\qquad Date \qquad

Math 10250 Activity 36: Continuous Income Streams (Section 6.2)

Goal: To compute Future Value (FV) and Present Value (PV) of a continuous income stream, which like water it flows into an account earning interest continuously.
-Recall that we calculated the future value (FV) assuming that we made only one initial deposit and no other deposits or withdrawals.

Example 1 Jen plans to retire in 30 years and has arranged for money to be continuously deposited into an account at a rate of $\$ 10,000$ per year.

Q1: What is the FV of the income in 30 years if the interest is compounded continuously at a rate of 7% ?
A1: The idea is that the FV is, in fact, an integral and we know that integral \approx Riemann sum.
Q2: What is the Riemann sum for Jen? Start with partitioning [0,30] into n (say $n=3 \cdot 10^{10}$) subintervals of length $\Delta t=30 / n$ (say $\Delta t=1 / 10^{9}$).

A2: Consider the following table.

Interval	$\left[0, t_{1}\right]$	$\left[t_{1}, t_{2}\right]$	$\left[t_{2}, t_{3}\right]$	\ldots	$\left[t_{n-1}, 30\right]$
Amt. flowing into account in interval	$10,000 \cdot \Delta t$	$10,000 \cdot \Delta t$	$10,000 \cdot \Delta t$		$10,000 \cdot \Delta t$
FV of amt. at end of 30 years	$10,000 \cdot \Delta t \cdot e^{0.07\left(30-t_{1}\right)}$	$10,000 \cdot \Delta t e^{0.07\left(30-t_{2}\right)}$	$10,000 \Delta t e^{0.07\left(30-t_{3}\right)}$	$10,000 \Delta t e^{0.07(30-30)}$ $=10,000 \cdot \Delta t$	

- Adding up all FVs above gives us

$$
\text { Total } F V \approx 10,000 \cdot e^{0.07\left(30-t_{1}\right)} \cdot \Delta t+10,000 \cdot e^{0.07\left(30-t_{2}\right)} \cdot \Delta t+\cdots+10,000 \cdot e^{0.07\left(30-t_{n}\right)} \cdot \Delta t
$$

Q3: What is the integral for the FV of Jen's account?
A3: Letting $n \rightarrow \infty$ gives us

$$
\text { Future Value of income stream }=F V=\int_{0}^{30} 10,000 e^{0.07(30-t)} d t
$$

Then using the $\mathcal{F T C}$ we find $F V \approx 1,023,739$
Q4: Now what if Jen plans to retire in T years and deposits at a rate of S dollars per year with interest rate r ?
A4: $\mathrm{FV}=\int_{0}^{T} S e^{r(T-t)} d t$
Q5: Even better, what if Jen deposits at a rate of $S(t)$ dollars per year? Note that here the rate of deposit is not constant; it changes over time.

A5: The FV of a continuous income stream flowing at a rate of $S(t)$ dollars per year for T years, earning interest at an annual rate r, compounded continuously, is given by

$$
\mathrm{FV}=\int_{0}^{T} S(t) e^{r(T-t)} d t
$$

Q6: What is the $\mathbf{P V}$ of the same income stream in A 4 ?
A6: $\begin{aligned} & \text { Multiply the last formula for } \mathcal{F} \mathcal{V} \text { by } e^{-r T} \\ & \text { to get }\end{aligned}$

$$
\mathrm{PV}=\int_{0}^{T} S(t) e^{-r t} d t
$$

Remark: Always keep in mind that
$F V=P V e^{r T} \Longleftrightarrow P V=F V e^{-r T}$

Note: This PV is the amount of money you would have to invest in an account to have $F V$ at the end of T years (that is compounded continuously with interest rate r).

Example 2 Suppose that money is deposited steadily into a savings account at a constant rate of $\$ 30,000$ per year. Find the balance at the end of 5 years if the account pays 10% interest, compounded continuously.

$$
F V=\int_{0}^{5} 30,000 e^{0.1(5-t)} d t=30,\left.000 \cdot\left(-\frac{1}{0.1}\right) e^{0.1(5-t)}\right|_{0} ^{5}=300,000 e^{0.5}-300,000 \approx \$ 194,616.38
$$

Example 3 Your company offers you the following two options:
(a) For the next 10 years it deposits money continuously into an account A at a rate of $2000 e^{0.1 t}$ dollars per year.
(b) At the beginning it deposits $\$ 25,000$ into an account B and nothing more during the next 10 years.

If both accounts yield 5% interest, compounded continuously, which option will you choose? Explain your answer. (Hint: Compute PV of the income stream in (a).) (Compare FV's will give same conclusion)

- $P \mathcal{V}$ of $(a)=\int_{0}^{10} 2,000 e^{0.1 t} e^{-0.05 t} d t=2,000 \int_{0}^{10} e^{0.05 t} d t=\left.\frac{2,000}{0.05} e^{0.05}\right|_{0} ^{10}=40,000\left(e^{0.5}-1\right) \approx \$ 25,948.85$
- PV of $(b)=\$ 25,000$
$P V$ of (a) is greater than $P \mathcal{V}$ of (b) which implies $\mathcal{F V}$ of (a) is greater than $\mathcal{F V}$ of (b). Thus, option (a) is better.
Ans: $\operatorname{PV}(\mathrm{a})=\$ 25,948$
Example 4 (a) In 2018, the Social Security program was providing monthly benefits to about 62 million people and total benefit payments for the year were about $\$ 0.94$ trillion ${ }^{1}$. Assume that for the next 10 years Social Security continues to pay benefits at this rate ($\$ 0.94$ trillion) per year steadily.
(b) On the other hand, in 2018, the Social Security had a surplus (Trust-fund) of about $\$ 2.85$ trillion, and an income stream of about $\$ 0.98$ trillion per year. Assume, again, that for the next 10 years the Social Security continues to receive this income at the same rate ($\$ 0.98$ trillion) per year steadily.

Find the Social Security surplus after 10 years, if during this period the prevailing annual interest rate is 3% compounded continuously. (Hint: Compute the difference of the two FV's.)

$$
\begin{aligned}
& \text { FV of }(\mathrm{a})=\int_{0}^{10} 0.94 e^{0.03(10-t)} d t=\left.0.94\left(-\frac{1}{0.03}\right) e^{0.03(10-t)}\right|_{0} ^{10} \approx 10.9622 \\
& \text { FV of }(\mathrm{b})=2.85 e^{0.03 \cdot 10}+\int_{0}^{10} 0.98 e^{0.03(10-t)} d t=2.85 e^{0.03 \cdot 10}-\left.\frac{0.98}{0.03} e^{0.03(10-t)}\right|_{0} ^{10} \approx 15.2758 \\
& \Longrightarrow F V \approx 15.2758-10.9622=4.3136
\end{aligned}
$$

Question. The depletion of the Social Security Trust-fund is now projected in 2032. How can this happen?

[^0]
[^0]: ${ }^{1}$ Source: 2017 and 2018 Trustees Reports.

