
Deterministic Global Optimization for Parameter Estimation

of Dynamic Systems

Youdong Lin and Mark A. Stadtherr∗

Department of Chemical and Biomolecular Engineering

University of Notre Dame, Notre Dame, IN 46556, USA

March 9, 2006

∗Author to whom all correspondence should be addressed. Phone: (574) 631-9318; Fax: (574) 631-8366;
E-mail: markst@nd.edu

Abstract

A method is presented for deterministic global optimization in the estimation of parameters in

models of dynamic systems. The method can be implemented as an ε-global algorithm, or, by use

of the interval-Newton method, as an exact algorithm. In the latter case, the method provides a

mathematically guaranteed and computationally validated global optimum in the goodness of fit

function. A key feature of the method is the use of a new validated solver for parametric ODEs,

which is used to produce guaranteed bounds on the solutions of dynamic systems with interval-

valued parameters, as well as on the first- and second-order sensitivities of the state variables with

respect to the parameters. The computational efficiency of the method is demonstrated using

several benchmark problems.

Keywords: Parameter estimation; Global optimization; Dynamic modeling; Interval analysis;

Validated computing

1 Introduction

Parameter estimation is a key step in the development of mathematical models of physical phe-

nomena, and is a well studied problem.1 In many cases, especially in chemical engineering, the

phenomena of interest are nonlinear in nature and are described by systems of ordinary differential

equations (ODEs), or by differential-algebraic equation (DAE) systems. In general, there are two

types of approaches to addressing the parameter estimation problem for such dynamic systems. In

either approach, the objective is to minimize a weighted squared error between the observed values

and those predicted by the model. The first approach uses integration routines to determine the

values of the state variables, as well as the sensitivities, for a given set of parameter values. This is

referred to as a sequential approach, since the solution of the differential system and the solution

of the minimization problem are done sequentially. The other type of strategy is a simultaneous

approach, in which discretization techniques, such as collocation, are used to transform the dy-

namic system into an algebraic system, resulting in a nonlinear programming (NLP) problem to

which standard, or specially designed, solvers can be applied. A more detailed discussion of the

optimization methods used in connection with both of these approaches is given by Esposito and

Floudas.2

In the nonlinear parameter estimation of dynamic systems, it is not uncommon for there to be

nonconvexities, leading to the important issue of multiplicity of local solutions.2,3 Therefore, global

optimization algorithms are needed to address this issue and find the globally optimal parameters.

Stochastic searches4 as well as deterministic methods5 can be applied. The former class of methods,

which essentially sample the feasible domain in various ways to locate the global optimum, increase

the likelihood of finding the global optimum, but without a theoretical guarantee. Deterministic

methods, on the other hand, can provide a theoretical guarantee of finding, in finite time, either

the exact global optimum (e.g., interval-Newton methods6) or an ε-global optimum (e.g., αBB

1

methods7,8).

Esposito and Floudas2 used the αBB approach for the solution of the minimization problem

that arises in both the sequential and simultaneous approaches. They found that for systems with

nonlinearities in the state variables, the simultaneous approach performed poorly compared to

the sequential approach. The αBB approach uses convex underestimating functions in connection

with a branch-and-bound strategy. A theoretical guarantee of attaining an ε-global solution is

offered as long as rigorous underestimators are used, and this requires that sufficiently large values

of α be used. However, the determination of proper values of α depends on the Hessian of the

optimization problem, and, when the sequential approach is used, this matrix is not available in

explicit functional form. Thus, Esposito and Floudas2 did not use rigorous values of α in their

implementation of the sequential approach, and so did not obtain a theoretical guarantee of global

optimality. This issue is discussed in more detail by Papamichail and Adjiman.9

For rigorous determination of α, Chachuat and Latifi10 have proposed two new approaches, one

based on sensitivity analysis and the other on the use of adjoint variables. However, these procedures

for determining first- and second-order derivatives of the necessary state-dependent functions appear

to be quite costly. Papamichail and Adjiman9,11 have presented a deterministic spatial branch-and-

bound algorithm in which a new convex relaxation procedure is used. They achieved a rigorous

convex relaxation of the dynamic information using either parameter independent or parameter

dependent bounds on the solution of the dynamic system. Computational examples showed that

the parameter independent bounds were not sufficiently tight, thus requiring many iterations to

converge, and that the parameter dependent bounds, which are affine functions of the parameters,

were tighter and thus required far fewer iterations. However, the computational cost of constructing

such tight affine underestimators and overestimators appears to be high. The approaches given by

both Chachuat and Latifi10 and by Papamichail and Adjiman9,11 provide a theoretical guarantee of

2

ε-global optimality. However, this is achieved at a high computational cost, as seen in the examples

presented in section 6. Singer and Barton12 have recently described a branch-and-bound approach

using convex and concave relaxations for bounding the state trajectories. Using this approach, the

cost of determining an ε-global optimum appears to be much more reasonable.

We present here a new deterministic global optimization approach for the parameter estimation

of dynamic systems. This method is based on interval analysis and employs a type of sequential

approach. A key feature of the method is the use of a new validated solver13 for parametric ODEs,

which is used to produce guaranteed bounds on the solutions of dynamic systems with interval-

valued parameters, as well as on the first- and second-order sensitivities of the state variables with

respect to the parameters. The computational efficiency of this approach will be demonstrated

through application to several benchmark problems.

The remainder of this paper is organized as follows. In section 2, the problem to be solved

is defined mathematically. Section 3 provides a brief introduction to interval analysis and Taylor

models, as well as a constraint propagation procedure on Taylor models. Section 4 reviews the

new validated method13 for parametric ODEs, which makes use of Taylor models. Section 5 then

outlines the algorithmic procedure for solving the global optimization problem. Finally, in section

6 we present the results of some numerical experiments that demonstrate the effectiveness of the

proposed approach for parameter estimation of dynamic systems.

2 Problem Definition

Let Z be the set of all state variables (components of z), J be the set of states whose derivatives

appear explicitly in the model (J ⊆ Z), and M be the set of fitted states (M ⊆ Z). In standard

3

error-in-variables form, the parameter estimation problem for a dynamic model can be written as

min
θ,zµ

φ =
∑

m∈M

r
∑

µ=1

(zµ,m − z̄µ,m)2 (1)

s.t. żj = gj(z,θ, t); j ∈ J

zj(t0) = z0,j ; j ∈ J

0 = h(z,θ, t)

zµ,m = zm(tµ); m ∈M ; µ = 1, . . . , r

t ∈ [t0, tf].

