Mark A. Stadtherr

Mark A. Stadtherr
Keating-Crawford Professor Emeritus

Professor Stadtherr received his BChE from the University of Minnesota in 1972 and his PhD in chemical engineering from the University of Wisconsin in 1976. He taught at the University of Illinois (Urbana-Champaign) from 1976 to 1995 and joined the Chemical and Biomolecular Engineering faculty at the University of Notre Dame in 1996. Dr. Stadtherr holds a 1982 Xerox Award for Engineering Research. He gave the GTE Emerging Scholar Lecture at the University of Notre Dame in 1986 and has lectured internationally on the use of interval mathematics in chemical engineering.  He is the winner of the 1998 Computing in Chemical Engineering Award, presented by the American Institute of Chemical Engineers (AIChE). In 2008, he received the James A. Burns, C.S.C., Graduate School Award from the University of Notre Dame for exemplary contributions to graduate education. Dr. Stadtherr is also very active in the AIChE, serving in a number of significant leadership roles, including Chair of the Computer and Systems Technology (CAST) Division (2002-2003), Chair of the Publications Committee (2007-2010), and Chair of the Chemical Technology Operating Council (CTOC) (2014).

Research Interests

One focus of our research is on the development and application of strategies for reliable engineering computing. In many applications of interest in chemical engineering it is necessary to deal with nonlinear models of complex physical phenomena, on scales ranging from the macroscopic to the molecular. Frequently these are problems that require solving a nonlinear equation system (algebraic and/or differential) or finding the global optimum of a nonconvex function. Thus, the reliability with which these computations can be done is often an important issue. For example, if there are multiple solutions to the model, have all been located? If there are multiple local optima, has the global optimum been found? If there are uncertain parameters and/or initial conditions in a dynamic model, have the effects of these uncertainties been rigorously quantified. We are using interval mathematics to develop the tools needed to resolve these issues with mathematical and computational certainty, thus providing problem-solving reliability not available when using standard methods.

Another research focus is the formulation and solution of modeling problems that arise in the development of sustainable, energy-efficient and environmentally-conscious processing technology. Of particular interest is the use of room-temperature ionic liquids (ILs) as environmentally-benign replacements for traditional organic solvents and refrigerants, and as sorbents for CO2 capture. Also of interest is modeling the impact of new materials and technology on potentially affected ecosystems.

Recent Publications -- Find here a list of recent publications.  Also find here links to abstracts and preprints of selected recent publications.


E-Mail: markst (at)

Do NOT send inquiries about graduate study at Notre Dame to the above address.
Inquiries about graduate study at Notre Dame should be sent to

University of Notre Dame Home Page