\qquad Date \qquad

Math 10250 Activity 19: The Chain Rule (Section 3.7)

GOAL: To learn how to compute the derivative of a composition of two functions.
Q1: Which rule would you use to compute the following derivatives?
(a) $\left[\frac{x^{2}+1}{x+1}\right]^{\prime} \underline{\text { quotient }}$
(c) $\left[x^{2}+e^{x}\right]^{\prime}$ sum
(d) $\left[\left(x^{2}+1\right) \cdot 2^{x}\right]^{\prime} \quad \underline{\text { product }}$
(b) $\left[\frac{x^{2}+1}{e+1}\right]^{\prime} \underline{\text { quotient }}$
(e) $\left[\ln \left(x^{2}+1\right)\right]^{\prime}$ none

- The Composite Function. A function $h(x)$ is said to be a composite function of $g(x)$ followed by $f(x)$ if $h(x)=f(g(x))$. We may write: $\quad h: x \stackrel{g}{\longmapsto} g(x) \stackrel{f}{\longmapsto} f(g(x))$

Example 1 Find the functions $f(x)$ and $g(x)$, for unequal x, such that $h(x)=f(g(x))$:
(a) $h(x)=\left(x^{4}+2 x^{2}+7\right)^{21} \quad h: x \stackrel{g}{\longmapsto} g(x)=x^{4}+2 x^{2}+7 \stackrel{f}{\longmapsto} f(g(x))=\left(x^{4}+2 x^{2}+7\right)^{21}$

Ans: $f(x) \stackrel{?}{=} x^{21} \quad$ and $\quad g(x) \stackrel{?}{=} x^{4}+2 x^{2}+7$
(b) $h(x)=e^{x^{2}+1}$
$h: x \stackrel{g}{\longmapsto} x^{2}+1 \stackrel{f}{\longmapsto} f(g(x))=e^{x^{2}+1}$
Ans: $f(x) \stackrel{?}{=} e^{x} \quad$ and $\quad g(x) \stackrel{?}{=} x^{2}+1$

- The Chain Rule

Q2: In a SMS (short message service) competition for the title of "Fastest SMS Thumbs", it is observed that Competitor A inputs text three times faster than B and Competitor B inputs text two times faster than C. How much faster is Competitor A than Competitor C? Why?

$$
\begin{aligned}
& A-- \text { Rate of } A \text { relative to } B--B-- \text { Rate of } B \text { relative to } C--C \\
& \left|\begin{array}{cc}
\frac{\Delta A}{\Delta B}=3 & \frac{\Delta B}{\Delta C}=2
\end{array}\right| \Longrightarrow \frac{\Delta A}{\Delta B} \cdot \frac{\Delta B}{\Delta C}=\frac{\Delta A}{\Delta C}
\end{aligned}
$$

Suppose $y=f(g(x))$. To find a formula for $\frac{d y}{d x}=\frac{d}{d x}[f(g(x))]$, we set $u=g(x)$ then $y=f(u)$.

Our guess is in fact correct, and the formula for $\frac{d y}{d x}$ is called the Chain Rule (in Leibniz notation).
But $\frac{d y}{d x}=\frac{d}{d x}[f(g(x))]=[f(g(x))]^{\prime}, \frac{d y}{d u}=f^{\prime}(u)=f^{\prime}(g(x))$ and $\frac{d u}{d x}=g^{\prime}(x)$. Thus we also have:

$$
\frac{d}{d x}[f(g(x))]=[f(g(x))]^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Example 2 Find the derivatives:
(a) $\left[\ln \left(x^{2}+1\right)\right]^{\prime} \stackrel{?}{=} \frac{1}{u} \frac{d u}{d x}$

$$
=\frac{1}{x^{2}+1} \cdot 2 x
$$

(b) $\left[\left(x^{4}+2 x^{2}+7\right)^{21}\right]^{\prime} \stackrel{?}{=}$
$=21\left(x^{4}+2 x^{2}+7\right)^{20}\left(4 x^{3}+4 x\right)$
(c) $\left[x \ln \left(2+e^{x}\right)\right]^{\prime} \stackrel{?}{=} 1 \cdot \ln \left(2+e^{x}\right)+x \cdot \frac{1}{2+e^{x}}\left(0+e^{x}\right)$