Here θ is the vector of parameters (length p) which are to be estimated; z0 = (z0,j ; j ∈ J) is the

vector (length |J |) of constant initial conditions; zµ = (zµ,m;m ∈M) is the vector (length |M |) of

fitted data variables and z̄µ = (z̄µ,m;m ∈ M) is the vector (length |M |) of measured values, both

at t = tµ, the time associated with the µ-th data point; and r is the total number of data points.

As stated, this is a DAE system with a vector (length |J |) of derivatives g = (gj , j ∈ J) defining the

differential constraints, and a vector h (length |Z|−|J |) defining the algebraic constraints. However,

the DAE system is assumed to have an index of at most one. Therefore, it is possible to convert

the DAE system into a set of ODEs, either by explicitly solving 0 = h(z,θ, t) for the algebraic

variables zi, i 6∈ J , and substituting into g(z,θ, t) or through one differentiation of h(z,θ, t).14 We

will henceforth assume that the dynamic model in which parameters are to be estimated is in the

form of a system of ODEs. We also assume that g is (k− 1)-times continuously differentiable with

respect to the state variables z, and (q + 1)-times continually differentiable with respect to the

parameters θ. Here k is the order of the truncation error in the interval Taylor series (ITS) method

to be used in the integration procedure (to be discussed in section 4), and q is the order of the

Taylor model to be used to represent parameter dependence (to be discussed in section 3.2). When

a typical sequential approach is used, an ODE solver is applied to the constraints with a given

4

set of parameter values, as determined by the optimization routine. This effectively eliminates zµ,

µ = 1, . . . , r, and leaves an unconstrained minimization in the parameters θ only.

3 Interval Analysis and Taylor Models

3.1 Interval Analysis

A real interval X is defined as the set of real numbers lying between (and including) given

upper and lower bounds; that is, X =
[

X,X
]

=
{

x ∈ R | X ≤ x ≤ X
}

. Here an underline is used

to indicate the lower bound of an interval and an overline is used to indicate the upper bound. A

real interval vector X = (X1, X2, · · · , Xn)T has n real interval components and can be interpreted

geometrically as an n-dimensional rectangle or box. Note that in this context uppercase quantities

are intervals, and lowercase quantities or uppercase quantities with underline or overline are real

numbers.

Basic arithmetic operations with intervals are defined by X op Y = {x op y | x ∈ X, y ∈ Y },

where op = {+,−,×,÷}. Interval versions of the elementary functions can be similarly defined.

It should be emphasized that, when machine computations with interval arithmetic operations are

done, as in the procedures outlined below, the endpoints of an interval are computed with a directed

(outward) rounding. That is, the lower endpoint is rounded down to the next machine-representable

number and the upper endpoint is rounded up to the next machine-representable number. In this

way, through the use of interval, as opposed to floating-point arithmetic, any potential rounding

error problems are avoided. Several good introductions to interval analysis, as well as interval

arithmetic and other aspects of computing with intervals, are available.6,15–17 Implementations of

interval arithmetic and elementary functions are also readily available, and recent compilers from

Sun Microsystems directly support interval arithmetic and an interval data type.

For an arbitrary function f(x), the interval extension F (X) encloses all possible values of f(x)

5

for x ∈ X ; that is, it encloses the range of f(x) over X. It is often computed by substituting the

given interval X into the function f(x) and then evaluating the function using interval arithmetic.

This “natural” interval extension is often wider than the actual range of function values, though it

always includes the actual range. For example, the natural interval extension of f(x) = x/(x − 1)

over the interval X = [2, 3] is F ([2, 3]) = [2, 3]/([2, 3] − 1) = [2, 3]/[1, 2] = [1, 3], while the true

function range over this interval is [1.5, 2]. This overestimation of the function range is due to

the “dependency” problem, which may arise when a variable occurs more than once in a function

expression. While a variable may take on any value within its interval, it must take on the same

value each time it occurs in an expression. However, this type of dependency is not recognized

when the natural interval extension is computed. In effect, when the natural interval extension

is used, the range computed for the function is the range that would occur if each instance of a

particular variable were allowed to take on a different value in its interval range. For the case in

which f(x) is a single-use expression, that is, an expression in which each variable occurs only once,

natural interval arithmetic will always yield the true function range. For example, rearrangement

of the function expression used above gives f(x) = x/(x− 1) = 1 + 1/(x− 1), and now F ([2, 3]) =

1 + 1/([2, 3] − 1) = 1 + 1/[1, 2] = 1 + [0.5, 1] = [1.5, 2], the true range.

In some situations, dependency issues can be avoided through the use of the dependent sub-

traction operation (also known as the cancellation operation). Assume that there is an interval

S that depends additively on the interval A. The dependent subtraction operation is defined by

S	A = [S−A,S−A]. For example, let A = [1, 2], B = [2, 3], C = [3, 4] and S = A+B+C = [6, 9].

Say that only S is stored and that later it is desired to compute A + B by subtracting C from S.

Using the standard subtraction operation yields S −C = [6, 9]− [3, 4] = [2, 6], which overestimates

the true A + B. Using the dependent subtraction operation, which is allowable since S depends

additively on C, yields S 	 C = [6, 9] 	 [3, 4] = [3, 5], which is the true A + B. For more gen-

6

eral situations, there are a variety of other approaches that can be used to try to tighten interval

extensions,6,15–17 including the use of Taylor models, as described in the next subsection.

3.2 Taylor Models

Makino and Berz18 have described a remainder differential algebra (RDA) approach for bound-

ing function ranges and control of the dependency problem of interval arithmetic.19 This method

employs high-order computational differentiation to express a function by a model consisting of a

Taylor polynomial, usually a truncated Taylor series as shown below, and an interval remainder

bound.

Consider a function f : x ∈X ⊂ R
m → R that is (q+1) times partially differentiable on X and

let x0 ∈ X. The Taylor theorem states that for each x ∈ X , there exists a ζ ∈ R with 0 < ζ < 1

such that

f(x) =

q
∑

i=0

1

i!
[(x− x0) · 5]i f (x0) +

1

(q + 1)!
[(x− x0) · 5]q+1 f [x0 + (x− x0)ζ] , (2)

where the partial differential operator [g · 5]k is

[g · 5]k =
∑

j1+···+jm=k

0≤j1 ,··· ,jm≤k

k!

j1! · · · jm!
gj1
1 · · · gjm

m

∂k

∂xj1
1 · · · ∂xjm

m

. (3)

The last (remainder) term in eq 2 can be quantitatively bounded over 0 < ζ < 1 using interval

arithmetic or other methods to obtain an interval remainder bound. The Taylor model for f(x)

then consists of a q-th order polynomial in (x − x0), pf (x− x0) (the summation in eq 2), and an

interval remainder bound Rf . This Taylor model is denoted by Tf = (pf , Rf).

