## Math 10360 Review for Exam 3

1. Let $f(x, y)=x^{3} y+\ln (y-x)$. Find the following limits:
(a) $\lim _{h \rightarrow 0} \frac{f(1+h, 2)-f(1,2)}{h}$
(b) $\lim _{h \rightarrow 0} \frac{f(1,2+h)-f(1,2)}{h}$

Ans. (a) 5; (b) 2.
2. Let $f(x, y)=\frac{x}{1+y}+e^{x y}$. Find all first and second partial derivatives of $f$.

$$
\frac{\partial f}{\partial x}=\frac{1}{y+1}+y e^{x y} ; \quad \frac{\partial f}{\partial y}=-x(1+y)^{-2}+x e^{x y} ; \quad \frac{\partial^{2} f}{\partial x^{2}}=y^{2} e^{x y} ; \quad \frac{\partial^{2} f}{\partial y^{2}}=2 x(1+y)^{-3}+x^{2} e^{x y} ; \quad \frac{\partial^{2} f}{\partial x \partial y}=-(1+y)^{-2}+e^{x y}+x y e^{x y}=\frac{\partial^{2} f}{\partial y \partial x}
$$

3. Let $z=f(x, y)$ be a function, with $f(1,2)=5, \quad \frac{\partial f}{\partial x}(1,2)=2, \quad \frac{\partial f}{\partial y}(1,2)=-3$. (a) Estimate the value of $f(0.8,2.1)$, (b) Find the elasticity coefficient of $z$ relative to $x$ at $(1,2)$ and the elasticity coefficient of $z$ relative to $y$ at $(1,2)$.
4. Let $f(x, y)=y e^{x}+2 x-2 y+5$. Find $f(0,0)$ and use linear approximation to estimate $f(-0.05,0.01)$.
5. The population $p(t)$ (in thousands) of cheetah is modeled by the differential equation $\frac{d p}{d t}=p\left(1-\frac{p}{4}\right)$.

If the initial population is 3 thousand, find $p(t)$. You are required to solve the differential equation.

$$
\left(\text { Ans: } p(t)=\frac{12 e^{t}}{1+3 e^{t}}=\frac{12}{e^{-t}+3}\right)
$$

6. A cup of warm coffee at $80^{\circ} \mathrm{C}$ is cooling off outdoors according to the equation

$$
\frac{d y}{d t}=k(y-20)
$$

where $y(t)$ is the temperature (in ${ }^{\circ} \mathrm{C}$ ) of the coffee at time $t$ minutes. If the temperature of the coffee is $60^{\circ} \mathrm{C}$ after 10 minutes, what is (i) the value of $k$, and (ii) the temperature when $t=15$ minutes?

$$
\text { (Ans: (i) } k=\frac{1}{10} \ln \left(\frac{2}{3}\right) \text {, (ii) } y(15)=60\left(\frac{2}{3}\right)^{3 / 2}+20 \text { ) }
$$

7. Solve the following initial value problem: $\quad x^{2} y^{\prime}=2 x y-3 ; \quad y(1)=-1 . \quad$ (Ans: $\left.y(x)=x^{-1}-2 x^{2}\right)$
8. The temperature at a point $(x, y)$ on a table is $T(x, y)$, measured in degree Celsius. A bug crawls so that its position on the table after $t$ seconds is given by $x=\sqrt{1+t}, y=2+(t / 3)$, where $x$ and $y$ are measured in centimeters. The temperature function satisfies $T_{x}(2,3)=4$ and $T_{y}(2,3)=3$. How fast is the temperature rising on the bug's path after 3 seconds?
9. The temperature at a point $(x, y)$ on a flat metal plate is given by

$$
T(x, y)=\frac{60}{1+x^{2}+y^{2}}
$$

where $T$ is measured in ${ }^{0} \mathrm{C}$ and $x, y$ in meters. Determine which is bigger: the sensitivity of the temperature $T$ in the $x$-direction or in the $y$-direction at the point $(2,1)$. Discuss the elasticity of $T$ at $(2,1)$.
10. Find the rate of change of $z$ with respect to $y$ if $10 \cos (x+y+z)=x z^{2}+x^{2} y$
11. $\frac{\partial u}{\partial t}$ and $\frac{\partial u}{\partial s}$ where $u=x y z^{2} ; x=\frac{t}{s}, y=t^{2}+2 s$ and $z=e^{s t}$. Find $u_{t}$ when $t=1$ and $s=-1$.
12. A tank contains 1000 L of brine with 15 kg of dissolved salt. Brine that contains 0.03 kg of salt per liter of water enters the tank at a rate of $10 \mathrm{~L} / \mathrm{min}$. The solution is kept throughly mixed and drains from the tank at the same rate. How much salt is in the tank (a) after $t$ minutes and (b) after 20 minutes? (c) What is the limiting concentration? How would your answers change if the brine is drain away at a rate of (i) $5 \mathrm{~L} / \mathrm{min}$, and (ii) $20 \mathrm{~L} / \mathrm{min}$ ?
13. The body weight of an animal which initially weighs 10 kg is modeled by:

$$
\frac{d w}{d t}=-\ln \left(\frac{w}{5}\right) ; \quad w(0)=10
$$

Use Euler's method with $\Delta t=0.1$ to estimate $w(0.2)$
14. Let $P(t)$ be the immigrant population (in thousands) of a small country, where $t$ is time in months since the beginning of this year. A demographic study has shown that $P(t)$ is a solution to the following initial value problem:

$$
\frac{d P}{d t}=0.4 t \cdot P, \quad P(0)=2
$$

Use Euler's Method with 3 steps to estimate $P(1.5)$.
15. (a) Find all possible estimates for the value of $\quad \frac{\partial f}{\partial x}(2,1) \quad$ and $\quad \frac{\partial f}{\partial y}(2,1) \quad$ if $f(x, y)$ is given by the table below. (b) How would you estimate $f(2.1,1.2)$ using the central difference estimates for the partial derivatives of $f(x, y)$ at $(2,1)$ ?

