\qquad Date \qquad

Math 10250 Activity 27: Optimization (Section 4.4 continued) and Applied Optimization Problems (Section 4.5)

GOAL: To find maximum and minimum of a continuous function over an interval with one or both endpoints excluded.

- Case 1: Optimizing $f(x)$ on a closed interval (Done in last class)

Example 1 Find the global maximum and minimum of the function $f(x)=x e^{-x / 2}$ for [1, 4]. Give a sketch of the graph of $f(x)$ clearly indicating where the global maximum and minimum are.

$$
\begin{aligned}
f^{\prime}(x) & =1 \cdot e^{-\frac{x}{2}}+x e^{-\frac{x}{2}}\left(-\frac{1}{2}\right) \\
& =\left(1-\frac{1}{2} x\right) e^{-\frac{x}{2}} \xlongequal{c p} 0 \\
& \Longrightarrow c p: x=2
\end{aligned}
$$

- Case 2: Optimizing continuous $f(x)$ on an interval with one or both endpoints excluded (i.e., on $(a, b],(-\infty, b],[a, \infty),(-\infty, \infty), \ldots)$ - Global maximum and minimum may or may not exist.

Example 2 Using the steps below, find the global maximum and minimum of the function $f(x)=x e^{-x / 2}$ on $[1, \infty)$.

Step 1: Find all critical points in the domain of $f(x)$ and the values of $f(x)$ there. Classify them using the first derivative test.

x	1		2	
sign of $f^{\prime}(x)$		+	0	-
info about $f(x)$		\nearrow		\searrow
			\max	

$$
f^{\prime}(x)=\left(1-\frac{1}{2} x\right) e^{-\frac{x}{2}}
$$

Step 2: Find all the asymptotes of $f(x)$ in its domain and determine its asymptotic behavior.

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{x}{e^{\frac{x}{2}}} \approx \frac{\text { big }}{\mathcal{H u g e}}=0
$$

Step 3: Find the values of $f(x)$ at the endpoints (if any) of its domain. $\quad f(1)=e^{-\frac{1}{2}}$
Step 4: Give a rough sketch of the graph of $f(x)$ clearly indicating where the global maximum and minimum are. State the global maximum and minimum of $f(x)$ on $[1, \infty)$, if any.

x	1	2	∞
$f(x)$	$e^{-\frac{1}{2}}$	$2 e^{-1}$	$\lim _{x \rightarrow \infty} f(x)=0$
$\begin{array}{cc} \uparrow & \uparrow \\ \text { max } & \text { min is } \mathcal{N} O \mathcal{T} \text { taken } \end{array}$			

Q1: How does Example 2 contrast with Example 1?
A1: In Example 2, the right endpoint is ∞ and the function $f(x)$ approaches to 0 as $x \longrightarrow \infty . S o, f(x)$ fias no minimum on $[1, \infty)$.

Example 3 Find the global maximum and minimum of $f(x)=x^{4}-8 x^{2}$ on $(-\infty, 1)$.
Step 1: Find all critical points in the domain of $f(x)$ and the values of $f(x)$ there. Classify them using the first derivative test.

$$
\begin{aligned}
f^{\prime}(x) & =4 x^{3}-16 x=4 x\left(x^{2}-4\right) \\
& =4 x(x+2)(x-2) \xlongequal{c p} 0 \\
& \Longrightarrow c p: x=-2,0,2
\end{aligned}
$$

x		-2	0		1	
sign of $f^{\prime}(x)$	-	0	+	0	-	
info about $f(x)$	\searrow	\vdots	\nearrow	\vdots	\searrow	

Step 2: Find all the asymptotes of $f(x)$ in its domain and determine its asymptotic behavior.

$$
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty}\left(x^{4}-8 x^{2}\right) \approx \mathscr{H} \text { fuge }- \text { big }=\infty
$$

Step 3: Find the values of $f(x)$ at the endpoints (if any) of its domain. $\quad f(1)=1-8=-7$
Step 4: Give a rough sketch of the graph of $f(x)$ clearly indicating where the global maximum and minimum are. State the global maximum and minimum of $f(x)$ on $(-\infty, 1)$, if any.
$f(-2)=(-2)^{4}-8(2)^{2}=16-32=-16$
Global min at $x=-2$ equals to -16
No global max

x	$-\infty$	-2	0	1
$f(x)$	$\lim _{x \rightarrow-\infty} f(x)=\infty$	-16	0	-7
\uparrow				
\uparrow				
max is NOI taken	min			

NEXT GOAL: To use our optimization methods to solve word problems.

Example 4 A restaurant owner studied the sales of an octopus dish and determined that its average number of orders q each night is given by $p=\frac{72}{q+2}$, where p is the price in dollars of an order of the dish. Supposing each appetizer costs the restaurant $\$ 4$ to make, help the owner of the restaurant with the following calculations:
(a) Write down the revenue function: $R=q \cdot p=\frac{72 q}{q+2}$
(b) What is the largest amount of revenue the restaurant can make from the appetizer?

$$
\begin{aligned}
& R^{\prime}=72 \frac{1 \cdot(q+2)-q \cdot 1}{(q+2)^{2}}=\frac{144}{(q+2)^{2}}>0 \\
& \lim _{q \rightarrow \infty} R(q)=\lim _{q \rightarrow \infty} \frac{72}{1+2 / q}=72
\end{aligned}
$$

q	0	∞		
$R(q)$	0	$\lim _{x \rightarrow \infty} f(x)=72$		
\uparrow				\uparrow
	min	max is \mathcal{N} NOT taken		

(c) What price should the owner charge to maximize profit from the appetizer?

$$
\begin{aligned}
& P=R-C=\frac{72 q}{q+2}-4 q \\
& P^{\prime}=\frac{144}{(q+2)^{2}}-4=0 \\
& \Longrightarrow(q+2)^{2}=36 \Longrightarrow q+2= \pm 6 \\
& \Longrightarrow q=-2 \pm 6 \Longrightarrow c p: q=-8,4 \\
& \text { Global max at } q=4 \text {. Then } \\
& P(4)=\frac{72 \cdot 4}{4+2}-4 \cdot 4=\frac{72 \cdot 4}{6}-16=32 .
\end{aligned}
$$