Arithmetic operations with Taylor models can be done using the RDA approach described by

Makino and Berz.18,20 Let Tf and Tg be the Taylor models (q-th order) of the functions f(x) and

g(x) respectively over the interval x ∈X. For f ± g,

f ± g ∈ Tf ± Tg = (pf , Rf)± (pg, Rg) = (pf ± pg, Rf ±Rg). (4)

7

Thus a Taylor model of f ± g is given by

Tf±g = (pf±g, Rf±g) = (pf ± pg, Rf ±Rg). (5)

For the the product f × g,

f × g ∈ (pf , Rf)× (pg, Rg) ⊆ pf × pg + pf ×Rg + pg ×Rf + Rf ×Rg. (6)

Note that pf × pg is a polynomial of order 2q. In order to be consistent with the q-th order

polynomial in a Taylor model, this term is split into the sum of a polynomial pf×g of up to q-th

order, and an extra polynomial pe containing the higher order terms. A Taylor model for the

product f × g can then be given by Tf×g = (pf×g, Rf×g), with

Rf×g = B(pe) + B(pf)×Rg + B(pg)×Rf + Rf ×Rg. (7)

Here B(p) = P (X − x0) denotes an interval bound of the polynomial p(x − x0) over x ∈ X.

Similarly, an interval bound on an overall Taylor model T = (p,R) will be denoted by B(T), and is

computed by obtaining B(p) and adding it to the remainder bound R; that is, B(T) = B(p) + R.

In storing and operating on a Taylor model, only the coefficients of the polynomial part p(x− x0)

are used, and these are point valued. However, when these coefficients are computed in floating

point arithmetic, numerical errors may occur and they must be bounded. To do this in our current

implementation of Taylor model arithmetic, we have used the “tallying variable” approach, as

described by Makino and Berz.20 This approach has been analyzed in detail by Revol et al.21 This

results in an error bound on the floating point calculation of the coefficients in p(x − x0) being

added to the interval remainder bound R.

The range bounding of the interval polynomials B(p) = P (X−x0) is an important issue, which

directly affects the performance of the Taylor model. Unfortunately, exact range bounding of an

interval polynomial is NP hard, and direct evaluation using interval arithmetic is very inefficient,

8

often yielding only loose bounds. Naturally, we focus on exact bounding of the dominant part,

that is, the first- and second-order terms. However, exact bounding of a general interval quadratic

is computationally expensive. Thus, we have adopted here a compromise approach, in which only

the first-order and the diagonal second-order terms are considered for exact bounding, and other

terms are evaluated directly. That is,

B(p) =

m
∑

i=1

[

ai (Xi − xi0)
2 + bi(Xi − xi0)

]

+ Q, (8)

where Q is the interval bound of all other terms, and is obtained by direct evaluation with interval

arithmetic. In eq 8, since Xi occurs twice, there exists a dependency problem. For |ai| ≥ ω, where

ω is a small positive number, we can rearrange eq 8 such that each Xi occurs only once; that is,

B(p) =
m
∑

i=1

[

ai

(

Xi − xi0 +
bi

2ai

)2

− b2
i

4ai

]

+ Q. (9)

In this way, the dependence problem in bounding the interval polynomial is alleviated so that a

sharper bound can be obtained. If |ai| < ω, direction evaluation will be used instead.

Taylor models for the reciprocal operation, as well as the intrinsic functions (exponential, loga-

rithm, square root, sine, cosine, etc.) can also be obtained.18,20,22 Using these, together with the ba-

sic arithmetic operations defined above, it is possible to start with simple functions such as the con-

stant function k(x) = k, for which Tk = (k, [0, 0]), and the identity function i(xi) = xi, i = 1, · · · ,m,

for which Ti = (xi0 + (xi − xi0), [0, 0]), and to then compute Taylor models for very complicated

functions. Altogether, it is possible to compute a Taylor model for any function that can be rep-

resented in a computer environment by simple operator overloading through RDA operations. It

has been shown that, compared to other rigorous bounding methods, the Taylor model often yields

sharper bounds for modest to complicated functional dependencies.18,19,23

9

3.3 Constraint Propagation on Taylor Models

Partial information expressed by a constraint can be used to eliminate incompatible values from

the domain of its variables. This domain reduction can then be propagated to all constraints on

that variable, where it may be used to further reduce the domains of other variables. This process

is known as constraint propagation. In this subsection, we show how to apply such a constraint

propagation procedure using Taylor models, for both inequality and equality constraints.

Let Tc be the Taylor model of the function c(x) over the interval x ∈X, and say the constraint

c(x) ≤ 0 needs to be satisfied. In the constraint propagation procedure (CPP) described here,

B(Tc) is determined and then there are three possible outcomes: 1. If B(Tc) > 0, then no x ∈ X

will ever satisfy the constraint; thus, the CPP can be stopped and X discarded. 2. If B(Tc) ≤ 0,

then every x ∈X will always satisfy the constraint; thus X cannot be reduced and the CPP can be

stopped. 3. If neither of previous two cases occur, then part of the interval X may be eliminated;

thus the CPP continues, using an approach based on the range bounding strategy for Taylor models

described above.

For some i ∈ {1, 2, . . . ,m}, let ai and bi be the polynomial coefficients of the terms (xi − xi0)
2

and (xi − xi0) of Tc, respectively. Note that, xi0 ∈ Xi and is usually the midpoint xi0 = m(Xi);

the value of xi0 will not change during the CPP. For |ai| ≥ ω, the bounds on Tc can be expressed

using eq 9 as

B(Tc) = B(p) + R = ai

(

Xi − xi0 +
bi

2ai

)2

− b2
i

4ai
+ Si, (10)

where Si is determined by dependent subtraction (see section 3) using

Si = B(Tc)	
[

ai

(

Xi − xi0 +
bi

2ai

)2

− b2
i

4ai

]

. (11)

Now define the intervals Ui = Xi − xi0 + bi

2ai
and Vi =

b2i
4ai
− Si, so that B(Tc) = aiU

2
i − Vi. The

goal is to identify and retain only the part of Xi that contains values of xi for which it is possible

10

to satisfy c(x) ≤ 0. Since B(Tc) bounds the range of c(x) for x ∈ X, the constraint c(x) ≤ 0 will

be satisfied if B(Tc) ≤ 0. Thus, to identify bounds on the part of Xi that satisfies the constraint,

we can use the condition

aiU
2
i ≤ Vi. (12)

Then, the set Ui that satisfies eq 12, can be determined to be

Ui =































































∅ if ai > 0 and Vi < 0

[

−
√

Vi

ai
,
√

Vi

ai

]

if ai > 0 and Vi ≥ 0

[−∞,∞] if ai < 0 and Vi ≥ 0

[

−∞,−
√

Vi

ai

]

∪
[

√

Vi

ai
,∞
]

if ai < 0 and Vi < 0

. (13)

The part of Xi to be retained is then Xi = Xi ∩
(

Ui + xi0 − bi

2ai

)

.

