Math 10360 Example Set 15A

Sections 10.7 \& 10.8 Taylor Polynomials \& Taylor Series

Application of Taylor polynomial and Taylor Series

1a. Find the Talyor Series centered at $x=0$ for $f(x)=e^{x}$. What is the interval of convergence for this power series?

1b. Using the Maclaurin polynomial $T_{4}(x)$ for e^{x}, estimate $e^{0.2}$.
1c. Write down the error of your estimate for $e^{0.2}$ in $\mathrm{Q} 2(\mathrm{~b})$ as a series. Explain your answer.
1d. Estimate the value of $\int_{0}^{0.2} e^{-x^{2}} d x$ using $T_{4}(x)$ for e^{x}.

2a. Find the 3rd-degree Taylor polynomial of $y(t)$ centered at zero, where $y(t)$ is the solution of the initial value problem

$$
y^{\prime}=y^{2}+t y, \quad y(0)=-1
$$

Use your result to estimate $y(0.3)$.
2b. Find the 3rd-degree Taylor polynomial of $y(t)$ centered at 1 , where $y(t)$ is the solution of the initial value problem

$$
y^{\prime}=y^{2}+t y, \quad y(1)=-1
$$

Use your result to estimate $y(0.8)$.
3. Using the Taylor series for $\frac{1}{1+x^{2}}$ centered at $x=0$ and differentiation, find the Maclaurin series for $\frac{2 x}{\left(1+x^{2}\right)^{2}}$.

4a. Using the Taylor series for $\frac{1}{1+x^{2}}$ centered at $x=0$ and integration, show that the Taylor series for $\arctan x$ at 0 is:

$$
\arctan x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{2 k+1} \quad \text { for } \quad-1<x<1
$$

4b. Write down the 7 th Taylor series for $\arctan x$ at 0 . Estimate the value of $\arctan (0.5)$. Write down the error for the estimate you found as an infinite series using summation notation.

4c. Write down the Taylor series for $f(x)=\arctan (1-x)$ centered at 1 , giving the values of x for which the series is convergent.
5. The 3rd Macluarin Polynomial of $f(x)$ is given by $\quad T_{3}(x)=1-x^{2}+4 x^{3}$.
a. Find the values $f(0), f^{\prime}(0), f^{\prime \prime}(0)$, and $f^{\prime \prime \prime}(0)$. What could you say about the point $(0, f(0))$ on the graph of $f(x)$?
b. Find the Taylor polynomial of $g(x)=e^{f(x)}$ centered at $x=0$ of degree 2 .