16. Find the $N$ th partial sum of the series:

$$
\sum_{n=4}^{\infty} \frac{8}{n^{2}+n}
$$

What is the sum of the series?

## Math 10360 Review for Exam 3 Answers

12a. $\frac{d y}{d t}=0.3-\frac{y}{100} ; y(0)=15$ so $y(t)=30-15 e^{-t / 100}$
12b. $y(20)=30-15 e^{-0.2}$
12c. Concentration at time $t, c(t)=\frac{y(t)}{1000}=0.03-0.015 e^{-t / 100}$. Therefore $\lim _{t \rightarrow \infty} c(t)=0.03$
12 (i) a. $\frac{d y}{d t}=0.3-\frac{5 y}{1000+5 t}=0.3-\frac{y}{200-t} ; y(0)=15$ so $y(t)=0.15(200+t)-\frac{3000}{(200+t)}$
12 (i) b. $y(20)=0.15(220)-\frac{3000}{220}=33-\frac{150}{11}=\frac{213}{11}$
12 (i) c. Concentration at time $t, c(t)=\frac{y(t)}{1000+5 t}=0.03-\frac{600}{(200+t)^{2}}$. Therefore $\lim _{t \rightarrow \infty} c(t)=0.03$
12 (ii) a. $\frac{d y}{d t}=0.3-\frac{20 y}{1000-10 t}=0.3-\frac{2 y}{100-t} ; y(0)=15$ so $y(t)=0.3(100-t)-\frac{3(100-t)^{2}}{2000}$
12 (ii) b. $y(20)=0.3(80)-\frac{3(80)^{2}}{2000}=24-\frac{3(6400)}{2000}=24-\frac{48}{5}=14 \frac{2}{5}$

12 (ii) c. Concentration at time $t, c(t)=\frac{y(t)}{1000-10 t}=0.03-\frac{3(100-t)}{20000}$. The tank dries out at $t=100$ minutes. Just before it dries out $c=0.03$ so saltier than at the start. In fact, $c^{\prime}(t)>0$ implies the concentration is increasing and reaches 0.03 just before it dries out.
13. $w(0)=10 ; w(0.1) \approx 9.930685282 ; w(0.2) \approx 9.862066124$.
14. $P(0)=2 ; P(0.5)=2 ; P(1)=2.2 ; P(1.5)=2.64$.

Math 10360: Calculus B
Exam III
April 21, 2050

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour and 15 minutes.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

Honor pledge. "As a member of the Notre Dame community, I will not participate in or tolerate academic dishonesty.":

| Good Luck! |  |  |  |
| :---: | :---: | :---: | :---: |
| PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! |  |  |  |
| 1. a b | c | d | e |
| 2. a b | c | d | e |
| 3. a b | c | d | e |
| 4. a b | c | d | e |
| 5. a b | c | d | e |
| 6. a b | c | d | e |
| 7. a b | c | d | e |
| 8. a b | c | d | e |


| Please do NOT write in this box. |  |  |
| ---: | :--- | :--- |
| Multiple Choice | $\bar{Z}$ |  |
| 9. |  |  |
| 10. | $\square$ |  |
| 11. | $\square$ |  |
| 12. | $\square$ |  |
| 13. | $\square$ |  |
| Total | $\square$ |  |

Name: $\qquad$
Class Time: $\qquad$

## Multiple Choice

1. ( 5 pts.) Let $P(K, L)$ be the production function for a manufacturing company where $K$ is the amount of capital and $L$ is the amount of labor. Suppose

$$
P(20,30)=10 ; \quad \frac{\partial P}{\partial K}(20,30)=2 ; \quad \frac{\partial P}{\partial L}(20,30)(20,30)=-3
$$

Using the linear approximation of $P(K, L)$ at $(20,30)$, estimate the amount of production when $K=20.5$ and $L=29.5$.
(a) 7.5
(b) 12.5
(c) 11.5
(d) 8.5
(e) 10.5
2. (5 pts.) Find the second partial derivative $\frac{\partial^{2} f}{\partial y \partial x}$ if $f(x, y)=\ln (3 x+2 y)$.
(a) $\frac{6}{(3 x+2 y)^{2}}$
(b) $\frac{-4}{(3 x+2 y)^{2}}$
(c) $\frac{4}{(3 x+2 y)^{2}}$
(d) $\frac{-9}{(3 x+2 y)^{2}}$
(e) $\frac{-6}{(3 x+2 y)^{2}}$