If |ai| < ω, then eq 9 cannot be used, but eq 8 can. Following a procedure similar to that used

above, we now define Ui = Xi − xi0 and Vi = B(Tc)	 bi(Xi − xi0). To identify bounds on the part

of Xi that satisfies the constraint, we can now use the condition

biUi ≤ Vi. (14)

Then, the set Ui that satisfies eq 14, can be determined to be

Ui =























[

−∞, Vi

bi

]

if bi > 0

[

Vi

bi
,∞
]

if bi < 0,

(15)

where it is assumed that |bi| ≥ ω. The part of Xi to be retained is then Xi = Xi ∩ (Ui + xi0). If

both |ai| and |bi| are less than ω, then no CPP will be applied on Xi.

For the equality constraint c(x) = 0, the procedure is similar to but simpler than for the

inequality case. If |ai| ≥ ω, eq 12 becomes

aiU
2
i = Vi. (16)

11

Then, with Wi = Vi/ai, it follows that

Ui =











































∅ if Wi < 0

[

−
√

Wi,
√

Wi

]

if Wi ≤ 0 ≤Wi

−√Wi ∪
√

Wi if Wi > 0

. (17)

Thus, the part of Xi retained is Xi = Xi∩
(

Ui + xi0 − bi

2ai

)

. If |ai| < ω and |bi| ≥ ω, eq 14 becomes

biUi = Vi, that is, Ui = Vi/bi. Thus, in this case, the part of Xi retained is Xi = Xi ∩ (Ui + xi0).

The overall CPP is implemented by beginning with i = 1 and proceeding component by com-

ponent. If, for any i, the result Xi = ∅ is obtained, then no x ∈X can satisfy the constraint; thus,

X can be discarded and the CPP stopped. Otherwise the CPP proceeds until all components of X

have been updated. Note that, in principle, each time an improved (smaller) Xi is found, it could

be used in computing Si for subsequent components of X . However, this requires recomputing the

bound B(Tc), which, for the functions c(x) that will be of interest here, is expensive. Thus, the

CPP for each component is done using the bounds B(Tc) computed from the original X.

4 Validated Solution of Parametric ODEs

When a traditional sequential approach is applied to the parameter estimation problem, the

objective function φ is evaluated, for a given value of θ, by applying an ODE solver to the constraints

to eliminate zµ, µ = 1, . . . , r. In the global optimization algorithm described here, we will use a

sequential approach based on interval analysis. This approach requires the evaluation of bounds

on φ, given some parameter interval Θ. Thus, we need an ODE solver that can compute bounds

on zµ, µ = 1, . . . , r, for the case in which the parameters are interval valued. Interval methods24

(also called validated methods) for ODEs provide a natural approach for computing the desired

enclosures of the state variables at the times tµ, µ = 1, . . . , r, corresponding to the given data

12

points.

Validated methods for ODEs not only can determine guaranteed bounds on the state variables,

but can also verify that a unique solution to the problem exists. Traditional interval methods

usually consist of two processes applied at each integration step.24 In the first process, existence

and uniqueness of the solution are proven using the Picard-Lindelöf operator and the Banach fixed

point theorem, and a rough enclosure of the solution is computed. In the second process, a tighter

enclosure of the solution is computed. In general, both processes are realized by applying interval

Taylor series (ITS) expansions with respect to time, and using automatic differentiation to obtain

the Taylor coefficients. An excellent review of the traditional interval methods has been given

by Nedialkov et al.25 For addressing this problem, there are various packages available, including

AWA,26 VNODE27 and COSY VI,28 all of which consider uncertainties (interval valued) in initial

values only. Recently, Lin and Stadtherr13 have proposed a method for efficiently determining

validated solutions of ODEs with interval-valued parameters. The method makes use, in a novel

way, of the Taylor model approach18–20 to deal with the dependency problem on the uncertain

variables (parameters and initial values). In the context of parameter estimation, the initial values

are assumed to be known exactly, and so only the parameters are interval valued. We will summarize

here the basic ideas of the method used. Additional details are given by Lin and Stadtherr.13

Consider the following parametric ODE system, with state variables denoted by y:

ẏ = f(y,θ), y(t0) = y0, θ ∈Θ, (18)

where t ∈ [t0, tm] for some tm > t0. Note that a parameter interval Θ has been specified, and

that it is desired to determine a validated enclosure of all possible solutions to this initial value

problem. Also note that nonautonomous (time dependent) problems can be converted to the

autonomous form given in eq 18. We denote by y(t; tj ,Y j,Θ) the set of solutions y(t; tj,Y j ,Θ) =

{

y(t; tj ,yj ,θ) | yj ∈ Y j,θ ∈ Θ
}

, where y(t; tj ,yj,θ) denotes a solution of ẏ = f(y,θ) for the

13

initial condition y = yj at t = tj. We will describe a method for determining enclosures Y j of the

state variables at each time step j = 1, . . . ,m, such that y(tj; t0,y0,Θ) ⊆ Y j.

Assume that at tj we have an enclosure Y j of y(tj ; t0,y0,Θ), and that we want to carry out

an integration step to compute the next enclosure Y j+1. Then, in the first phase of the method,

the goal is to find a step size hj = tj+1 − tj > 0 and a prior enclosure Ỹ j of the solution such that

a unique solution y(t; tj ,yj ,θ) ∈ Ỹ j is guaranteed to exist for all t ∈ [tj , tj+1], any yj ∈ Y j, and

any θ ∈ Θ. We apply the traditional interval method, with high order enclosure, to the parametric

ODEs by using an interval Taylor series (ITS) with respect to time. That is, we determine hj and

Ỹ j such that for Y j ⊆ Ỹ
0
j ,

Ỹ j =
k−1
∑

i=0

[0, hj]
iF [i](Y j ,Θ) + [0, hj]

kF [k](Ỹ
0
j ,Θ) ⊆ Ỹ

0
j . (19)

Here k denotes the order of the Taylor expansion, and the coefficients F [i] are interval extensions of

the Taylor coefficients f [i] of y(t) with respect to time, which can be obtained recursively in terms

of ẏ(t) = f(y,θ) by

f [0] = y

f [1] = f(y,θ) (20)

f [i] =
1

i

(

∂f [i−1]

∂y
f

)

(y,θ), i ≥ 2.