Example 3 For what x does the graph of $y=e^{\frac{1}{3} x^{3}-4 x}$ have slope zero?

$$
\frac{d y}{d x}=e^{\frac{1}{3} x^{3}-4 x} \cdot\left(x^{2}-4\right)=0 \Longrightarrow x^{2}-4=0 \Longrightarrow x= \pm 2
$$

(d) $\left[e^{x^{2}+1}\right]^{\prime} \stackrel{?}{=} e^{x^{2}+1}(2 x+0)=2 x e^{x^{2}+1}$

Example 4 Let $f(x)=\frac{g\left(x^{2}\right)}{\sqrt{x+1}}$. Find the slope of the graph of $f(x)$ at $x=3$.

$$
f^{\prime}(x)=\frac{g^{\prime}\left(x^{2}\right) \cdot 2 x \cdot \sqrt{x+1}-g\left(x^{2}\right) \cdot \frac{1}{2}(x+1)^{-\frac{1}{2}}}{x+1}=\frac{3 \cdot 2 \cdot 3 \cdot 2-(-2) \cdot \frac{1}{2} \cdot \frac{1}{2}}{4}
$$

Example 5 Let $A(x)=g(f(x))$ and $B(x)=g(g(x))$. Use the graph of $f(x)$ and $g(x)$ to compute each of the following derivatives if it exists. If it does not exist, explain why.
(a) $A^{\prime}(1) \stackrel{?}{=}$

$$
\begin{aligned}
& A^{\prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x) \\
& A^{\prime}(1)=g^{\prime}(f(1)) \cdot f^{\prime}(1)=g^{\prime}(2) \cdot f^{\prime}(1)
\end{aligned}
$$

does not exist since $g^{\prime}(2)$ does not exist.

$$
g^{\prime}(1)=-\frac{7}{2}
$$

(b) $B^{\prime}(1) \stackrel{?}{=}$

$$
g^{\prime}(2) \text { does not exist }
$$

$B^{\prime}(x)=g^{\prime}(g(x)) \cdot g^{\prime}(x)$
$B^{\prime}(1)=g^{\prime}(g(1)) \cdot g^{\prime}(1)=g^{\prime}(3) \cdot g^{\prime}(1)=1 \cdot \frac{-7}{2}=-\frac{7}{2}$

$$
f^{\prime}(1)=2
$$

$$
g^{\prime}(3)=1
$$

Example 6 Diatoms are microscopic algae surrounded by a silica shell that are found both in salt and fresh water, and they are a major source of atmospheric oxygen. The size of a diatom colony depends on many factors, including temperature. Suppose that samples taken in a Midwestern lake showed that the concentration of diatoms was modeled as a function of the temperature by the equation

$$
C=1.4-e^{-0.001 h^{2}} \quad \text { for } 0<h<40,
$$

where C is the concentration of diatoms (in million per cubic centimeter) and h is the temperature of the water (in degrees Celsius).
(a) $\frac{d C}{d h} \stackrel{?}{=} 0-e^{-0.001 h^{2}}(-0.002 h)=0.002 h e^{-0.001 h^{2}}$
(b) Suppose the temperature of the lake is $10^{\circ} \mathrm{C}$ and falling at the rate of 2 degrees per hour. At what rate is the concentration of diatoms changing with respect to time?

$$
\frac{d c}{d t}=\frac{d c}{d h} \cdot \frac{d h}{d t}=0.002 h e^{-0.001 h^{2}} \cdot \frac{d h}{d t}=-0.002 \cdot 10 e^{-0.001 \cdot 100} \cdot 2=-0.04 e^{-0.1}
$$