Name: $\qquad$
Class Time: $\qquad$
3. ( 5 pts.) A 500-gallon tank contains 200 gallons of brine with concentration $1 / 4$ pounds of salt per gallon. Brine containing $2 / 5$ pounds of salt per gallon is pumped into the tank at a rate of 5 gallons per minute. The mixture is pumped out of the tank at a rate of 4 gallons per minute. If $y(t)$ is the amount of salt in the tank at time $t$, find the differential equation modeling the amount of salt in the tank at time $t$.
(a) $\frac{d y}{d t}=2-\frac{y}{50}$
(b) $\frac{d y}{d t}=2-\frac{4 y}{200-4 t}$
(c) $\frac{d y}{d t}=\frac{8}{5}-\frac{5 y}{200+t}$
(d) $\frac{d y}{d t}=2-\frac{4 y}{200-t}$
(e) $\frac{d y}{d t}=2-\frac{4 y}{200+t}$
4. $(5 \mathrm{pts}$.$) For the same scenario above, how long it take before the brine overflow?$
(a) 100 minutes
(b) 75 minutes
(c) 300 minutes
(d) 500 minutes
(e) 60 minutes

Name: $\qquad$
Class Time: $\qquad$
5. ( 5 pts .) Consider the solution curve of the differential equation below that passing through the point $(-1,1)$.

$$
y^{\prime}=x^{2}+y^{2}
$$

Find the equation of the tangent line to the solution curve at $(-1,1)$.
(a) $y=2 x-3$
(b) $y=-2 x-1$
(c) $y=2 x+3$
(d) $y=2 x$
(e) $y=1$
6. (5 pts.) Find all values of $x$ for which the series $\sum_{n=1}^{\infty} 3(2-x)^{n}$ is convergent.

Hint: Geometric series.
(a) $-1<x<1$
(b) $-\frac{1}{3}<x<\frac{1}{3}$
(c) $\frac{5}{3}<x<\frac{7}{3}$
(d) $\frac{1}{3}<x<1$
(e) $1<x<3$

Name: $\qquad$
Class Time: $\qquad$
7. $(5 \mathrm{pts}$.$) Find the N$ th-partial sum of the series $\sum_{n=2}^{\infty}(\sqrt{n+3}-\sqrt{n+2})$
(a) $\sqrt{N+4}-2$
(b) $\sqrt{N+3}-\sqrt{N+2}$
(c) $2-\sqrt{N+2}$
(d) -2
(e) Divergent
8. (5 pts.) Find $y$ in terms of $t$ if

$$
\ln (1-y)-\ln (2-y)=t
$$

(a) $y=\frac{1+2 e^{t}}{1+e^{t}}$.
(b) $y=\frac{1+e^{t}}{1+2 e^{t}}$.
(c) $y=\frac{2-e^{t}}{1-e^{t}}$.
(d) $y=\frac{1-2 e^{t}}{1-e^{t}}$.
(e) $y=\frac{1-e^{t}}{2-e^{t}}$.

Name: $\qquad$
Class Time: $\qquad$

Partial Credit
You must show your work on the partial credit problems to receive credit!
9. (12 pts.) Find the partial derivative of $z$ with respect to $y$ if

$$
\frac{x}{(2 y+z)^{2}}=e^{y^{2}} z-3 z^{4}
$$

Name: $\qquad$
Class Time: $\qquad$
10. (12 pts.) [Part A]. Consider the initial value problem:

$$
y^{\prime}=(y+t)^{2} ; \quad y(0)=1
$$

Use Euler's method with two equal steps to estimate $y(1)$.
[Part B. (Unrelated to Part A)] Write the following repeated decimal as fraction. Show clear how you apply geometric series
$0.1 \overline{02}$

Name: $\qquad$
Class Time: $\qquad$
11.(12 pts.) Solve the following initial value problem:

$$
\left(x^{2}+1\right)\left(\frac{d y}{d x}-3\right)=2 x y ; \quad y(1)=0
$$

Name: $\qquad$
Class Time: $\qquad$
12.(12 pts.) [Part A.] Let $u=\sin \left(x^{2}+y^{2}\right)$. Find $\frac{\partial u}{\partial s}$ if $x=s t$ and $y=\frac{1}{s+2 t}$. Give your answer in terms of $s$ and $t$.
[Part B. (Unrelated to Part A)] Discuss the elasticity of $z=e^{x^{2}+x y^{2}}$ relative to $x$ and $y$ at $(x, y)=(1,1)$

Name: $\qquad$
Class Time: $\qquad$
13.(12 pts.) A ball is projected from the ground to a height of 10 feet. Each time it drops $h$ feet, it rebounds to a height of $h / 3$ feet. Answer each of the questions below:
(a) What is the total distance travelled when the ball hits the ground the third time?
(b) Write down a geometric series that gives the total distance travelled by the ball if the motion persists. Give its first term, and common ratio.

First Term $=$ $\qquad$ Common Ratio $=$ $\qquad$
(c) Find the total distance travelled by the ball. You should simplify your answer as far as possible.

Math 10360: Calculus B
Exam III
April 21, 2050

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour and 15 minutes.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

Honor pledge. "As a member of the Notre Dame community, I will not participate in or tolerate academic dishonesty." :

| Good Luck! |  |  |  |
| :---: | :---: | :---: | :---: |
| PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! |  |  |  |
| 1. a - $\quad \bullet$ | c | d | e |
| 2. a b | c | d | $\bullet$ |
| 3. a b | c | d | $\bullet$ |
| 4. a b | $\bullet$ | d | e |
| 5. a b | $\bullet$ | d | e |
| 6. a | c | d | $\bullet$ |
| 7. | c | d | e |
| 8. a b | c | $\bullet$ | e |


| Please do NOT write in this box. |  |
| ---: | :--- | :--- |
| Multiple Choice | _. |
| 9. |  |
| 10. | $\square$ |
| 11. | $\square$ |
| 12. | $\square$ |
| 13. |  |
| Total |  |