Satisfaction of eq 19 demonstrates that there exists a unique solution y(t; tj ,yj,θ) ∈ Ỹ j for all

t ∈ [tj , tj+1], any yj ∈ Y j , and any θ ∈ Θ.

In phase 2, we compute a tighter enclosure Y j+1 ⊆ Ỹ j such that y(tj+1; t0,y0,Θ) ⊆ Y j+1.

This will be done by using an ITS approach to compute a Taylor model T yj+1
of yj+1 in terms

of the parameters, and then obtaining the enclosure Y j+1 = B(T yj+1
). For the Taylor model

computations, we begin by representing the parameters by the Taylor model T θ with components

Tθi
= (m(Θi) + (θi −m(Θi)), [0, 0]), i = 1, · · · , p, (21)

14

where m(Θi) indicates the midpoint of the interval Θi. Then, we can determine Taylor mod-

els T
f [i] of the interval Taylor series coefficients f [i](yj,θ) by using RDA operations to compute

T
f [i] = f [i](T yj

,T θ). Using an interval Taylor series for yj+1 with coefficients given by T
f [i] , and

incorporating a novel approach for using the mean value theorem on Taylor models, one can obtain

a result for T yj+1
in terms of the parameters. To further control the wrapping effect,24 a QR

factorization approach is applied to the remainder bound. The algorithmic procedure for phase 2

is summarized in Algorithm 1, where J(f [i];Y j,Θ) denotes the interval extension of the Jacobian

(with respect to the state variables) of f [i] over yj ∈ Y j and θ ∈ Θ. The procedure begins with

V 0 = 0, T̂ y0
= (y0, [0, 0]), and A0 = I. Complete details of the computation of T yj+1

are given by

Lin and Stadtherr.13 If necessary, it may be possible to further tighten Y j+1 if one or more of the

state variables has some known physical bounds that could be applied. The use of physical state

bounds is an important feature of the method used by Singer and Barton.12 We have not made

use of any physical state bounds in the example problems given below.

An implementation of this approach, called VSPODE (Validating Solver for Parametric ODEs),

has been developed and tested by Lin and Stadtherr,13 who compared its performance with results

obtained using the popular VNODE package.27 For the test problems used, VSPODE provided

tighter enclosures on the state variables than VNODE, and required significantly less computation

time.

5 Global Optimization Procedure

The global optimization procedure described here uses an interval-Newton approach.6,16 The

algorithm can be thought of as a type of branch-and-bound method, with various strategies used for

domain reduction. Since a sequential approach to parameter estimation is used here, the problem

becomes the unconstrained minimization of φ(θ). The interval-Newton (IN) method provides the

15

capability to find tight enclosures of all global minimizers of φ in some specified initial interval

Θ(0), and to do so with mathematical and computational certainty. The IN method is basically an

equation-solving method. In the context of unconstrained minimization, it is used to seek solutions

of f(θ) = ∇φ(θ) = 0, where ∇φ(θ) indicates the gradient of the objective function φ(θ). Given

some initial interval Θ(0) sufficiently large that the global minimum sought is in its interior, the IN

algorithm is applied to a sequence of subintervals. At the k-th iteration, three steps, including the

objective range test, function range test, and interval-Newton test, may be applied on the current

subinterval Θ(k).

5.1 Objective Range Test

In this step, the Taylor model Tφk
, of the objective function φ(θ) over Θ(k) is computed. To do

this, Taylor models of zµ, the state variables at times tµ, µ = 1, . . . , r, corresponding to the given

data points, must first be determined. This is done using VSPODE, as described in section 4. An

interval bound B(Tφk
) of Tφk

is then obtained using the bounding procedure for Taylor models

given in section 3.2. The final step in bounding each term in the sum of squares function φ(θ) is

actually done in two different ways. Each term in φ(θ) is of the form (z − z̄)2 = (∆z)2. After T∆z

has been obtained, then both B(T 2
∆z) and (B(T∆z))

2 are determined. The contribution to B(Tφk
)

is then the intersection of these two results. This tends to tighten the bounds provided by B(Tφk
)

and also guarantees that B(Tφk
) ≥ 0.

The part of Θ(k) that can contain the global minimum must satisfy the constraint φ(θ)− φ̂ ≤ 0,

where φ̂ is a known upper bound on the global minimum, the initialization and update of which is

discussed below. Thus the constraint propagation procedure (CPP) described in section 3.3 is now

applied using this constraint. The first step of the CPP amounts to checking if the lower bound

of Tφk
, B(Tφk

), is greater than φ̂. If so, then Θ(k) can be discarded because it cannot contain the

16

global minimum and need not be further tested. The second step of the CPP amounts to checking

if the upper bound of Tφk
, B(Tφk

), is less than φ̂. If so, then all points in Θ(k) satisfy the constraint

and the CPP can be stopped since no reduction in Θ(k) can be achieved. This also indicates, with

certainty, that there is a point in Θ(k) that can be used to update φ̂. Thus, if B(Tφk
) < φ̂, a

local optimization routine, starting at some point in Θ(k), is used to find a local minimum, which

then provides an updated (smaller) φ̂, that is, a better upper bound on the global minimum. In

our implementation, the midpoint of Θ(k) is used as the starting point for the local optimization.

A new CPP is then started on Θ(k) using the updated value of φ̂. If neither of the previous two

outcomes occurs, then the full CPP described in section 3.3 is applied to reduce Θ(k). If Θ(k) is

sufficiently reduced (by more than 10% by volume), then new bounds B(Tφk
) are obtained, now

over the smaller Θ(k), and a new CPP is started. Otherwise, the processing of Θ(k) continues with

the function range test.

In this application, the objective function φ is a sum of squares function, and it can be accu-

mulated as a series of partial sums computed at each data time tµ, µ = 1, . . . , r − 1, with the final

sum φ determined only after integration to the final data time tr. Thus, after integration through

the s-th data time ts (s < r), we have computed the partial sum

φs =
∑

m∈M

s
∑

µ=1

(zµ,m − z̄µ,m)2. (22)

Since each term in the sum is positive, φs ≤ φs+1 ≤ φ, s = 1, . . . , r−1. Thus, for any s = 1, . . . , r−1,

a lower bound on φs is a valid lower bound on φ, and the bounds improve (increase) as s increases.

