Date

Math 10250 Activity 22: First Derivative Tests (Section 4.1 continued)

GOAL: To use information given by f'(x) to find where f(x) is increasing and decreasing, and to locate maxima and minima.

First, let's review what we learned last time.

▶ The derivative test for increasing and decreasing functions

Method for finding where a function f is increasing/decreasing
1. Find all critical points of f. (That is, find all points in the domain where f'(x) = 0 or f'(x) does not exist.)
2. Find points where f has a vertical asymptote or is undefined.
3. Plot points in 1 and 2 on the x-axis (making intervals).
4. Take one point a in each interval and compute f'(a). The sign of f'(a) is the sign of

- f' throughout that interval.
- 5. f is **increasing** on intervals where f' is **positive**
- f is **decreasing** on intervals where f' is *negative*

Example 1 Find all values of x for which $f(x) = \frac{1}{x^2 - x}$ is increasing or decreasing with the steps outlined below.

Step 1: Find all **critical points** of f. (That is, all points c in the domain where f'(c) = 0 or f'(c) does not exist.)

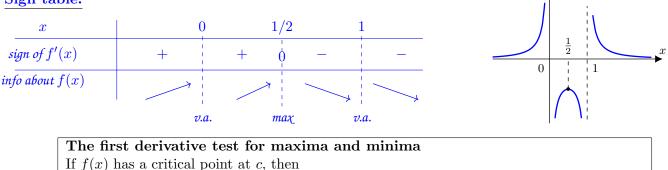
$$f'(x) = \frac{-(2x-1)}{(x^2-x)^2} = 0 \Longrightarrow 2x - 1 = 0 \Longrightarrow \boxed{x = \frac{1}{2}} \text{ critical points}$$

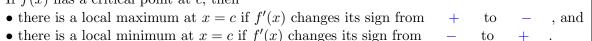
Step 2: Find points where f has a **vertical asymptote** (v.a.) or is undefined. Answer: x = 0 and x = 1 $x^2 - x = 0 \implies x(x - 1) = 0 \implies x = 0$ and x = 1 are v.a.

Step 3: Draw a number line, mark all the points found in Steps 1 and 2, and find the sign of f'(x) in each interval between marked points.

Step 4: Write down the values of x for which f is increasing (f'(x) > 0) and those for which f is decreasing (f'(x) < 0).

Sign table:



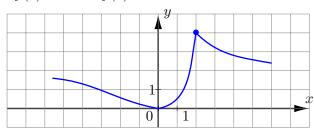


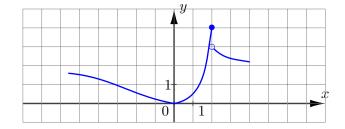
Example 2 In Example 1, where does f(x) have a local maximum or local minimum, if any?

At $x=rac{1}{2}$, f(x) has a local maximum

Example 3 Sketch the graphs of **two different** functions sharing the same properties below. The graphs should have at least one feature that is markedly different.

- f'(x) < 0 on $(-\infty, 0)$ or $(2, \infty)$. • f'(0) = 0 but f'(2) does not exist.
- f'(x) > 0 on (0,2). • $\lim_{x \to +\infty} f(x) = 2 = \lim_{x \to -\infty} f(x)$.
- f(0) = 0 and f(2) = 4.





▶ Global Maximum and Global Minimum

Q1: How can we determine the global maximum or global minimum of a given function?

A1: One way is to study how the function increases and decreases.

Example 4 Find the local and global extrema, if any, of $f(x) = x^2 e^{-x}$ for $-\infty < x < \infty$.

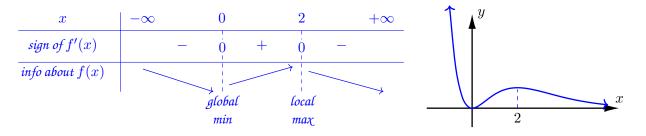
Step 1: Find all critical points of f.

 $f'(x) = 2x \cdot e^{-x} + x^2 e^{-x}(-1) = x \cdot e^{-x}(2-x) = 0$. There are critical points at x = 0 and x = 2.

Step 2: Find points where f has a vertical asymptote or is undefined. Answer: <u>None</u>

Step 3: Find the values of f(x) at all critical points and the behavior of f(x) at $\pm \infty$.

f(0) = 0, $f(2) = 4e^{-2}$, $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2}{e^x} \approx \frac{big}{flage} = 0$ and $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^2}{e^x} \approx \frac{big}{small} = \infty$ Step 4: Give a rough sketch of the graph of f(x) indicating clearly where f is increasing and decreasing.



Step 5: Read off the global maximum and the global minimum from the sketch above. If there are none state so.

Global min at x = 0. Since for all x we have $f(x) \ge f(0) = 0$.