$\qquad$
$\qquad$

Partial Credit
You must show your work' on the partial credit problems to receive credit!
11. (12 pts.) Find the partial derivative of $z$ with respect to $y$ if

$$
\begin{aligned}
& \frac{x}{(2 y+z)^{2}}=e^{y^{2}} z-3 z^{4} \\
& \frac{\partial}{\partial y}\left(x(\partial y+z(x, y))^{-2}\right)=\frac{\partial}{\partial y}\left(e^{y^{2}} z(x, y)-3(z(x, y))^{4}\right) \\
& x(2 y+z(x, y))^{-3} \cdot(-2)\left(2 x+\frac{\partial z}{\partial y}\right) \\
& =e^{y^{2}} \frac{\partial z}{\partial y}+2 y e^{y^{2}} z-3(4)(z(x, y))^{3} \cdot \frac{\partial z}{\partial y} \\
& \frac{-2 x}{(2 y+z)^{3}}\left(2+\frac{\partial z}{\partial y}\right) \\
& =e^{y^{2}} \frac{\partial z}{\partial y}+2 y z e^{y^{2}}-12 z^{3} \frac{\partial z}{\partial y} \\
& -\frac{4 x}{(2 y+z)^{3}}-\frac{2 x}{(2 y+z)^{3}} \frac{\partial z}{\partial y}=e^{4^{2} \frac{\partial z}{\partial y}+2 y z e^{4^{2}}-12 z^{3} \frac{\partial z}{\partial y}} \\
& 12 z^{3} \frac{\partial z}{\partial y}-e^{y^{2}} \frac{\partial z}{\partial y}-\frac{2 x}{(2 y+z)^{3}} \frac{\partial z}{\partial y}=2 y z e^{4^{2}}+\frac{4 x}{(2 y+z)^{3}} \\
& \left(12 z^{3}-\varphi^{y^{2}}-\frac{2 x}{(2 y+z)^{3}}\right) \frac{\partial z}{\partial y}=2 y z e^{y^{2}}+\frac{4 x}{(2 y+z)^{3}} \\
& \frac{\partial z}{\partial y}=\frac{2 y z e^{y^{2}}+\frac{4 x}{(2 y+z)^{3}}}{12 z^{3}-e^{y^{2}}-\frac{2 x}{(2 y+z)^{3}}}=\frac{2 y z e^{y^{2}}(2 y+z)^{3}+4 x}{\left(12 z^{3}-e^{y^{2}}\right)(2 y+z)^{3}-2 x}
\end{aligned}
$$

Name: $\qquad$
Class Time: $\qquad$

$$
\Delta t=\frac{1-0}{2}=\frac{1}{2}
$$

10. (12 pts.) [Part A]. Consider the initial value problem:

$$
y^{\prime}=(y+t)^{2} ; \quad y(0)=1
$$

Use Euler's method with two equal steps to estimate $y(1)$.


$$
y^{\prime}(t)=(y(t)+t)^{2}
$$

$$
\begin{aligned}
& y(0.5) \simeq y(0)+y^{\prime}(0) \cdot \Delta t \\
&=1+1 \cdot \frac{1}{2}=1+\frac{1}{2}=\frac{3}{2} \\
& y(1) \simeq y(0.5)+y^{\prime}(0.5) \cdot \Delta t \\
&=\frac{3}{2}+4 \cdot \frac{1}{2} \\
&=\frac{3}{2}+2 \\
&=\frac{7}{2}
\end{aligned}
$$

$$
y^{\prime}(0)=(y(0)+0)^{2}
$$

$$
=1^{2}
$$

$$
\begin{aligned}
& y^{\prime}(0.5)=(y(0.5)+0.5)^{2} \\
& =\left(\frac{3}{2}+\frac{1}{2}\right)^{2} \\
& z(2)^{2}=4
\end{aligned}
$$

[Part B. (Unrelated to Part A)] Write the following repeated decimal as fraction.
Show clear how you apply geometric series

$$
\begin{aligned}
& 0.1 \overline{02}=0.102020202 \ldots=0.1+0.002020202 \ldots
\end{aligned}
$$

$$
\begin{aligned}
& =0.1+\frac{0.002}{1-\frac{1}{100}}=\frac{1}{10}+\frac{\frac{2}{1000}}{\frac{99}{100}}=\frac{1}{10}+\frac{2}{\frac{1000}{10}} \times \frac{100}{99} \\
& =\frac{1}{10}+\frac{1}{495}=\frac{99+2}{990}=\frac{101}{990} \\
& 99 \times 5=485
\end{aligned}
$$

$\qquad$
Class Time: $\qquad$
13.(12 pts.) Solve the following initial value problem:

$$
\begin{gathered}
\left(x^{2}+1\right)\left(\frac{d y}{d x}-3\right)=2 x y ; \quad y(1)=0 \\
\left(x^{2}+1\right) \frac{d y}{d x}-3\left(x^{2}+1\right)=2 x y \\
\left(x^{2}+1\right) \frac{d y}{d x}-2 x y=3\left(x^{2}+1\right) \\
\frac{d y}{d x}-\frac{2 x}{x^{2}+1} y=3
\end{gathered}
$$

