Practice B - Math 10250 Final Exam Solutions

1. F is clearly a linear, not a quadratic function of C, so this answer is false. However, solving for C we can find the inverse relation is $C=\frac{5}{9}(F-32)$, and we can calculate that when $C=0, F=32$ and when $C=100, F=212$.
2. If t is time in the future, than $t=0$ corresponds to the present. Since the painting increased in value by 10000 over 10 years, it is increasing at a rate of 1000 per year. Moreover, since it's current value is 20000 , we deduce that the value in the future is $V(t)=1000 t+20000$.
3. Equilibrium price/quantity is the price/quantity in which the supply and demand curves are equal. That is $-q+6=q+2 \Longrightarrow 4=2 q \Longrightarrow q=2$. Plugging into the demand curve we find the equilibrium price is $p=-2+6=4$. The supply function is increasing and the demand function is decreasing. The slope of the demand curve is -1 .
4. Since the costs are 20 dollars per unit plus 500 dollars, the cost function is $C(x)=20 x+500$ and the marginal costs are $C^{\prime}(x)=20$. The revenue is price time quantity, so $R(x)=(-0.5 x+100) x=-0.5 x^{2}+$ $100 x$. The profit function is revenue minus costs or $P(x)=-0.5 x^{2}+100 x-20 x-500=-0.5 x^{2}+80 x-500$ and therefore the marginal revenue is $P^{\prime}(x)=-x+80$.
5. The amount of money invested in stocks in 40 years will be worth $F V=100 e^{0.08(40)}=100 e^{3.2}$. The value of the investment in bonds will be $F V=100 e^{0.007(40)}=100 e^{0.28}$. At any time in the future, these values will be $100 e^{0.08 t}$ and $100 e^{0.007 t}$ respectively.
6. We will use $P V=F V e^{-r t}$, we want the $F V=2000000$, and $t=40$ and we have $r=0.08$ therefore, the amount we need today is $P V=2000000 e^{-3.2} \approx 81,524$.
7. To determine when the countries will have the same GDP, we set $G_{A}=G_{B}$ and solve for t. This is

$$
10 e^{0.03 t}=5 e^{0.08 t} \Longrightarrow 2=e^{0.05 t} \Longrightarrow \ln (2)=0.05 t \Longrightarrow 20 \ln (2)=t
$$

We have $G_{A}^{\prime}(t)=0.3 e^{0.03 t}$ and $G_{B}^{\prime}(t)=0.4 e^{0.08 t}$ so at $t=0, G_{A}^{\prime}(0)=0.3$ and $G_{B}^{\prime}(0)=0.4$. Although country A has a larger GDP today, country B's GDP will surpass country A's at time $t=10 \ln (2)$. The GDP of country A is currently 10 trillion dollars and the GDP of country B is currently 5 trillion dollars.
8. This expression is the definition of the derivative of $\ln (x)$, which equals $\frac{1}{x}$.
9. The marginal profit at any value x is the derivative of the profict function at x, which is defined geometrically as the slope of the tangent line. The tangent line passes through the points $(0,2)$ and $(2,3)$, and therefore has a slope of $\frac{3-2}{2-0}=\frac{1}{2}$; i.e. the marginal profit at $x=2$ is $\frac{1}{2}$.
10. The linear approximation is the equation of the line tangent to the graph at $x=2$. From the previous question, we know the slope of the line is $\frac{1}{2}$, we also know it passes through the point $(2,3)$. Therefore, the equation of this line is $P(x) \approx 3+0.5(x-2)$.
11. The instantaneous rate of chang eof the function $f(g(x))$ is the derivative, which, by the chain rule equals

