Math 10360 －Example Set 11A

Topic：（9．3）Slope fields and the solutions of differential equations．
Consider the equation $y^{\prime}=x^{2}+y^{2}$
（A）Compute the slope of the solution curve $y(x)$ at the coordinate pairs given in the table below．

y| $x \backslash x$ | 0 | 0.5 | 1 |
| :---: | :---: | :---: | :---: |
| 0 | | | |
| 0.5 | | | |
| 1 | | | |

（C）Below is a computer generated slope field for $y^{\prime}=x^{2}+y^{2}$ ．Use it to sketch the solution of the initial value problem $y^{\prime}=x^{2}+y^{2}, \quad y(0)=0.5$
（B）Draw the slope fields at these points．

（D）Find the linear approximation at $x=0$ for the solution of $y^{\prime}=x^{2}+y^{2}, \quad y(0)=0.5$ ．Use it to estimate the value of $y(0.1)$ ．

	1イ1 1 1 1 1 1 1 1 1 1	
1		
	$\cdots \rightarrow+\cdots+1$－$+1+1+1$	
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 入入		
$\rightarrow \rightarrow \rightarrow \cdots \rightarrow 入 入 入 入$		
$\rightarrow \rightarrow \rightarrow \cdots \rightarrow$ イ $\$ ¢} \hline \multicolumn{2}{\|r	}{$\rightarrow \rightarrow \rightarrow \rightarrow \cdots 入 入$ 入入	
	$\rightarrow \rightarrow \rightarrow \cdots \cdots+1$	

（E）We could repeat the computation in（D）to estimate the value of $y(0.3)$ ．We call this method of estimation Euler＇s method with 3 equal steps of size $h=\Delta x=0.1$ ．

Given：$y(0)=0.5$
$y(0.1) \stackrel{L A}{\approx} y(0)+\boldsymbol{y}^{\prime}(0)(0.1)=0.5+(0.25)(0.1)=0.525$
$y(0.2) \stackrel{L A}{\approx}$
≈ 0.554
$y(0.3) \stackrel{L A}{\approx}$
≈ 0.588 ．
2. The weight w in kilograms of a kind of tropical fungus is modeled by the differential equation

$$
\frac{d w}{d t}=\frac{\sqrt{w}}{t^{2}+1} ; \quad w(1)=4 .
$$

Here t denotes the time measured in weeks. Estimate the weight of the fungus at $t=2.5$ weeks using Euler's method with three steps.

Math 10360 - Example Set 11B

Section 14.3 Partial Derivatives

1. Consider the height function of the hobbit house $f(x, y)=14-\frac{1}{100}\left(x^{2}+y^{2}\right)$ over the given floor plan.

1a. When s hobbit climbs on the roof along $y=10$, find how fast is his height $f(x, y)$ is changing with respect to x.

1b. When y is arbitrarily fixed, find how fast $f(x, y)$ is changing with respect to x.
1c. When $x=1$, find how fast $f(x, y)$ is changing with respect to y.
1d. When x is arbitrarily fixed, find how fast $f(x, y)$ is changing with respect to y.

Definition (Partial Derivative). Let $f(x, y)$ a function of two variables. Then we define:
(A) the partial derivative of f with respect to x at the point (a, b) by the limit:

$$
\frac{\partial f}{\partial x}(a, b)=f_{x}(a, b)=\lim _{\Delta x \rightarrow 0} \frac{f(a+\Delta x, b)-f(a, b)}{\Delta x}
$$

This is the (instantaneous) rate of change of f in the x-direction at (a, b).
(B) the partial derivative of f with respect to y at the point (a, b) by the limit:

$$
\frac{\partial f}{\partial y}(a, b)=f_{y}(a, b)=\lim _{\Delta y \rightarrow 0} \frac{f(a, b+\Delta y)-f(a, b)}{\Delta y}
$$

This is the (instantaneous) rate of change of f in the y-direction at (a, b).
2. Evaluate the following limits:

2a. $\lim _{h \rightarrow 0} \frac{\ln (3 x+2(y+h))-\ln (3 x+2 y)}{h}$

2b. $\lim _{h \rightarrow 0} \frac{\ln (3(x+h)+2 y)-\ln (3 x+2 y)}{h}$
3. Find all first and second partial derivatives of the function $g(x, y)=x e^{x^{2} y}$.

