Name
Date \qquad
Math 10250 Activity 18: The Product and Quotient Rules (Section 3.6)

GOAL: To learn how to compute the derivatives of a product and a quotient of two functions.

- The Product Rule: $\frac{d}{d x}[f(x) \cdot g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$

Note: $\frac{d}{d x}[f(x) \cdot g(x)]=\frac{d}{d x}[g(x) \cdot f(x)]$.
Example 1 Use the product rule to find the derivatives:
(a) $\frac{d}{d x}\left[x^{2}\left(3 x^{3}-x\right)\right]=\left(x^{2}\right)^{\prime}\left(3 x^{3}-x\right)+x^{2}\left(3 x^{3}-x\right)^{\prime}$
(b) $\frac{d}{d x}\left[e^{-2 x} \ln x\right]=\left(e^{-2 x}\right)^{\prime} \ln x+e^{-2 x}(\ln x)^{\prime}$
$=(2 x)\left(3 x^{3}-x\right)+x^{2}\left(9 x^{2}-1\right)$
$=6 x^{4}-2 x^{2}+9 x^{4}-x^{2}$
$=15 x^{4}-3 x^{2}$

$$
=-2 e^{-2 x} \ln x+e^{-2 x} \cdot \frac{1}{x}
$$

- The Quotient Rule: $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$

In general, $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right] \neq \frac{d}{d x}\left[\frac{g(x)}{f(x)}\right]$.
Example 2 Find the equation of the tangent line to the graph of $y=f(x)=\frac{x}{x^{2}+1}$ at the point $x=2$.
To find the equation of tangent line at $x=2$ we use the

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{(x)^{\prime}\left(x^{2}+1\right)-x\left(x^{2}+1\right)^{\prime}}{\left(x^{2}+1\right)^{2}} \\
& =\frac{x^{2}+1-2 x^{2}}{\left(x^{2}+1\right)^{2}}=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}
\end{aligned} \left\lvert\, \begin{aligned}
& f(2)=\frac{2}{2^{2}+1}=\frac{2}{5} \\
& f^{\prime}(2)=\frac{1-2^{2}}{\left(2^{2}+1\right)^{2}}=\frac{-3}{25}
\end{aligned} \begin{aligned}
& \text { point-slope equation } y-y_{1}=m\left(x-x_{1}\right) \text { with } x_{1}= \\
& y_{1}=f(2)=\frac{2}{5} \text { and } m=f^{\prime}(2)=-\frac{3}{25} \text {. Thus, } \\
& y-\frac{-3}{25}(x-2) \xrightarrow[2]{f^{\prime}(2)=-\frac{3}{25}}
\end{aligned}\right.
$$

Example 3 Use the appropriate differentiation rules that you have learned so far to find the derivatives below. Some algebra may be helpful.
(a) $\frac{d}{d x}\left(\frac{x^{2}+x-3}{100}\right)$
$=\frac{1}{100} \frac{d}{d x}\left(x^{2}+x-3\right)$
$=\frac{2 x+1}{100}$
(b) $\frac{d}{d x}\left(\frac{x+e^{x}}{e^{x}}\right)$
$=\frac{\left(x+e^{x}\right)^{\prime} e^{x}-\left(x+e^{x}\right)\left(e^{x}\right)^{\prime}}{\left(e^{x}\right)^{2}}$
(c) $\frac{d}{d x}\left(\frac{\ln x}{x^{2}}\right)=\frac{(\ln x)^{\prime}\left(x^{2}\right)-(\ln x)\left(x^{2}\right)^{\prime}}{\left(x^{2}\right)^{2}}$
$=\frac{\frac{1}{x} \cdot x^{2}-\ln x(2 x)}{x^{4}}=\frac{x-2 x \ln x}{x^{4}}$
$=\frac{x(1-2 \ln x)}{x^{4}}=\frac{1-2 \ln x}{x^{3}}$
$=\frac{\left(1+e^{x}\right) e^{x}-\left(x+e^{x}\right) \cdot\left(e^{x}\right)}{\left(e^{x}\right)^{2}}$
(d) $\frac{d}{d x}\left(\frac{x^{2}+x-3}{x^{10}}\right)=\frac{\left(x^{2}+x-3\right)^{\prime} x^{10}-\left(x^{2}+x-3\right) \cdot\left(x^{10}\right)^{\prime}}{\left(x^{10}\right)^{2}}$
$=\frac{\left(1+e^{x}-x-e^{x}\right) \cdot\left(e^{x}\right)}{\left(e^{x}\right)^{2}}=\frac{1-x}{e^{x}}$
$=\frac{(2 x+1) x^{10}-\left(x^{2}+x-3\right) \cdot\left(10 x^{9}\right)}{x^{10 \cdot 2}}$
$=\frac{2 x^{11}+x^{10}-10 x^{11}-10 x^{10}+30 x^{9}}{x^{20}}=\frac{-8 x^{11}-9 x^{10}+30 x^{9}}{x^{20}}$
Faster: $(\mathrm{d})=\frac{d}{d x}\left[x^{-8}+x^{-9}-3 x^{-10}\right]=-8 x^{-9}-9 x^{-10}+30 x^{-11}$