However, an upper bound on φs is not a valid upper bound on φ. This means that we are able to

augment the objective range test described above by applying a partial CPP after each data time

ts is reached in the integration process. At this point, the Taylor model of φs over Θ(k) is available.

It is bounded to obtain B(Tφsk
) and a CPP is started. The only part of the CPP that cannot be

done is the second step, which determines when to update φ̂, since this involves the upper bound

17

on the Taylor model of φs, which is not a valid upper bound on φ. Using this partial CPP at each

data time may result in Θ(k) being eliminated without having to integrate all the way to tr, or it

may result in a larger reduction of Θ(k) once tr is reached.

As with any type of procedure incorporating branch-and-bound, an important issue is how to

initialize φ̂, the upper bound on the global minimum. There are many ways in which this can be

done, and clearly, it is desirable to find a φ̂ that is as small as possible (i.e., the tightest possible

upper bound). To initialize φ̂, we run p2 local minimizations (p is the number of parameters to

be estimated) using a local optimization routine from randomly chosen starting points, and then

choose the smallest value of φ found to be the initial φ̂. For this purpose, we use the bound-

constrained quasi-Newton method L-BFGS-B29 as the local optimization routine, and DDASSL14

as the integration routine.

5.2 Function Range Test

This test step is also known as the gradient test. Since the global minimum must be one of the

stationary points of φ(θ), it must be a solution of f(θ) = ∇φ(θ) = 0. The Taylor model T fk
, of

f(θ) over Θ(k) is computed. If there is any component of B(T fk
) that does not include zero, then

no solution of f(θ) = 0 can exist in this interval. This interval can then be discarded. Note that

we have assumed that the initial interval Θ(0) is sufficiently large that the global minimum will not

be on its boundary, because an extremum on the boundary is in general not a stationary point.

For situations in which such an assumption cannot be made, the “peeling” process described by

Kearfott,16 in which IN is applied to each of the lower dimensional subspaces that constitute the

boundary of Θ(0), can be used.

Using T fk
, a constraint propagation procedure can also be performed using each component

of the stationarity constraint f(θ) = 0. A CPP is done for each component of Θ(k), using each

18

component of the stationarity constraint, until all components of Θ(k) have been updated, or Θ(k)

has been discarded. The procedure is repeated until no further improvement of Θ(k) can be made.

Note that in order to determine a Taylor model of f(θ), it is necessary to obtain Taylor models

for the first-order sensitivities zθi
= ∂z/∂θi, i = 1, . . . , p, at each tµ, µ = 1, . . . , r. To do this,

VSPODE is applied to integrate the first-order sensitivity equation,

żθi
=

∂g

∂z
zθi

+
∂g

∂θi
(23)

zθi
(t0) = 0,

for each i = 1, . . . , p. Thus, the function range test is relatively expensive, and one must consider

the tradeoff between the computational cost of the test and the reduction of Θ(k) that it provides.

A mechanism for dealing with this tradeoff is described below in section 5.4.

5.3 Interval-Newton Test

If Θ(k) has not been eliminated in the objective range test or in the function range test, then

the interval-Newton (IN) test is applied. The linear interval equation system

F ′(Θ(k))(N (k) − θ̃
(k)

) = −f(θ̃
(k)

), (24)

is solved for a new interval N (k), where F ′(Θ(k)) is an interval extension of f ′(θ), the Jacobian

of f(θ) with respect to θ (i.e., F ′(Θ(k)) is an interval extension of the Hessian of φ(θ)), and θ̃
(k)

is an arbitrary point in Θ(k). The Taylor model T f ′
k

of f ′(θ) over Θ(k) is determined and used

to bound the coefficients of F ′(Θ(k)); that is F ′(Θ(k)) = B(T f ′
k
). It has been shown6,16,17 that

any root of f(θ) = 0 (i.e., any stationary point of φ(θ)) contained in Θ(k) is also contained in the

image N (k). This implies that if the intersection between Θ(k) and N (k) is empty, then no root

exists in Θ(k), and also suggests the iterative reduction scheme Θ(k) ← Θ(k) ∩N (k). In addition,

it has been shown6,16,17 that, if N (k) ⊂ Θ(k), then there is a unique root contained in Θ(k) and

19

thus in N (k). Therefore, after computation of N (k) from eq 24, there are three possibilities: 1.

Θ(k) ∩N (k) = ∅, meaning there is no root in the current interval Θ(k) and it can be discarded. 2.

N (k) ⊂ Θ(k), meaning that there is exactly one root in the current interval Θ(k). Thus, the testing

of Θ(k) can stop. The root is enclosed by N (k) = Θ(k) ∩N (k), and can be more tightly enclosed

by repeated application of the IN test, which will converge quadratically to a desired tolerance on

the enclosure diameter. 3. Neither of the above, meaning that no conclusion about the number of

roots can be drawn, but that Θ(k) ← Θ(k) ∩N (k) can still be applied to try to reduce Θ(k).

At this point, Θ(k) has been processed using all three tests (objective range, function range

and IN). If the volume of Θ(k) has been reduced by more than 70%, then the reduced Θ(k) will

be retested, beginning again with the objective range test. Otherwise the reduced Θ(k) is now

bisected, and the resulting two subintervals are added to the sequence (stack) of subintervals to be

tested. Various strategies can be used to select the component to be bisected. For the problems

solved here, the component with the largest relative width was selected for bisection.

Clearly, the solution of the linear interval equation system given by eq 24 is essential in the IN

test. In general, computing the tightest possible interval bounds (interval hull) on the solution of

a linear interval equation system is NP-hard,30 but there are several methods for determining an

interval that contains but overestimates the solution. Various IN methods differ in how they solve

eq 24 for N (k) and thus in the tightness with which the solution set is enclosed. Frequently, N (k) is

computed componentwise using an interval Gauss-Seidel approach, preconditioned with an inverse-

midpoint matrix. Gau and Stadtherr31 proposed a hybrid preconditioning approach (HP/RP).

It has been shown to achieve substantially better computational performance than the inverse-

midpoint preconditioner alone. Lin and Stadtherr32,33 have more recently suggested a strategy

(LISS LP) based on linear programming (LP) for solving the linear interval equation system arising

in the context of IN methods (eq 24). Exact componentwise bounds on the solution set can be

20

calculated, while avoiding exponential time complexity. In numerical comparisons32,33 with HP/RP,

LISS LP has been shown to achieve further improvements in computational performance.

