Chain Rule - Example 01

Sections 14.6 Online Text

1. Find a formula for the following derivative by first drawing a tree diagram to connect all related quantities:
$\frac{d u}{d t}$ where $u=\ln \left(x^{2}+y^{2}\right) ; x=\cos 2 t$ and $y=\sin t$.

$$
\frac{d u}{d t}=?
$$

$$
u=\ln \left(x^{2}+y^{2}\right) ; x=\cos 2 t ; y=\sin t
$$

$$
\begin{aligned}
& \frac{d u}{d t}=\frac{\partial u}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial u}{\partial y} \cdot \frac{d y}{d t} \\
& \frac{\partial u}{\partial x}=\frac{2 x}{x^{2}+y^{2}} ; \quad \frac{\partial u}{\partial y}=\frac{2 y}{x^{2}+y^{2}} \\
& \frac{d x}{d t}=-2 \sin 2 t ; \quad \frac{d y}{d t}=\cos t
\end{aligned}
$$

Modi4B Pgol

$$
\begin{aligned}
& \frac{d y}{d t}=\frac{2 x}{x^{2}+y^{2}} \cdot(-2 \sin 2 t)+\frac{2 y}{x^{2}+y^{2}}(\cos t) \\
& =\frac{-4 x \sin 2 t}{x^{2}+y^{2}}+\frac{2 y \cos t}{x^{2}+y^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Find } z_{x}=\frac{\partial z}{\partial x} \text { if } x^{3} y z=y^{2}+3 x-2 x z^{3}-7 \\
& x^{3} y z(x, y)=y^{2}+3 x-2 x(z(x, y))^{3}-7 \\
& \frac{\partial}{\partial x}\left(x^{3} y z(x, y)\right)=\frac{\partial}{\partial x}\left(y^{2}+3 x-2 x(z(x, y))^{3}-7\right) \\
& x^{3} y \frac{\partial z}{\partial x}+3 x^{2} y z \\
& =0+3-\left(2 x \cdot 3(z)^{2} \cdot \frac{\partial z}{\partial x}+2 z^{3}\right)-0 \\
& =3-6 x z^{2} \frac{\partial z}{\partial x}-2 z^{3} \\
& x^{3} y \frac{\partial z}{\partial x}+6 x z^{2} \frac{\partial z}{\partial x}=3-2 z^{3}-3 x^{2} y z \\
& \left(x^{3} y+6 x z^{2}\right) \frac{\partial z}{\partial x}=3-2 x^{3}-3 x^{2} y z \\
& \frac{\partial z}{\partial x}=\frac{3-2 x^{3}-3 x^{2} y z}{x^{3} y+6 x z^{2}} \\
& Z_{x}(1,1,-1)=\left.\frac{\partial z}{\partial x}\right|_{\substack{x=1 \\
y=1 \\
z=-1}}=\frac{3-2(1)^{3}-3(1)^{2}(1)(-1)}{(1)^{3}(1)+6(1)(-1)^{2}} \\
& =1
\end{aligned}
$$