Integrating factor: $e \int \frac{-2 x}{\left(x^{2}+1\right)} d x=e^{-\ln \left(x^{2}+1\right)}=e^{\ln \left(x^{2}+1\right)^{-1}}$

$$
=\frac{1}{x^{2}+1}
$$

$$
\frac{1}{x^{2}+1} \cdot \frac{d y}{d x}-\frac{2 x}{\left(x^{2}+1\right)^{2}} y=\frac{3}{x^{2}+1}
$$

$$
\frac{1}{x^{2}+1} \cdot \frac{d y}{d x}+\left(\frac{1}{x^{2}+1}\right)^{\prime} \cdot y=\frac{3}{x^{2}+1}
$$

$$
\left(\frac{1}{x^{2}+1} y\right)^{\prime}=\frac{3}{x^{2}+1}
$$

check:

$$
\begin{aligned}
& \left(\left(x^{2}+1\right)^{-1}\right)^{\prime} \\
& =-\left(x^{2}+1\right)^{-2}-2 x \\
& =\frac{-2 x}{\left(x^{2}+1\right)^{-2}}
\end{aligned}
$$

$$
\frac{1}{x^{2}+1} y=\int \frac{3}{x^{2}+1} d x=3 \operatorname{artan}(x)+C
$$

$$
y(1)=0 \Rightarrow \frac{1}{2}(0)=3 \arctan (1)+C=\frac{3 \pi}{4}+C \Rightarrow C=\frac{-3 \pi}{4}
$$

$$
\begin{array}{r}
\frac{1}{x^{2}+1} y=3 \arctan (x)-\frac{3 \pi}{4} \Rightarrow y=3\left(x^{2}+1\right) \arctan (x) \\
-\frac{3 \pi}{4}\left(x^{2}+1\right.
\end{array}
$$

$$
-\frac{3 \pi}{4}\left(x^{2}+1\right)
$$

Name: $\qquad$
Class Time: $\qquad$
14.(12 pts.) [Part A.] Let $u=\sin \left(x^{2}+y^{2}\right)$. Find $\frac{\partial u}{\partial s}$ if $x=s t$ and $y=\frac{1}{s+2 t}$. Give your answer in terms of $s$ and $t$.

$$
\begin{aligned}
\frac{\partial u}{\partial s}= & \frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial s}+\frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial s} \\
= & 2 x \cos \left(x^{2}+y^{2}\right) \cdot t+2 y \cos \left(x^{2}+y^{2}\right) \cdot\left[-(s+2 t)^{2} \cdot 1\right] s \\
= & 2 s t^{2} \cos \left[s^{2} t^{2}+\frac{1}{(s+2 t)^{2}}\right] \\
& +2 \cdot \frac{1}{s+2 t} \cos \left(s^{2} t^{2}+\frac{1}{(s+2 t)^{2}}\right) \cdot \frac{-s}{(s+2 t)^{2}} \\
= & \left(2 s t^{2}-\frac{2 s}{(s+2 t)^{3}}\right) \cos \left(s^{2} t^{2}+\frac{1}{(s+2 t)^{2}}\right)
\end{aligned}
$$

[Part B. (Unrelated to Part A)] Discuss the elasticity of $z=e^{x^{2}+x y^{2}}$ relative to $x$ and $y$ at $(x, y)=(1,1)$

- Find the percentage change in $z$ when $x$ micreares by $1 \%$ and y dives not change.

$$
\begin{aligned}
& \Delta x=\frac{1}{100} \times 1=\frac{1}{100} ; \Delta y=0, \\
& \frac{\Delta z}{z(1,1)} \times 100 \% \leftarrow ? ; z(1,1)=e^{2} \\
& \Delta z \simeq \frac{\partial z}{\partial x}(1,1) \cdot \Delta x+\underbrace{\frac{\partial z}{\partial y}(1,1) \cdot \Delta y} \\
& \frac{\partial z}{\partial x}(1,1)=\left.\left(2 x+y^{2}\right) e^{x^{2}+x y^{2}}\right|_{0} ^{x=1} \begin{array}{l}
y=1 \\
z
\end{array}=3 e^{2} \\
& \Delta z \simeq 3 e^{2} \cdot \frac{1}{100}=\frac{3 e^{2}}{100} \\
& \frac{\Delta z}{z(1,1)} \times 100 \%=\frac{3 e^{2}}{100} \times 100 \%=3 \%
\end{aligned}
$$

A similar computation can be done for elasticity relative to $y$

$$
\begin{aligned}
& Z_{y}(x, y)=2 x y e^{x^{2}+x y^{2}} \\
& Z_{y}(1,1)=2 e^{2}
\end{aligned}
$$

Here $\Delta x=0$ and $\Delta y=0.01$
So $\Delta \mathrm{Z}$ is approx $2 \mathrm{e}^{2} / 100$
So elasticity relative to y is $2 \%$

Name: $\qquad$
Class Time: $\qquad$
13. (12 pts.) A ball is projected from the ground to a height of 10 feet. Each time it drops $h$ feet, it rebounds to a height of $h / 3$ feet. Answer each of the questions below:
(a) What is the total distance travelled when the ball hits the ground the third time?

$$
\begin{aligned}
& 10 \times 2+\frac{10}{3} \times 2+\frac{10}{9} \times 2 \\
= & 20+\frac{20}{3}+\frac{20}{9} \\
= & 20\left(1+\frac{1}{3}+\frac{1}{9}\right)=20\left(\frac{9+3+1}{9}\right) \\
= & 260 / 9 f t .
\end{aligned}
$$

(b) Write down a geometric series that gives the total distance travelled by the ball if the motion persists. Give its first term, and common ratio.

$$
20+\frac{20}{3}+\frac{20}{3^{2}}+\cdots+\frac{20}{3^{n-1}}+\cdots \cdot
$$

 as possible.