Example 4 Suppose the demand for a certain product is given by $q=f(p)$, where p is the price per unit and q is the number sold. The revenue is given by $R=p q$.
(a) If $f(300)=20,000$ and $f^{\prime}(300)=-30$, find $d R / d p$ when $p=300$.

$$
\begin{aligned}
& R(p)=p \cdot q=p \cdot f(p) \\
& \frac{d R}{d p}=f(p)+p f^{\prime}(p)
\end{aligned}
$$

$$
\begin{aligned}
\frac{d R}{d p}(300) & =f(300)+300 f^{\prime}(300)=20,000+300 \cdot(-30) \\
& =20,000-9000=11,000>0
\end{aligned}
$$

(b) If the product is currently selling for $\$ 300$ per unit, should the company increase or decrease the price in order to raise the revenue?

Since $R^{\prime}(300)>0$, the company should increase the price.
Example 5 For what x does the graph $y=x e^{x}$ have slope zero?

$$
0=\left(x e^{x}\right)^{\prime}=e^{x}+x e^{x}=e^{x}(1+x)=0 \Longrightarrow x=-1
$$

Ans: $x=-1$

Example 6 Find the equation of the tangent line to the graph of $y=\frac{1-\ln x}{1+\ln x}$ at $x=1$.
Ans: $y=-2 x+3$

$$
\begin{array}{rl|c}
\frac{d y}{d x} & =\frac{-\frac{1}{x}(1+\ln x)-(1-\ln x) \frac{1}{x}}{(1+\ln x)^{2}} & \begin{array}{c}
y(1)=\frac{1-0}{1+0}=1 \quad y^{\prime}(1)=\frac{-2}{1 \cdot 1}=-2 \\
\text { Using the point-slope equation of a line }
\end{array} \\
& =\frac{-\frac{1}{x}-\frac{1}{x} \ln x-\frac{1}{x}+\frac{1}{x} \ln x}{(1+\ln x)^{2}} & \begin{array}{c}
\text { with } x_{1}=1, y_{1}=1 \text { and } m=-2 \text {, we fave } \\
y-1=-2(x-1)
\end{array} \\
& =\frac{-2}{x(1+\ln x)^{2}} & y=-2 x+2+1=-2 x+3
\end{array}
$$

Example 7 Let $p(x)=f(x) g(x)$ and $q(x)=\frac{f(x)}{g(x)}$. Using the graph of $f(x)$ and $g(x)$ below find 1 (a) $p^{\prime}(a)$

$$
\begin{aligned}
p^{\prime}(x) & =f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
p^{\prime}(a) & =f^{\prime}(a) g(a)+f(a) g^{\prime}(a) \\
& =2 \cdot 10+5 \cdot(-2)=10
\end{aligned}
$$

(b) $q^{\prime}(a)$

$$
\text { Ans: } \begin{aligned}
p^{\prime}(a) & =10 \text { and } q^{\prime}(a)=0.3 \\
q^{\prime}(x) & =\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}} \\
q^{\prime}(a) & =\frac{f^{\prime}(a) g(a)-f(x) g^{\prime}(a)}{[g(a)]^{2}} \\
& =\frac{2 \cdot 10-5 \cdot(-2)}{[10]^{2}} \\
& =\frac{20+10}{100}=\frac{3}{10}=0.3
\end{aligned}
$$

$$
2
$$

