\qquad Date \qquad

Math 10250 Activity 25: Sketching Graphs (Section 4.3)

GOAL: To apply techniques from algebra and calculus to obtain a detailed sketch of the graph of a given function.

Example 1 Sketch the graph of $f(x)=x e^{-x^{2} / 2}$ by completing the steps below.
a. Find all x-intercepts and y-intercepts of the graph of $f(x)$ whenever possible.

$$
\begin{aligned}
& f(x)=0 \Longrightarrow x e^{-\frac{x^{2}}{2}}=0 \Longrightarrow x=0 \quad x \text {-intercept } \\
& f(0)=0 \Longrightarrow y=0 \quad y \text {-intercept }
\end{aligned}
$$

x	
$f(x)$	$-\quad 0$
	0

b. Find coordinates of all critical points, vertical asymptotes, and places where $f(x)$ is undefined. $f^{\prime}(x)=\left(1-x^{2}\right) e^{-\frac{x^{2}}{2}}=0 \Longrightarrow x=-1,1 \quad$ critical points
c. Determine where $f(x)$ is increasing and where it is decreasing.

x		-1	1		
$f^{\prime}(x)$	-	0	+	0	-
$f(x)$	\searrow		\nearrow	\vdots	
		$c_{1} p$		$c p$	\searrow
			min		\max

d. Determine the concavity and coordinates of inflection points of $f(x)$.
$\left(f^{\prime \prime}(x)=\left(x^{3}-3 x\right) e^{-x^{2} / 2}\right)$
$f^{\prime \prime}(x)=\left[-2 x+\left(1-x^{2}\right)(-x)\right] e^{-\frac{x^{2}}{2}}$
$=\left(x^{3}-3 x\right) e^{-\frac{x^{2}}{2}}$
$f^{\prime \prime}(x)=0 \Longrightarrow x\left(x^{2}-3\right)=0$
$\Longrightarrow x(x-\sqrt{3})(x+\sqrt{3})=0$
$\Longrightarrow x=0, \pm \sqrt{3}$

x	$-\sqrt{3}$			0		$\sqrt{3}$	
$f^{\prime \prime}(x)$	-	0	$+$	0	-	0	$+$
$f(x)$							

e. Find all asymptotes and limit at infinity whenever applicable. Check for any symmetry.

$$
\begin{aligned}
& \lim _{x \rightarrow \pm \infty} f(x)=\lim _{x \rightarrow \pm \infty}\left(x e^{-\frac{x^{2}}{2}}\right) \approx \frac{\mathcal{B i g}}{\mathcal{H} \text { uge }}=0 \Longrightarrow y=0 \text { is horizontal asymptote. } \\
& f(-x)=-x e^{-\frac{x^{2}}{2}}=-f(x) \Longrightarrow \text { symmetric about origin. }
\end{aligned}
$$

f. Sketch the graph below labeling all important features. Your picture should be large and clear.

Example 2 Sketch the graph of $g(x)=\frac{x}{x^{2}-4}$ by completing the steps below.
a. Find all x-intercepts and y-intercepts of the graph of $g(x)$ whenever possible.
$g(x)=0 \Longrightarrow x=0 \quad x$-intercept $\quad x= \pm 2 \quad$ vertical asymptote $g(0)=0 \quad y$-intercept

x	-2	0	2
$g(x)$	$-v_{i} a_{1}+{ }_{1}$	$-v_{i} . a_{.}+$	

b. Find coordinates of all critical points, vertical asymptotes, and places where $g(x)$ is undefined.

$$
g^{\prime}(x)=\frac{1\left(x^{2}-4\right)-x(2 x-0)}{\left(x^{2}-4\right)^{2}}=\frac{x^{2}-4-2 x^{2}}{\left(x^{2}-4\right)^{2}}=-\frac{x^{2}+4}{\left(x^{2}-4\right)^{2}}
$$

c. Determine where $g(x)$ is increasing and where it is decreasing.

| x | | -2 | 2 | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $g^{\prime}(x)$ | - | - | - | |
| $g(x)$ | \searrow | v.a. | \searrow v.a. | \searrow |

d. Determine the concavity and coordinates of inflection points of $g(x) . \quad\left(g^{\prime \prime}(x)=\frac{\left(24+2 x^{2}\right) x}{\left(x^{2}-4\right)^{3}}=\frac{24+2 x^{2}}{\left(x^{2}-4\right)^{2}} \cdot \frac{x}{x^{2}-4}\right)$

$$
\begin{aligned}
& g^{\prime \prime}(x)=-\frac{2 x\left(x^{2}-4\right)^{2}-2\left(x^{2}-4\right) \cdot 2 x\left(x^{2}+4\right)}{\left(x^{2}-4\right)^{4}} \\
& =-\frac{2 x^{3}-8 x-4 x^{3}-16 x}{\left(x^{2}-4\right)^{3}} \\
& =\frac{2 x^{2}+24}{\left(x^{2}-4\right)^{2}} \cdot \frac{x}{(x+2)(x-2)}=0 \Longrightarrow x=0
\end{aligned}
$$

e. Find all asymptotes and limits at infinity whenever applicable. Check for any symmetry.

$$
\begin{aligned}
& \lim _{x \rightarrow \pm \infty} g(x)=\lim _{x \rightarrow \pm \infty} \frac{x}{x^{2}-4}=0 \Longrightarrow y=0 \quad \text { is horizontal asymptote. } \\
& g(-x)=\frac{-x}{(-x)^{2}-4}=\frac{-x}{(x)^{2}-4}=-g(x) \Longrightarrow \quad \text { symmetric about origin. }
\end{aligned}
$$

f. Sketch the graph below labeling all important features. Your picture should be large and clear.

Your Turn. Sketch the graph of the solution to the Logistic Model for $r=0.9, K=10$, and $y_{0}=1$ or $y_{0}=6$:

$$
y=f(t)=\frac{y_{0} K}{y_{0}+\left(K-y_{0}\right) e^{-r t}} .
$$

