\qquad

Math 10250 Activity 33: Area and the Definite Integral (Section 5.4)

Goal: To compute the area of curved regions in the plane and define the definite integral of "good" functions.

- Consider the region under the graph of a non-negative function $f(x)$ over its domain $[a, b]$:

Q1: How do you compute the area of the region A ?
A1: In five steps:
(1) Divide the interval $[a, b]$ into n equal subintervals.
(2) Choose a point in each subinterval.
(3) Compute the area of the rectangle corresponding to each piece.
(4) Estimate the area of A by adding the areas of all rectangles.
(5) Get the exact area by taking larger and larger n (smaller and smaller subintervals).

Let's look at each of the above steps in detail.
(1) Divide $[a, b]$ into n subintervals of equal width Δx and choose a point x_{i} in each subinterval.
(Usually this point is chosen to be either the left endpoint, the right endpoint, or the midpoint of the subinterval.)

(2) Construct a rectangle over each subinterval with height $f\left(x_{i}\right)$ and compute the area of each rectangle. (Let's use left-hand endpoints of the segments.) Area of first rectangle $=$ height \cdot base $=f\left(x_{1}\right) \Delta x$.
Area of second rectangle $=$ height \cdot base $=f\left(x_{2}\right) \Delta x$.

Area of nth rectangle $=$ height \cdot base $=f\left(x_{n}\right) \Delta x$.
(3) Estimate the area of A by adding the areas in (2).

area of $A \approx f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x=S_{n}(f) \leftarrow$ Riemann Sum
(4) The approximation above gets more accurate as the rectangles get smaller.
(5) So we can get the exact area of A by letting $n \longrightarrow \infty$. Therefore,

$$
\text { area of } A=\lim _{n \rightarrow \infty}\left[f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x\right]=\lim _{n \rightarrow \infty} S_{n}(f)
$$

Example 1 Estimate the area under the graph of $y=1 / x, 1 \leq x \leq 3$, by partitioning the interval [1, 3] into 4 equal segments and computing the Riemann sum

$$
S_{4}(f)=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+f\left(x_{3}\right) \Delta x+f\left(x_{4}\right) \Delta x
$$

where the points x_{1}, x_{2}, x_{3}, and x_{4} are chosen to be:
(a) left-hand endpoints of the segments.

$$
\begin{aligned}
S_{4} & =f(1) \Delta x+f(1.5) \Delta x+f(2) \Delta x+f(2.5) \Delta x \\
& =\frac{1}{1}(0.5)+\frac{1}{1.5}(0.5)+\frac{1}{2}(0.5)+\frac{1}{2.5}(0.5) \approx 1.283
\end{aligned}
$$

(b) midpoints of the segments.

$S_{4}=f(1.25) \Delta x+f(1.75) \Delta x+f(2.25) \Delta x+f(2.75) \Delta x$
$=\frac{1}{1.25}(0.5)+\frac{1}{1.75}(0.5)+\frac{1}{2.25}(0.5)+\frac{1}{2.75}(0.5) \approx 1.089$

- The definite integral: nonnegative case

The limit in Step (5) on the previous page is so special that we give it a name and symbol:

$$
\frac{\left.\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty}\left[f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x\right]\right]}{\uparrow} \leftarrow \text { Definition of the Definite Integral }
$$

area under the graph of $f(x)$ for $a \leq x \leq b$ if $f(x)$ is nonnegative
If this limit exists, we call it the Definite Integral of $f(x)$ over the interval $a \leq x \leq b$.
Example 2 Find $\int_{0}^{1} 4 x d x$ using geometry. $\quad \int_{0}^{1} 4 x d x=$ area of triangle $=\frac{1}{2} \cdot 1 \cdot 4=2$

- The Definite integral of a function taking positive and negative values. We do it in four steps:
(1) Divide the interval $[a, b]$ into n subintervals.
(2) Choose a point in each subinterval.
(3) Compute the corresponding Riemann sum.

$$
S_{n}(f)=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x \leftarrow \text { Riemann Sum }
$$

(4) By letting n go to infinity, we obtain:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty}\left[f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x\right] . \leftarrow \text { Definite Integral }
$$

Example 3 For the function $f(x)$ whose graph is displayed in the figure on the right, estimate $\int_{0}^{2} f(x) d x$ by using the Riemann sum corresponding to $\Delta x=0.5$ and the midpoints.

$$
\begin{aligned}
\int_{0}^{2} f(x) d x & \approx f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+f\left(x_{3}\right) \Delta x+f\left(x_{4}\right) \Delta x \\
& =f(0.25)(0.5)+f(0.75)(0.5)+f(1.25)(0.5)+f(1.75)(0.5) \\
& =6(0.5)+3(0.5)+(-5)(0.5)+(-8)(0.5)=-2
\end{aligned}
$$

Example 4 Estimate the integral $\int_{-1}^{1} x^{3} e^{-x^{2}} d x$ using 4 subintervals and left-hand endpoints.

$$
\begin{align*}
\int_{-1}^{1} x^{3} e^{-x^{2}} d x & =(-1)^{3} e^{-(-1)^{2}}(0.5)+(-0.5)^{3} e^{-(-0.5)^{2}}(0.5)+(0)^{3} e^{-(0)^{2}}(0.5)+(0.5)^{3} e^{-(0.5)^{2}}(0 \tag{0.5}\\
& =0.5\left[-e^{-1}+(-0.5)^{3} e^{-0.5^{2}}+(0.5)^{3} e^{-0.5^{2}}\right]
\end{align*}
$$

- The relation between integral and area is:

$$
\int_{a}^{b} f(x) d x=\text { (area of region lying over the } x \text {-axis) }- \text { (area of region lying under the } x \text {-axis). }
$$

Example 5 The graph of $f(x)$ for $-1 \leq x \leq 5$ is shown in the figure below. The size of each enclosed area is as

$$
\int_{-1}^{0} f(x) d x \stackrel{?}{=}-0.8 \int_{0}^{2} f(x) d x \stackrel{?}{=} 3 \text { and } \int_{2}^{5} f(x) d x \stackrel{?}{=}-4.2
$$

(a) Find the area of the region enclosed by the graph of $f(x)$, $-1 \leq x \leq 5$, and the x-axis. Area $=0.8+3+4.2=5.3$
(b) $\int_{-1}^{5} f(x) d x \stackrel{?}{=}-0.8+3-4.2=-2$

Q2: What are the basic properties of definite integral?

$$
\begin{aligned}
& \text { A2: }-\int_{a}^{b} c f(x)=c \int_{a}^{b} f(x) d x \quad \bullet \int_{a}^{b} f(x)+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x \\
& \quad \text { - } \int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x \quad \bullet \int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x
\end{aligned}
$$