Note that in order to determine a Taylor model of f ′(θ), it is necessary to obtain Taylor

models for the second-order sensitivities zθjθi
= ∂2z/∂θj∂θi, j = 1, . . . , p, i = 1, . . . , p, at each tµ,

µ = 1, . . . , r. To do this, VSPODE is applied to integrate the second-order sensitivity equation,

żθjθi
=

∂g

∂z
zθjθi

+
∂2g

∂z2
zθj

zθi
+

∂2g

∂z∂θi
zθj

+
∂2g

∂z∂θj
zθi

+
∂2g

∂θj∂θi
(25)

zθjθi
(t0) = 0,

for each j = 1, . . . , p and i = 1, . . . , p. Thus, the IN test is very expensive, and one must consider

the tradeoff between its cost and the reduction of Θ(k) that it provides. A mechanism for dealing

with this tradeoff is described in the next section.

5.4 Implementation

The global optimization method consists of three tests, as outlined above. At termination, when

all the subintervals in the stack have been tested, all global minimizers of φ will have been tightly

enclosed. This method can be regarded as a type of branch-and-bound (or branch-and-reduce)

scheme on a binary tree. Although the function range and IN tests are effective in reducing and

eliminating subdomains from the search space, they are also relatively expensive computationally,

especially for optimization in dynamic systems, since these tests require the integration of the

sensitivity equations together with the state equations. Thus, in considering the impact on overall

computational time, one must consider the tradeoff between the expense of these tests and the

reduction of search space that they provide.

Since the IN test and function range test tend to be more effective on smaller intervals, we use

a delay scheme, whereby the tests are turned on only by some triggers. The triggers used here are

based on the level of the current subinterval Θ(k) in the binary tree, denoted by L(Θ(k)). That

21

is, L(Θ(k)) is the number of bisections it has taken to reach Θ(k). Denote LF as the trigger level

for the function range test, and LJ as the trigger level for the IN test. When L(Θ(k)) ≥ LF ,

then the function range test will be performed, and when L(Θ(k)) ≥ LJ , then the IN test will

be performed. In this way, these tests are not applied until the size (volume) of the subinterval

Θ(k) being tested is less than V0/2
LT , T ∈ {F, J}, where V0 is the size of the initial interval Θ(0).

Since the IN test requires the integration of the second-order sensitivity equations, as well as the

first-order conditions, it is always significantly more expensive than the function range test, which

requires integration of the first-order sensitivities only. Therefore, when the IN test is triggered, the

function range test can always be performed with little additional computational overhead. This

means that it would not make sense to set LF equal to or higher than LJ ; thus, in practice, LF is

always less than LJ . We will compare the computational performance of these schemes, including

different trigger levels, in the next section.

If the IN test is turned off, then the method becomes a type of finite ε-convergence global

optimization algorithm. In the objective range test, an ε-convergence test is required. That is, if

φ̂ − B(TΦk
) ≤ εabs, or (φ̂ − B(TΦk

))/|φ̂| ≤ εrel, then Θ(k) will be discarded, where εabs and εrel

are absolute and relative convergence tolerances, respectively. In parameter estimation problems,

the global minimum in the sum of squares function φ(θ) can be expected to be close to zero, and

there may be also be other local minima with φ(θ) values close to zero. For this situation, use of

an absolute convergence tolerance is inappropriate. For example, if εabs is set to 10−3, then even

with the worst case lower bound B(TΦk
), any local minimum with φ̂ ≤ 10−3 would be accepted

as the global minimum, even though a minimum orders of magnitude lower might exist. Thus, for

parameter estimation problems, a relative tolerance should be used. Note that, when the IN test is

used, the method is an exact global optimization algorithm, i.e., ε = 0. In this case, the algorithm

will find arbitrarily tight (limited by machine precision) enclosures of all global minimizer points,

22

with each such enclosure guaranteed to contain a unique stationary point (∇φ(θ) = 0). The width

of this enclosure should not be confused with ε, which is a tolerance on the objective function value

and is zero in this case.

5.5 Summary

A step-by-step summary of the global optimization procedure is given below:

1. Initialization

(a) Set the trigger levels, LF and LJ .

(b) Set the relative convergence tolerance, εrel, or the absolute convergence tolerance, εabs.

If the exact global optimum is sought set εrel = 0 or εabs = 0.

(c) Set the current interval Θ = Θ(0), and the current level Lc = 1.

(d) Set the interval sequence L = ∅.

2. Upper bounding

(a) Run p2 local minimizations to initialize φ̂

3. Objective range test

(a) Compute Taylor models of the states using VSPODE, and then obtain Tφ.

(b) Perform CPP using Tφ ≤ φ̂ to reduce Θ.

(c) If Θ = ∅, go to step 6.

(d) If (φ̂−B(Tφ))/|φ̂| ≤ εrel, or φ̂−B(Tφ) ≤ εabs, go to step 6.

(e) If B(Tφ) < φ̂, update φ̂ with local minimization, go to step 3(b).

(f) If Θ is sufficiently reduced, go to step 3(a).

23

4. If Lc ≥ LJ , perform the function range test and interval-Newton test; else, if Lc ≥ LF ,

perform the function range test. If Θ = ∅, go to step 6. If Θ is sufficiently reduced, go to

step 3.

5. Branch

(a) Select the variable on which to bisect (branch) the current interval.

(b) Bisect the current interval into two subintervals.

(c) Lc = Lc + 1.

(d) Store one of the two resulting subintervals and Lc in L.

(e) Set the other subinterval to be the current interval Θ, and go to step 3.

6. Subinterval selection

(a) If L = ∅, terminate with φ∗ = φ̂.

(b) Remove one subinterval and associated level information from L as Θ and Lc, and go

to step 3.

6 Computational Studies

In this section, results on four example problems are presented. Computational performance

with different trigger levels LF and LJ will be discussed. All example problems were solved on an

Intel Pentium 4 3.2GHz machine. The VSPODE package13 (see section 4), with a k = 17 order

interval Taylor QR method and a q = 3 order Taylor model, was used to integrate the dynamic

systems in each problem. Using a smaller value of k will result in the need for smaller step sizes

in the integration and so will tend to increase computation time. Using a larger value of q will

result in somewhat tighter bounds on the states, though at the expense of additional complexity

24

in the Taylor model computations. In the ε-convergent case, a relative convergence tolerance of

εrel = 1× 10−3 was used for all problems. The algorithm was implemented in C++.