$$
\text { Total distance }=\frac{20}{1-\frac{1}{3}}
$$

;

$$
|1 / 3|<1
$$

$$
=\frac{20}{\frac{2}{3}}=20 \times \frac{3}{2}=30 \mathrm{ft} .
$$

Math 10360: Calculus B
Exam III
November 17, 2050

Name: $\qquad$
Class Time: $\qquad$

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour and 15 minutes.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

Honor pledge. "As a member of the Notre Dame community, I will not participate in or tolerate academic dishonesty.":

## Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. a

c

$$
\begin{array}{|l|}
\hline \mathrm{d} \\
\hline
\end{array}
$$

e
2. a

c
d

3. a
4. a
5. a
6. a

b

d
 e
7. a
8. a

b


| Please do NOT write in this box. |  |
| ---: | :--- | :--- |
| Multiple Choice | _. |
| 9. |  |
| 10. | $\square$ |
| 11. | $\square$ |
| 12. | $\square$ |
| 13. |  |
| Total |  |

Name: $\qquad$
Class Time: $\qquad$

## Multiple Choice

1. ( 5 pts.) Let $u=2 x^{3}-3 y^{2}$. If $x=\ln \left(t^{2}\right)$ and $y=t^{2}-e^{2}$ find the rate of change of $u$ with respect to $t$ when $t=e$.
(a) $\frac{24}{e}$
(b) $\frac{48}{e}$
(c) $\frac{24}{e}-2 e$
(d) $\frac{48}{e}-2 e$
(e) $\frac{48}{e}-12 e^{2}$
2. ( 5 pts .) Solve the initial value problem:

$$
\frac{d y}{d x}=(2 y-1) x ; \quad y(0)=0
$$

(a) $y=\frac{1}{2}\left(e^{x^{2}}-1\right)$
(b) $y=\frac{1}{2}\left(1-e^{x^{2}}\right)$
(c) $y=e^{x^{2}}-1$
(d) $y=\frac{1}{2}\left(1-e^{x^{2} / 2}\right)$
(e) $y=\frac{1}{2}\left(e^{x^{2} / 2}-1\right)$

Name: $\qquad$
Class Time: $\qquad$
3. ( 5 pts .) Consider the geometric series whose eighth term is 0.03 and whose ninth term is -0.15 . What is the tenth term of this geometric series?
(a) $0.03(5)^{-10}$
(b) $0.03(5)^{10}$
(c) $\quad-0.03(5)^{9}$
(d) -0.75
(e) 0.75
4.(5 pts.) Evaluate the following geometric series

$$
2 e^{-1}+4 e^{-3}+8 e^{-5}+16 e^{-7}+\cdots
$$

where $e=2.71828 \ldots$ is the natural number.
(a) $\frac{2 e^{-1}}{1-2 e^{-2}}$
(b) $\frac{2 e^{-1}}{1+2 e^{-2}}$
(c) Series is divergent.
(d) $\frac{2}{1+2 e^{-2}}$
(e) $\frac{2}{1-2 e^{-2}}$

Name: $\qquad$
Class Time: $\qquad$
5. ( 5 pts .) Let $f(x, y)=e^{x^{2} y}$. Find the value of the limit

$$
\lim _{h \rightarrow 0} \frac{f(2,-1+h)-f(2,-1)}{h} .
$$

(a) $2 e^{-2}$
(b) $e^{-4}$
(c) $-2 e^{-2}$
(d) $4 e^{-4}$
(e) Does not exist.
6. (5 pts.) Evaluate the following geometric series

$$
1-\frac{\pi}{2}+\frac{\pi^{2}}{4}-\frac{\pi^{3}}{8}+\cdots
$$

(a) The series is divergent.
(b) $\frac{1}{2+\pi}$
(c) $\frac{2}{2-\pi}$
(d) $\frac{1}{2-\pi}$
(e) $\frac{2}{2+\pi}$

Name: $\qquad$
Class Time: $\qquad$
7. ( 5 pts .) Find the limit of the sequence $\left\{e^{-2 n} \sin (100 n)\right\}_{n=1}^{\infty}$.
(a) $e$
(b) $e^{-1}$
(c) 0
(d) 1
(e) Does not exist.
8. ( 5 pts.) Consider the initial value problem:

$$
y^{\prime}=3 x+y, \quad y(0)=1
$$

Using Euler's method with TWO steps of equal size estimate $y(0.2)$
(a) 2
(b) 1.424
(c) 1.24
(d) 1.1
(e) 4.3

Name: $\qquad$
Class Time: $\qquad$

Partial Credit
You must show your work on the partial credit problems to receive credit!
9.(12 pts.) [Part A.] A population of a specie of river dolphins is given, in the thousands, by the function

$$
p(t)=\frac{2 e^{t}+7}{2 e^{t}+2}
$$

where $t$ is time in years. Find the time $t$ for which the population of dolphins is 2 thousand.
[Part B (No relation with the above)]. Find the sum of the first 20 terms of the given series:
$\sum_{n=0}^{\infty} \frac{3^{2 n+1}}{4^{n}}$

Name: $\qquad$
Class Time: $\qquad$
10. (12 pts.) Find the $N$ th partial sum of the series below.

$$
\sum_{n=5}^{\infty}\left[\cos \left(\frac{1}{2 n-1}\right)-\cos \left(\frac{1}{2 n+1}\right)\right]
$$

Use your answer for the partial sum to find the sum of the series.

Name: $\qquad$
Class Time: $\qquad$
11.(12 pts.)


