Math 10360 - Example Set 05A
 Section 7.1 - Integration by Parts

1. A 10 m chain with non-uniform linear mass density $\rho(y)=e^{y} \mathrm{~kg} / \mathrm{m}$ for $0 \leq y \leq 10$ is coiled on the ground is lifted straight up from its heavier end (labelled A) so that End A is 10 m above the ground and the rest of the chain dangles free below. Find the work done in lifting the chain. You may take the acceleration due to gravity as $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

Integration by Parts

IDEA: Recall that Integration by Substitution "reverses" chain rule. Today we learn another technique, called integration by parts, which "reverses" the product rule.

Let $u(x)$ and $v(x)$ be two differentiable functions. Applying product rule, we have:

$$
\frac{d}{d x}(u(x) v(x))=u(x) v^{\prime}(x)+u^{\prime}(x) v(x)
$$

By definition of anti-derivative:

$$
u(x) v(x)=\quad=\int u(x) v^{\prime}(x) d x+\int u^{\prime}(x) v(x) d x
$$

Rearranging terms, we have:

$$
\int u(x) v^{\prime}(x) d x=u(x) v(x)-\int v(x) u^{\prime}(x) d x
$$

Note $\frac{d u}{d x}=u^{\prime}(x) \quad \Rightarrow \quad d u=$ \qquad . Also $\frac{d v}{d x}=v^{\prime}(x) \Rightarrow d v=$ \qquad .

Suppressing variable x, we get:

$$
\int u d v=\quad . \rightarrow \text { Integration by Parts Formula }
$$

As a definite integral, we have:

$$
\int_{a}^{b} u d v=
$$

2. Evaluate the following integrals:
(a) $\int_{0}^{10} y e^{y} d y$
(b) $\int x^{3} \ln x d x$
(c) $\int x e^{x^{2}} d x$
(d) $\int \arctan x d x$

2e. $\int \sin ^{4} x \cos x d x \stackrel{?}{=}$

Math 10360 - Example Set 05B

Section 7.2 Trigonometric Integrals

1. Use the following identities to complete the blanks below:

$$
\begin{aligned}
& \sin (A+B)=\sin A \cos B+\cos A \sin B \\
& \sin (A-B)=\sin A \cos B-\cos A \sin B \\
& \cos (A+B)=\cos A \cos B-\sin A \sin B \\
& \cos (A-B)=\cos A \cos B+\sin A \sin B
\end{aligned}
$$

$\sin A \cos B=$ \qquad
$\cos A \cos B=$ \qquad
$\sin A \sin B=$ \qquad
$\sin (2 A)=$ \qquad

The Pythagorean Identities and one of the given identities above, write the following in terms of $\cos (2 A)$:
$\cos ^{2} A=$ \qquad

$$
\sin ^{2} A=
$$

\qquad
2. Using appropriate identities, evaluate the following definite integrals:
a. $\int \sin (2 x) \cos (3 x) d x$
b. $\int \cos ^{2} 2 z d z$
c. $\int_{0}^{\pi / 3} \sin ^{5} x d x$
d. $\int_{0}^{\pi} \sin ^{4}(x) d x$
e. $\int_{0}^{\pi / 2} \cos (5 x) \cos (x) d x$

You may find these formulae helpful in the test:

$$
\begin{gathered}
\cos ^{2} \theta+\sin ^{2} \theta=1 \\
1+\tan ^{2} \theta=\sec ^{2} \theta \\
\cot ^{2} \theta+1=\csc ^{2} \theta \\
\cos ^{2} \theta=\frac{1+\cos (2 \theta)}{2} \\
\sin ^{2} \theta=\frac{1-\cos (2 \theta)}{2} \\
\sin (2 \theta)=2 \sin \theta \cos \theta \\
\sin A \cos B=\frac{1}{2}[\sin (A+B)+\sin (A-B)] \\
\cos A \cos B=\frac{1}{2}[\cos (A+B)+\cos (A-B)] \\
\sin A \sin B=-\frac{1}{2}[\cos (A+B)-\cos (A-B)]
\end{gathered}
$$

Math 10360 - Example Set 05C

Section 7.5 Partial Fraction

1. Evaluate the integral $\int_{5}^{8} \frac{3 x-7}{x^{2}-5 x+6} d x$.
2. Determine if the following rational functions proper. If not, apply long division to write the rational expression as a sum of a polynomial and a proper rational function.
a. $\frac{x^{2}+x+1}{(x+1)(x+4)^{2}}$
b. $\frac{2 x^{4}+x^{3}+4 x^{2}+1}{x^{3}+x}$