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)
$$

Evaluating at 3 we obtain $f^{\prime}(g(3)) g^{\prime}(3)=f^{\prime}(3) \cdot 9$. From the graph, we see that the slope of f, i.e. f^{\prime} at $x=3$ is $\frac{6-2}{0-3}=-\frac{4}{3}$, and therefore, the instantaneous rate of change is $-\frac{4}{3} \cdot 9=-12$.
12. This is a related rates problem. We are given that at the current time, $t=0, k(0)=10,000$ and $k^{\prime}(0)=1000$, and we are asked to find $q^{\prime}(0)$. By the chain rule, we have $\frac{d}{d t} q(t)=400[k(t)]^{-1 / 2} k^{\prime}(t)$, and therefore, $\frac{d}{d t} q(0)=400[k(0)]^{-1 / 2} k^{\prime}(0)=400[10000]^{-1 / 2} 1000=\frac{400}{100} 1000=4000$.
13. To estimate the future revenue, we use linear approximation. $R(t) \approx 155+2.5(t-0)=155+2.5 t$. The year 2018 corresponds to four years in the future, and therefore, the approximate revenue is $R(4) \approx$ $155+2.5(4)=165$.
14. We differentiate x^{2} and obtain $2 x$, which is positive for all x (since consumption must be positive). However, the second derivative is 2 , which is also positive. Therefore, x^{2} fails the second requirement of a utility function.
15. Acceleration is the second derivative of position, the first derivative is $s^{\prime}(t)=6(t-1)^{2}$, therefore the second derivative is $s^{\prime \prime}(t)=12(t-1)$. Acceleration is positive for $t>1$, and negative for $t<1$, since the velocity is always positive, the object is accelerating when $t>1$ and decelerating when $t<1$.
16. we can either maximize the profits at $x=0$, or at a critical point inside the interval $0<x<\infty$. Taking derivatives of the profit function, we obtain $P^{\prime}(x)=10 x e^{-x}-5 x^{2} e^{-x}=5 x e^{-x}(2-x)$. Thus, $x=2$ is the only critical point on the interior of the domain. We compare values at the critical point and endpoints: $P(0)=0, P(2)=20 e^{-2}>0$, and $\lim _{x \rightarrow \infty} P(x)=0$. Thus, the maximum value this function obtains is at $x=2$.
17. Revenue is price times quantity or $R(x)=\frac{400 x}{x+2}$. We take the derivative to find $R^{\prime}(x)=\frac{400(x+2)-400 x}{(x+2)^{2}}=$ $\frac{800}{(x+2)^{2}}$, which never equals zero and is defined for all $x>0$, thus there are no critical points in the interval $0 \leq x<\infty$. We evaluate $R(0)=0$, and the limit $\lim _{x \rightarrow \infty} R(x)=400$. Thus, $R(x)$ begins at 0 and increases towards, but never reaches the value of 400 ; there is not maximum revenue.
18. The profict function is $P(x)=\frac{400 x}{x+2}-8 x$. The derivative of the profit function is $P^{\prime}(x)=\frac{800}{(x+2)^{2}}-8$; setting this equal to zero, and solving for x we have

$$
\frac{800}{(x+2)^{2}}=8 \Longrightarrow(x+2)^{2}=100 \Longrightarrow x+2=10 \Longrightarrow x=8 .
$$

This is a global maximum, since $P^{\prime}(x)>0$ for $0<x<8$, and $P^{\prime}(x)<0$ for $x>8$, and $P(0)=0$. The profit equals $P(8)=320-64=256$.
19. We can estimate the integral of $f(x)$ from 3 to 5 using the midpoint rule, to obtain $\int_{3}^{5} f(x) d x \approx 0.5(25+$ $30+27+18)=0.5(100)=50$.
20. The total change in the quantity from 1 to 5 is $\int_{1}^{5} 4 t \ln t d t$. Using integration by parts, with $u=\ln t \Longrightarrow$ $d u=\frac{1}{t} d t$ and $d v=4 t d t \Longrightarrow v=2 t^{2}$ we obtain

$$
\int_{1}^{5} 4 t \ln t d t=\left.\left(2 t^{2} \ln t\right)\right|_{1} ^{5}-\int_{1}^{5} 2 t^{2} \frac{1}{t} d t=\left.\left(2 t^{2} \ln t\right)\right|_{1} ^{5}-\int_{1}^{5} 2 t d t=\left.\left(2 t^{2} \ln t\right)\right|_{1} ^{5}-\left.t^{2}\right|_{1} ^{5} .
$$

Evaluating the above we obtain

$$
\int_{1}^{5} 4 t \ln t d t=\left.\left(2 t^{2} \ln t\right)\right|_{1} ^{5}-\left.t^{2}\right|_{1} ^{5}=50 \ln 5-25+1=50 \ln 5-24 .
$$

21. The total amount of gas consumed is the integral $\int_{0}^{20} r(t) d t$. Since this is a trapezoid, we can calculate the area precisely, and it equals $\frac{1}{2}(10+5) \cdot 20=150$ (billions of gallons).
22. The total oil consumption over the next ten years is

$$
\int_{0}^{10}\left(30+2 t e^{-0.01 t^{2}}\right) d t=\left.30 t\right|_{0} ^{10}+\int_{0}^{10} 2 t e^{-0.01 t^{2}} d t=300+\int_{0}^{10} 2 t e^{-0.01 t^{2}} d t
$$

We make a u substitution; $u=t^{2} \Longrightarrow d u=2 t d t$ in the last integral to obtain

$$
\int_{0}^{10}\left(30+2 t e^{-0.01 t^{2}}\right) d t=300+\int_{0}^{100} e^{-0.01 u} d t=300+\left.\frac{1}{-0.01} e^{-0.01 u}\right|_{0} ^{100}=400-100 e^{-1}
$$