An infinite sequence of right angle triangles with heights given by the curve $y=e^{-2 x}$ is constructed as show above.
(a) Let $T_{n}$ be the area of the $n$th triangle constructed. Write down the first three terms of the sequence $\left\{T_{n}\right\}$ and give also a formula for the general term $T_{n}$.

$$
T_{1}=\ldots ; \quad T_{2}=\ldots \quad T_{3}=
$$

$$
T_{n}=
$$

$\qquad$
(b) Write down the geometric series that gives the total area enclosed by the infinite sequence of triangles. Also give the first term and the common ratio of your series. You must give at least the first three terms and the general term of the series in your answer.

First term of the series $=$ $\qquad$ Common ratio of the series $=$ $\qquad$
(c) Find the total area enclosed by the infinite sequence of triangles.

Name: $\qquad$
Class Time: $\qquad$
12. (12 pts.) Solve for $y(x)$ if it satisfies the following initial value problem:

$$
y^{\prime}=3 x-y \cot (x) \quad \text { and } \quad y(\pi / 4)=2
$$

Name: $\qquad$
Class Time: $\qquad$
13. (12 pts.) Consider the function $f(x, y)=3 x^{2}+2 y^{3}+4$.
a. Find the elasticity of $f(x, y)$ relative to $y$ at $(1,2)$.
b. Use the linear approximation of $f(x, y)$ at $(1,2)$ to estimate the value of $f(1.1,1.8)$.

Math 10360: Calculus B
Exam III
November 17, 2050

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour and 15 minutes.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

Honor pledge. "As a member of the Notre Dame community, I will not participate in or tolerate academic dishonesty." :

| Good Luck! |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! |  |  |  |  |
| 1. a | $\bullet$ | c | d | e |
| 2. a | $\bullet$ | c | d | e |
| 3. a | b | c | d | $\bullet$ |
| 4. $\bullet$ | b | c | d | e |
| 5. a | b | c | $\bullet$ | e |
| 6. | b | c | d | e |
| 7. a | b |  | d | e |
| 8. a | b | $\bullet$ | d | e |


| Please do NOT write in this box. |  |
| ---: | :--- | :--- |
| Multiple Choice | _. |
| 9. |  |
| 10. | $\square$ |
| 11. | $\square$ |
| 12. | $\square$ |
| 13. |  |
| Total |  |

Name: $\qquad$
Class Time: $\qquad$

Partial Credit
You must show your work on the partial credit problems to receive credit!
9.(12 pts.) [Part A.] A population of a specie of river dolphins is given, in the thousands, by the function

$$
p(t)=\frac{2 e^{t}+7}{2 e^{t}+2}
$$

where $t$ is time in years. Find the time $t$ for which the population of dolphins is 2 thousand.

$$
\begin{aligned}
& \frac{2 e^{t}+7}{2 e^{t}+2}=2 \Rightarrow 2 e^{t}+7=\underbrace{2\left(2 e^{t}+2\right)}_{4 e^{t}+4} \\
& \Rightarrow 7-4=4 e^{t}-2 e^{t} \Rightarrow 2 e^{t}=3 \\
& \Rightarrow e^{t}=\frac{3}{2} \Rightarrow t=\ln \left(\frac{3}{2}\right) \text { years. }
\end{aligned}
$$

[Part B (No relation with the above)]. Find the sum of the first 20 terms of the
given series:

$$
\begin{aligned}
& \text { common ratio } \\
& =-\frac{4}{5} \times 3\left(1-(9 / 4)^{20}\right) \\
& =-\frac{12}{5}\left(1-\left(\frac{9}{4}\right)^{20}\right) \\
& =\frac{12}{5}\left(\left(\frac{9}{4}\right)^{20}-1\right) \\
& \frac{a_{n+1}}{a_{n}}=\frac{\frac{3^{2 n+3}}{4^{n+1}}}{\frac{3^{2 n+1}}{4^{n}}}=\frac{3^{2 n+3}}{4^{n+1}} \cdot \frac{4^{n}}{3^{2 n+1}} \\
& 6=\frac{3^{2}}{4}=\frac{4}{4}
\end{aligned}
$$

Name: $\qquad$
Class Time: $\qquad$
10. (12 pts.) Find the $N$ th partial sum of the series below.

? $-9=N-1$ $?=N+4$

Use your answer for the partial sum to find the sum of the series.

$$
\begin{aligned}
& S_{N}= \sum_{n=5}^{N+4}\left[\cos \left(\frac{1}{2 n-1}\right)-\cos \left(\frac{1}{2 n+1}\right)\right] \\
&= \cos \left(\frac{1}{9}\right)-\cos \left(\frac{1}{11}\right) \quad n=5 \\
& \cos \left(\frac{1}{11}\right)-\cos \left(\frac{1}{13}\right) \quad n=6 \\
& \cos \left(\frac{1}{13}\right)-\cos \left(\frac{1}{15}\right) \quad n=7 \\
& \quad n \\
& \cos \left(\frac{1}{2 N+3}\right)-\cos \left(\frac{1}{2 N+5}\right) \quad n=N+2 \\
& \cos \left(\frac{1}{2 N+5}\right)-\cos \left(\frac{1}{2 N+7}\right) \quad n=N+3 \\
& \cos \left(\frac{1}{2 N+7}\right)-\cos \left(\frac{1}{2 N+9}\right) \quad n=N+4 \\
& \text { N th partial seem, } \quad n=\cos \left(\frac{1}{9}\right)-\cos \left(\frac{1}{2 N+9}\right)
\end{aligned}
$$

Sum of the given series $=\lim _{N \rightarrow \infty} S_{N}$

$$
=\lim _{M \rightarrow \infty}\left(\cos \left(\frac{1}{9}\right)-\cos \left(\frac{1}{2 N+9}\right)\right)=\cos \left(\frac{1}{9}\right)-\frac{1}{9}
$$

$\qquad$
Class Time: $\qquad$
11.(12 pts.)


