x^{\frac{1}{2}} \Longrightarrow f(25)=\sqrt{25}=5$,
$f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}} \Longrightarrow f^{\prime}(25)=\frac{1}{2 \sqrt{25}}=\frac{1}{2.5}=0.1$
$\sqrt{x} \approx 5+0.1(x-25) \Longrightarrow \sqrt{25.5} \approx 5+0.1(25.5-25)=5+0.1(0.5)=5.05$

Example 3 Use the tangent line approximation to estimate $\sqrt[3]{26.31}$.
\mathcal{A} good neighbor of $x=26.31$ is $a=27$ since $\quad f(x)=\sqrt[3]{x} \approx f(27)+f^{\prime}(27)(x-27)$
$f(x)=\sqrt[3]{x}=x^{\frac{1}{3}} \Longrightarrow f(27)=\sqrt[3]{27}=3$
$\Longrightarrow \sqrt[3]{x} \approx 3+\frac{1}{27}(x-27)$
$f^{\prime}(x)=\frac{1}{3} x^{-\frac{2}{3}}=\frac{1}{3 \sqrt[3]{x^{2}}} \Longrightarrow f^{\prime}(27)=\frac{1}{27}$
$\sqrt[3]{26.31} \approx 3+\frac{1}{27}(26.31-27)$
Example 4 The cost of producing 200 units of a certain item is $\$ 5,000$, and the marginal cost of producing 200 units is $\$ 100$. Use linear approximation to estimate the cost of producing 202 units.

$$
C(x) \approx C(200)+C^{\prime}(200)(x-200)=5,000+100(x-200) \Longrightarrow C(202) \approx 5,000+100(202-200)=5,200
$$

Example 5 Assume that a population grows according to the (exponential) model $\frac{d P}{d t}=0.02 P$. If the population now is 5 millions, use linear approximation to estimate this population 10 years later. (Ans: 6 millions)
Since $P(0)=5$ and $P^{\prime}(0)=0.02 P(0)=(0.02) \cdot 5=0.1$, we have $P(t) \approx P(0)+P^{\prime}(0)(t-0)=5+0.1 t$. Thus, $P(10) \approx 5+0.1 \cdot 10=6$ millions.

- Differentiability and continuity

Example 6 According to figure 6, a) $f(x)$ is discontinuous at $x \stackrel{?}{=} 1,4$

$$
\text { b) } f(x) \text { is not differentiable at } x \stackrel{?}{=} 1,4,2,3
$$

Definition: A function $f(x)$ is differentiable at point $x=a$ if the graph of $f(x)$ has a non-vertical tangent line at $(a, f(a))$. In terms of slope and limits, this means that

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \quad \text { exists and is a finite number }
$$

Example 7 (a) Sketch the graph of $f(x)=|x|$ and decide by visual inspection whether $f(x)$ is differentiable at $x=0$.
$f(x)$ is not differentiable at $x=0$

(b) Now, use the limit definition to decide whether $f(x)$ is differentiable at $x=0$.

Since $\frac{f(0+h)-f(0)}{h}=\frac{|h|}{h} \quad$ Since $|h|=h$ for $h>0$, we get $\lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=1$. And since $|h|=-h$ for $h<0$, we also get $\lim _{h \rightarrow 0^{-}} \frac{|h|}{h}=-1$. Since the two one-sided limits are not equal, we conclude the limit as $h \rightarrow 0$ does not exist, wfich means the function does not fave a derivative at $x=0$.

Remark: $f(x)=|x|$ is a function that is continuous but NOT differentiable.
Q2: Can a differentiable function not be continuous? A2: №
Theorem. If a function f is differentiable at a, then it is continuous at a.
Quadratic Approximation. If a function $f(x)$ has first and second derivative at a then: $f(x) \approx f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}$. This is useful
 in optimization since it is a complete square when $f^{\prime}(a)=0$ (critical point).

