Math 10360 - Example Set 01A
 Derivative and Integration Review

Basic Properties of Derivatives:

$[f(x)+g(x)]^{\prime} \stackrel{?}{=}$

$$
[f(x)-g(x)]^{\prime} \stackrel{?}{=}
$$

$[c \cdot f(x)]^{\prime} \stackrel{?}{=}$

Product/Quotient/Chain Rule. Let $f(x)$ and $g(x)$ be differentiable functions. Derive formulas for the derivatives of $p(x)=f(x) \cdot g(x)$ and $q(x)=\frac{f(x)}{g(x)}$.

Product Rule:
Chain Rule:
$\frac{d}{d x}(f(x) g(x))=(f(x) g(x))^{\prime}=\quad \frac{d}{d x}(f(g(x)))=[f(g(x))]^{\prime}=$

Quotient Rule: $\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\left(\frac{f(x)}{g(x)}\right)^{\prime}=$

Some Common Derivatives. For any numbers k and n :
$\frac{d}{d x}(k) \stackrel{?}{=}$
$\frac{d}{d x}(\sin (x)) \stackrel{?}{=}$
$\frac{d}{d x}(\csc (x)) \stackrel{?}{=}$
$\frac{d}{d x}(\sec (x)) \stackrel{?}{=}$

$$
\frac{d}{d x}(\cot (x)) \stackrel{?}{=}
$$

1. Find the following derivatives
a. $\frac{d}{d x}\left(x^{3} \tan (x)\right) \stackrel{?}{=}$
b. $\frac{d}{d x}\left(\sqrt[3]{2 x^{2}-5 x+3}\right) \stackrel{?}{=}$
2. Find the equation of the tangent line to the curve $x \cos (1+2 y)=2 y^{2}-8$ at the point $(0,2)$.

$$
\left(\text { Check } \frac{d y}{d x}=\frac{\cos (1+2 y)}{4 y+2 x \sin (1+2 y)}\right)
$$

Basic Integrals. For any numbers k and n :
$\int x^{n} d x \stackrel{?}{=}$ (Power Rule)
$\int \sin (x) d x \stackrel{?}{=}$

$$
\int \cos (x) d x \stackrel{?}{=}
$$

$\int \sec ^{2}(x) d x \stackrel{?}{=}$
$\int \csc ^{2}(x) d x \stackrel{?}{=}$
$\int \csc (x) \cot (x) d x \stackrel{?}{=}$

$$
\int \sec (x) \tan (x) d x \stackrel{?}{=}
$$

Method of Substitution

3. Find a formula for the function $f(x)$ if its slope is given by the $x \sin \left(x^{2}+1\right)$ and the graph of $f(x)$ passes through the point $(1,2)$.
4. Evaluate $\int_{0}^{1} \frac{x^{2}+2}{\sqrt{x^{3}+6 x+5}} d x$.

Math 10360 - Example Set 01B
 Derivative of Exponential \& Logarithmic Functions: Section 3.9

1. Consider the area function $f(x)=\int_{1}^{x} \frac{1}{t} d t$ for $x>0$. We call $f(x)$ the logarithm function and denote it by $f(x)=\ln x$.
a. $f^{\prime}(x)=\frac{d}{d x}[\ln x]=\frac{d}{d x}\left[\int_{1}^{x} \frac{1}{t} d t\right] \stackrel{?}{=} \quad(x>0)$
b. $\frac{d}{d x}[\ln |x|] \stackrel{?}{=}$ \qquad $(x \neq 0)$
c. What can you say about $\ln (1)$? Define the value of e using the definition of the natural logarithm.
d. Using the Fundamental Theorem of Calculus, show that $\ln (a x)=\ln (a)+\ln (x)$. Prove further that (i) $\ln \left(e^{n}\right)=n$ where n is an integer and (ii) $\ln \left(e^{r}\right)=r$ where r us any rational number.

Example A. Find the area under the graph of $y=\frac{-2}{4 x-3}$ for $0 \leq x \leq 1 / 2$.
e. Give a sketch of the graph of $y=\ln x$. State clearly the domain and range of $\ln x$. What are the values of $\lim _{x \rightarrow 0^{+}} \ln x$ and $\lim _{x \rightarrow \infty} \ln x$?
f. The inverse $g(x)$ of $f(x)=\ln x$ exists. Why? Sketch the graph of $g(x)=\exp (x)$. Infer from (d) that we may write $\exp (x)=e^{x}$ for all real value x.
g. Explain why we may write: (i) $\ln \left(e^{x}\right)=x$ for all x, and $e^{\ln y}=y$ for $y>0$.
h. Using the fact that $\frac{d}{d x}\left(e^{x}\right)=e^{x}$, the chain rule and the fact that $e^{\ln b}=b(b>0)$, show that $\frac{d}{d x}\left(b^{x}\right)=b^{x} \ln b$.
i. Using the change of base formula $\log _{b} x=\frac{\ln x}{\ln b}$, show that $\frac{d}{d x}\left(\log _{b} x\right)=\frac{1}{x \ln b}$.

Example B. Find the equation of the tangent line to the curve $y=4-2 e^{x}+\ln \left(\frac{1-x^{2}}{1+x^{2}}\right)$ at $x=0$.

Review Exercise. Complete the following formulas:

Logarithmic Properties

$\ln (a b) \stackrel{?}{=}$
$\ln \left(a^{n}\right) \stackrel{?}{=}$
$\ln \left(\frac{a}{b}\right) \stackrel{?}{=}$
$\ln (e) \stackrel{?}{=}$
$\ln \left(e^{x}\right) \stackrel{?}{=}$
$e^{\ln x} \stackrel{?}{=}$

Exponential Rules

$a^{n} \cdot a^{m} \stackrel{?}{=}$
$\frac{a^{n}}{a^{m}} \stackrel{?}{=}$
$a^{n} \cdot b^{n} \stackrel{?}{=}$

$$
\frac{a^{n}}{b^{n}} \stackrel{?}{=}
$$

Derivative and Anti-derivative Rules

$$
\begin{array}{ll}
\frac{d}{d x}(\ln x) \stackrel{?}{=} & \frac{d}{d x}\left(e^{x}\right) \stackrel{?}{=} \\
\frac{d}{d x}\left(\log _{b} x\right) \stackrel{?}{=} & \frac{d}{d x}\left(b^{x}\right) \stackrel{?}{=} \\
\int \frac{1}{x} d x \stackrel{?}{=} & \int e^{x} d x \stackrel{?}{=} \\
\int b^{x} d x \stackrel{?}{=} &
\end{array}
$$