23. We are asked to solve the initial value problem $y^{\prime}=0.02 y, y(0)=4$. We know that the function $y(t)=$ $A e^{0.02 t}$ satisfies the differential equation $y^{\prime}=0.02 y$. Solving for A, we have $y(0)=4=A e^{0.02(0)}=A$. Thus $y(t)=4 e^{0.02 t}$.
24. We need to find c such that $\int_{0}^{3} f(x) d x=1$ i.e. $c \int_{0}^{3}\left(9-x^{2}\right) d x=1$. Integrating we find $\left.c\left(9 x-\frac{1}{3} x^{3}\right)\right|_{0} ^{3}=$ $1 \Longrightarrow c(27-9)=1$. Solving for c we find $18 c=1 \Longrightarrow c=\frac{1}{18}$.
25. The total change in profit is equal to the integral of the marginal profit from 0 to 2.5 , that is $\int_{0}^{2.5} M P(x) d x$. This integral is equal to the area of the region under the graph of $M P(x)$ from $x=0$ to $x=2$ minus the area of the region under the graph of $M P(x)$ from $x=2$ to $x=2.5$. Using a Riemann sum with $\Delta x=0.5$ we estimate the first area by $(7.6+6.4+4.4+1.6)(0.5)=10$. The second area is equal to $\frac{1}{2} \cdot 2 \cdot 0.5=0.5$. Therefore, the total change in profit is equal to $10-0.5=9.5$.
26. We have the $M P=M R-M C=-0.1 x+110-0.1 x-80=-0.2 x+30$. We are asked to determine $\int_{50}^{100} M P(x) d x=\int_{50}^{100}(-0.2 x+30) d x=-0.1 x^{2}+\left.30 x\right|_{50} ^{100}=-0.1(10000)+30(100)+0.1(2500)-30(50)=$ 750.
27. Recall that exponential decay is of the form $y=y_{0} e^{-k t}$, where y is the amount at time t and y_{0} is the initial amount. If the half life is 10 years, than $\frac{1}{2}=e^{-10 k}$ where k is the decay rate. Solving for k we obtain

$$
\ln \left(\frac{1}{2}\right)=-10 k \Longrightarrow k=0.1 \ln 2 .
$$

We are asked to solve for the time at which one unit decays to 0.2 units, which is to solve for t in the equation

$$
0.2=e^{-0.1 \ln (2) t} \Longrightarrow \ln (0.2)=-0.1 \ln (2) t \Longrightarrow t=-\frac{\ln (0.2)}{0.1 \ln 2} .
$$

28. We have $f(0)=\frac{e^{2 \cdot 0}-1}{e^{2 \cdot 0}+1}=\frac{0}{2}=0$. Differentiating the function, we obtain $f^{\prime}(x)=\frac{2 e^{2 x}\left(e^{2 x}+1\right)-2 e^{2 x}\left(e^{2 x}-1\right)}{\left(e^{2 x}+1\right)^{2}}=$ $\frac{4 e^{2 x}}{\left(e^{2 x}+1\right)^{2}}>0$. Thus, $f^{\prime}(0)=\frac{4 e^{2 \cdot 0}}{\left(e^{2 \cdot 0}+1\right)^{2}}=\frac{4}{2^{2}}=1$, and we see that there is no point x where the derivative of $f(x)$ is zero. To find horizontal asymptotes we take limits as $x \rightarrow \pm \infty$. We have

$$
\lim _{x \rightarrow-\infty} \frac{e^{2 x}-1}{e^{2 x}+1}=-1, \quad \text { and } \quad \lim _{x \rightarrow \infty} \frac{e^{2 x}-1}{e^{2 x}+1}=\lim _{x \rightarrow \infty} \frac{e^{2 x}-1}{e^{2 x}+1} \frac{e^{-2 x}}{e^{-2 x}}=\lim _{x \rightarrow \infty} \frac{1-e^{-2 x}}{1+e^{-2 x}}=1 .
$$

The linear approximation at $x=0$ of $f(x)$ is $f(x) \approx f(0)+f^{\prime}(0)(x-0)=x$.
29. Letting h be the height and r be the radius, we have the volume of the can is $V=\pi r^{2} h=2000 \pi \mathrm{~cm}^{3} \Longrightarrow$ $h=\frac{2000}{r^{2}}$. The surface area of the can is $S=\pi r^{2}+\pi r^{2}+\pi 2 r h=2 \pi r^{2}+4000 \pi \frac{1}{r}$. Taking a derivative and setting it equal to zero, we find $S^{\prime}(r)=4 \pi r-4000 \pi \frac{1}{r^{2}}=0 \Longrightarrow r^{3}=1000 \Longrightarrow r=10$. The optimal height is then $h=\frac{2000}{100}=20$. We check that this is a maximum, by evaluating S^{\prime} for $0<r<10$ and $r>10$.
30. Although fig newtons are delicious, this is not why Isaac Newton is famous!

