Math 10250 Activity 21: First Derivative Tests (Section 4.1)

GOAL: To use information given by f'(x) to find where f(x) is increasing and decreasing, and to locate maxima and minima.

\blacktriangleright The derivative test for increasing and decreasing functions

Q1: What does f' tell us about f?

Figure 1

A1: • If f'(x) > 0 for $\alpha < x < \beta$, then f(x) is increasing for $\alpha < x < \beta$.

• If f'(x) < 0 for $\alpha < x < \beta$, then f(x) is decreasing for $\alpha < x < \beta$.

▶ Determining the sign of f'(x)

What we have seen thus far: To find where f is increasing or decreasing, we need to find where f'(x) is positive and negative. To do this, we start by finding the **critical points** of f(x).

Definition: Critical points of the function f are points c in the domain of f where (a) f'(c) = 0 or (b) f'(c) does not exist.

Q2: Where are the critical points of the function f(x) in Figure 1? Label them c_1, c_2, \cdots

Remark: The only possible places (of x) where f'(x) changes signs are at (i) **critical points** or (ii) where the graph has a **vertical asymptote** or is undefined.

Example 1 Find all values of x for which $f(x) = x^3 + 3x^2 - 9x + 3$ is increasing or decreasing with the steps outlined below.

Step 1: Find all **critical points** of f. (That is all points c in the domain where f'(c) = 0 or f'(c) does not exist.)

Since, $f'(x) = 3x^2 + 6x - 9 = 3(x^2 + 2x - 3) = 3(x + 3)(x - 1) = 0$. We see that, we have the critical points at: x = -3 and x = 1

Step 2: Find points where f has a **vertical asymptote** or is undefined. Answer: $\underline{\mathcal{N}one}$

Step 3: Draw a number line, mark all points found in Steps 1 and 2, and find the sign of f'(x) in each interval between marked points.

Step 4: Write down the values of x for which f is increasing (f'(x) > 0) and those for which f is decreasing (f'(x) < 0).

From the sign table above, we have:

• f is increasing for $-\infty < x < -3$ and $1 < x < \infty$. • f is decreasing for -3 < x < 1.

▶ First derivative test for maxima and minima

Definitions: Let c be a point in the domain of a function f(x).

- f(x) has a **local minimum** (or relative minimum) at c if $f(c) \le f(x)$ for all x in an interval around c.
- \sum_{i} local extrema
- f(x) has a **local maximum** (or relative maximum) at c if f(c) > f(x) for all x in an interval around c.
- f(x) has a **global minimum** (or absolute minimum) at c if $f(c) \le f(x)$ for all x in the domain of f.
- f(x) has a **global maximum** (or absolute maximum) at c if $f(c) \ge f(x)$ for all x in the domain of f.
- Solution global extrema

Example 2 Consider the following graph and locate all local and global extrema.

local minima at: x = -2, 2, 5, 7

local maxima at: x = 1, 3, 6, 8

global minimum at: x = 5

global maximum at: x = 8

Fact: Critical points are the only *candidates* for extrema. But you may have a critical point that's not an extremum.

The first derivative test for maxima and minima

If f(x) has a critical point at c, then

- there is a local maximum at x = c if f'(x) changes its sign from positive to negative, and
- there is a local minimum at x = c if f'(x) changes its sign from negative to positive.

Example 3 Find all critical points of the given function and use the derivative to determine where the function is increasing, where it is decreasing, and where it has a local maximum and minimum, if any.

- (b) f(x) is such that the graph of the **derivative** of f(x) is given below.
- Critical points: x = -1, 1, 2, 3.
- *Increasing:* $(-1,1),(2,3),(3,\infty)$.
- Decreasing: $(-\infty, -1), (1, 2)$.
- Local maximum at x = 1.
- Local minimum at x = -1, 2.