An infinite sequence of right angle triangles with heights given by the curve $y=e^{-2 x}$ is constructed as show above.
(a) Let $T_{n}$ be the area of the $n$th triangle constructed. Write down the first three terms of the sequence $\left\{T_{n}\right\}$ and give also a formula for the general term $T_{n}$.

$$
\begin{aligned}
& T_{1}=\frac{\frac{1}{2} e^{-2}}{} ; \quad T_{2}=\frac{1}{2} e^{-4} ; \quad T_{3}=\frac{1}{2} e^{-6} \\
& T_{n}=\frac{1}{2} e^{-2 n}
\end{aligned}
$$

(b) Write down the geometric series that gives the total area enclosed by the infinite sequence of triangles. Also give the first term and the common ratio of your series. You must give at least the first three terms and the general term of the series in your answer.


First term of the series $=\frac{\frac{1}{2} e^{-2}}{\text { (c) Find the total area enclosed by the infinite sequence of triangles. }}$ Common ratio of the s

$$
=\frac{\frac{1}{2} e^{-2}}{1-e^{-2}}=\frac{e^{-2}}{2-2 e^{-2}} \quad \begin{gathered}
\text { common ratio } \\
\left|e^{-2}\right|=\left(\left.\frac{1}{e^{2}} \right\rvert\,<1\right.
\end{gathered}
$$

$$
\text { or } \frac{1}{2 e^{2}-2}
$$

$\qquad$
Class Time: $\qquad$
12. (12 pts.) Solve for $y(x)$ if it satisfies the following initial value problem:

$$
\begin{aligned}
& y^{\prime}=3 x-y \cot (x) \quad \text { and } \quad y(\pi / 4)=2 . \\
& \text { Integrating factor }=e^{\int \cot (x) d x}=e^{\int \frac{\cos x}{\sin x} d x} \\
& =e^{\int \frac{1}{u} d u}=e^{\ln u}=u=\sin x \\
& u=\sin x \\
& d u=\cos x d x \\
& \sin x y^{\prime}+\underbrace{\cot x \cdot \sin x}_{\cos x} \cdot y=3 x \operatorname{sen} x \\
& (\sin x \cdot y)^{\prime}=3 x \sin x \\
& \sin x \cdot y=\int 3 \underbrace{3 x}_{u} \sin x d x \\
& \sin x \cdot y=3 x(-\cos x)-3 \int-\cos x d x \\
& d v=\sin x d x \\
& v=\int \sin x d x \\
& =-\cos x \\
& =-3 x \cos x+3 \sin x+C \\
& \left(\sin \frac{\pi}{4}\right) \cdot 2=-3 \cdot \frac{\pi}{4} \cos \left(\frac{\pi}{4}\right)+3 \sin \frac{\pi}{4}+C \\
& C=\frac{3 \pi}{4} \cdot \frac{\sqrt{2}}{2}-\sin \frac{\pi}{4}=\frac{3 \pi}{4} \cdot \frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}\left(\frac{3 \pi}{4}-1\right) \\
& \text { divide by } y=-3 x \cot x+1+\frac{\frac{\sqrt{2}}{2}\left(\frac{3 \pi}{4}-1\right)}{\sin x} \\
& \sin x
\end{aligned}
$$

$\qquad$
Class Time:

$$
\Delta x=0 ; \Delta y=1 \% \text { of } 2=\frac{2}{100}
$$

13. (12 pts.) Consider the function $f(x, y)=3 x^{2}+2 y^{3}+4$.
a. Find the elasticity of $f(x, y)$ relative to $y$ at $(1,2)$.

$$
\begin{aligned}
& \Delta f \wedge f_{x}(1,2) \cdot \Delta x+f_{y}(1,2) \cdot \Delta y=0+\left.\left(0+6 y^{2}\right)\right|_{\substack{x=1 \\
y=2}} \frac{2}{100} \\
& =0+24 \cdot \frac{2}{100}=\frac{48}{100} \\
& \text { Required elasticity }=\frac{\Delta f}{f(1,2)} \times 100 \%=\frac{\frac{48}{100}}{3+16+4} \times 100 \% \\
& =\frac{48}{23} \%_{0}
\end{aligned}
$$

b. Use the linear approximation of $f(x, y)$ at $(1,2)$ to estimate the value of $f(1.1,1.8)$.

$$
\begin{array}{ll}
\Delta f=f(1,1,1.8)-f(1,2) & \Delta x=1.1-1=0.1 \\
\simeq f_{x}(1,2) \cdot \Delta x+f_{y}(1,2) \cdot \Delta y & \Delta y=1.8-2=-0.2 \\
=6(0.1)+24(-0.2)=0.6-4,8 & f_{x}(1,2)=\left.(6 x)\right|_{y=1} ^{x=1}=6 \\
=-4.2 & f_{y}(1,2)=\left.\left(6 y^{2}\right)\right|_{y=1} ^{x=2}=24 \\
f(1.1,1.8) & =f(1,2)-4.2=(3+16+4)-4.2 \\
=23-4.2=18.8 &
\end{array}
$$

