\qquad Date \qquad

Math 10250 Activity 21: First Derivative Tests (Section 4.1)

GOAL: To use information given by $f^{\prime}(x)$ to find where $f(x)$ is increasing and decreasing, and to locate maxima and minima.

- The derivative test for increasing and decreasing functions

Q1: What does f^{\prime} tell us about f ?

Figure 1

A1: - If $f^{\prime}(x)>0$ for $\alpha<x<\beta$, then $f(x)$ is \qquad increasing for $\alpha<x<\beta$.

- If $f^{\prime}(x)<0$ for $\alpha<x<\beta$, then $f(x)$ is \qquad decreasing for $\alpha<x<\beta$.

- Determining the sign of $f^{\prime}(x)$

What we have seen thus far: To find where f is increasing or decreasing, we need to find where $f^{\prime}(x)$ is positive and negative. To do this, we start by finding the critical points of $f(x)$.
Definition: Critical points of the function f are points c in the domain of f where (a) $f^{\prime}(c)=0$ or (b) $f^{\prime}(c)$ does not exist.

Q2: Where are the critical points of the function $f(x)$ in Figure 1? Label them c_{1}, c_{2}, \ldots
Remark: The only possible places (of x) where $f^{\prime}(x)$ changes signs are at (i) critical points or (ii) where the graph has a vertical asymptote or is undefined.

Example 1 Find all values of x for which $f(x)=x^{3}+3 x^{2}-9 x+3$ is increasing or decreasing with the steps outlined below.

Step 1: Find all critical points of f. (That is all points c in the domain where $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.)

$$
\begin{aligned}
& \text { Since, } \\
& f^{\prime}(x)=3 x^{2}+6 x-9=3\left(x^{2}+2 x-3\right)=3(x+3)(x-1)=0 . \\
& \text { We see that, we fave the critical points at: } x=-3 \text { and } x=1
\end{aligned}
$$

Step 2: Find points where f has a vertical asymptote or is undefined. Answer: None
Step 3: Draw a number line, mark all points found in Steps 1 and 2, and find the sign of $f^{\prime}(x)$ in each interval between marked points.

x	$-\infty$		-3		1	$+\infty$	
sign of $f^{\prime}(x)$		+	0	-	0	+	
info about $f(x)$							

Step 4: Write down the values of x for which f is increasing $\left(f^{\prime}(x)>0\right)$ and those for which f is decreasing $\left(f^{\prime}(x)<0\right)$.
From the sign table above, we have:
$\bullet f$ is increasing for $-\infty<x<-3$ and $1<x<\infty$. - f is decreasing for $-3<x<1$.

- First derivative test for maxima and minima

Definitions: Let c be a point in the domain of a function $f(x)$.

- $f(x)$ has a local minimum (or relative minimum) at c if $f(c) \leq f(x)$ for all x in an interval around c.
- $f(x)$ has a local maximum (or relative maximum) at c if $f(c) \geq f(x)$ for all x in an interval around c.
- $f(x)$ has a global minimum (or absolute minimum) at c if $f(c) \leq f(x)$ for all x in the domain of f.
- $f(x)$ has a global maximum (or absolute maximum) at c

local extrema

\swarrow global extrema if $f(c) \geq f(x)$ for all x in the domain of f.

Example 2 Consider the following graph and locate all local and global extrema.

local minima at: $x=-2,2,5,7$ local maxima at: $\quad x=1,3,6,8$
global minimum at: $x=5$
global maximum at: $x=8$

Fact: Critical points are the only candidates for extrema. But you may have a critical point that's not an extremum.

The first derivative test for maxima and minima

If $f(x)$ has a critical point at c, then

- there is a local maximum at $x=c$ if $f^{\prime}(x)$ changes its sign from positive to negative, and
- there is a local minimum at $x=c$ if $f^{\prime}(x)$ changes its sign from negative to positive.

Example 3 Find all critical points of the given function and use the derivative to determine where the function is increasing, where it is decreasing, and where it has a local maximum and minimum, if any.

Critical points: $x=0, x=-2$

$$
\begin{aligned}
& \text { (a) } f(x)=x^{2} e^{x} \\
& f^{\prime}(x)=x^{2} e^{x}+2 x e^{x} \\
& =x e^{x}(x+2)=0
\end{aligned}
$$

localmax localmin
at $x=-2$ at $x=0$

(b) $f(x)$ is such that the graph of the derivative of $f(x)$ is given below.

- Critical points: $x=-1,1,2,3$.
- Increasing: $(-1,1),(2,3),(3, \infty)$.
- Decreasing: $(-\infty,-1),(1,2)$.
- Localmaximum at $x=1$.
- Localminimum at $x=-1,2$.