6.1 First-order Irreversible Series Reaction

This problem involves parameter estimation for a first-order irreversible chain reaction, as pre-

sented by Tjoa and Biegler,34 and studied by several others.2,10–12 The reaction system is

A
k1−→ B

k2−→ C.

Only the concentrations of components A and B are available as measurements. The differential

equation model takes the form

ż1 = −θ1z1

ż2 = θ1z1 − θ2z2 (26)

z0 = [1, 0]T t ∈ [0, 1],

where the state vector, z, is defined as the concentration vector [A,B]T, and the parameter vector,

θ, is defined as [k1, k2]
T. The measurement data can be found in Esposito and Floudas;2 it was

generated from the model using the parameter values θ = [5, 1]T, without added error other than

roundoff to three significant figures. The initial parameter intervals are Θ
(0)
1 = Θ

(0)
2 = [0, 10].

Computational results are shown in Table 1. Here, and in subsequent tables of results, LF

and LJ are the trigger levels for the function range test and the IN test, respectively (∞ means

the test is turned off); iter is the number of iterations; IFun, IJac, and IN tests are the number

of function calls, Jacobian calls, and interval-Newton tests performed, respectively; CPU indicates

the CPU time required in seconds. Note that, when LJ =∞, the method becomes an ε-convergent

algorithm. Otherwise (finite LJ), the method is true global optimization (ε = 0). This problem

turns out to be very easy. In the ε-convergent case (LJ =∞), only 4 iterations and 0.023 seconds

25

were needed. For exact global optimization, with LF = 0 and LJ = 1, only 2 iterations and 0.059

seconds were required. In each case, the method converged to a solution of 1.1858 × 10−6 with

the parameter values of θ = [5.0035, 1.0000]T , which is consistent with the results of Esposito and

Floudas.2

Comparisons with computation times reported for other methods can give only a very rough

idea of the relative efficiency of the methods, due to differences in implementation and in the

machine used for the computation. Papamichail and Adjiman11 reported solving this problem to

ε-global optimality in 801 seconds using a Matlab implementation on a Sun UltraSPARC-II 360

MHz machine (roughly an order of magnitude slower than the machine used here). Chachuat and

Latifi10 obtained an ε-optimal solution to this problem in 280 seconds, using an unspecified machine

and a “prototype” implementation. Singer and Barton12 solved this problem to ε-global optimality

with an absolute tolerance, so their results are not directly comparable; however, on this problem,

the computational cost of their method appears to be similar to the cost of the method given here.

All of these other methods provide for ε-convergence only.

6.2 First-order Reversible Series Reaction

This example involves a first-order reversible chain reaction, as presented by Tjoa and Biegler34

and Esposito and Floudas.2 The reaction system is

A
k1

k2

B
k3

k4

C.

26

The differential equation model takes the form

ż1 = −θ1z1 + θ2z2

ż2 = θ1z1 − (θ2 + θ3)z2 + θ4z3 (27)

z3 = 1− z1 − z2

z0 = [1, 0, 0]T t ∈ [0, 1],

where the state vector, z, is defined as the concentration vector [A,B,C]T, and the parameter

vector, θ, is defined as [k1, k2, k3, k4]
T. In this problem the total number of moles remains constant,

so the balance on component C is not independent of the other two component balance equations.

Thus, the third model equation is the overall balance. Two sets of measurement data can be

found in Esposito and Floudas,2 both generated from the model using the parameter values θ =

[4, 2, 40, 20]T . One set of data has no added error, and the other set has a small amount of random

error added. For the data without added error, the parameter estimation problem is very easy,

as also noted by Singer and Barton.12 Thus, we will concentrate here only on the data set with

error added. With this data set, two versions of the parameter estimation problem were solved.

The first uses the measurements of the concentration of components of A and B only; the second

uses the concentration measurements for all of the components. The initial parameter intervals are

Θ
(0)
1 = Θ

(0)
2 = [0, 10] and Θ

(0)
3 = Θ

(0)
4 = [10, 50].

For the first estimation problem (Example 2-1), using only measurements of components A

and B, the computational results are shown in Table 2. In all cases, the approach found a global

minimum of 8.5727 × 10−4 with the parameter values of θ = [4.0186, 2.0451, 40.9670, 20.3336]T .

For the ε-convergent algorithm (LJ =∞), the best performance was 270.8 seconds with LF = 15.

Without the function range test (LF =∞), it took 630.1 seconds to converge. When the IN test is

turned on (LJ finite), an exact global optimization algorithm is obtained, and the best performance

27

was 265.6 seconds with LF = 15 and LJ = 17. Thus, the exact algorithm involves no additional

cost relative to the ε-convergent algorithm. Table 2 (and subsequent tables for other examples)

gives results for trigger values on both sides of the best levels. For LF and LJ values below those

shown, the computational cost was significantly higher. On this problem, it appears that, above

certain trigger levels, the performance is relatively insensitive to the trigger values used.

For the second estimation problem (Example 2-2), using measurements of all the components,

the computational results are shown in Table 3. In all cases, the global minimum found was

1.5875 × 10−3 with the parameter values of θ = [4.0202, 2.0517, 39.6473, 19.7246]T . This agrees

with the solution of Esposito and Floudas,2 who also solved this version of the problem. For the

ε-convergent algorithm (LJ = ∞), the best performance was 2617.3 seconds without the function

range test (LF =∞). For the exact algorithm (LJ finite), the best performance was 1267.1 seconds

with LF = 18 and LJ = 19. In this case, the use of the IN test leads to an exact algorithm that is

significantly faster than the ε-global algorithm. Again, above certain trigger levels, the performance

is relatively insensitive to the LF and LJ values used, though it is more sensitive to LJ than in the

previous case.

6.3 Catalytic Cracking of Gas Oil

This problem involves a model representing the catalytic cracking of gas oil (A) to gasoline

(Q) and other side products (S), as described by Tjoa and Biegler34 and also studied by several

others.2,10–12 The reaction is

A
k1

//

k3
��

>>
>>

>>
>

Q

k2
����

��
��

�

S

Only the concentrations of A and Q were measured. Instead of the simple first-order kinetics in the

previous two examples, this reaction scheme involves nonlinear reaction kinetics. The differential

28

equation model takes the form

ż1 = −(θ1 + θ3)z
2
1

ż2 = θ1z
2
1 − θ2z2 (28)

z0 = [1, 0]T t ∈ [0, 0.95],

where the state vector, z, is defined as the concentration vector [A,Q]T and the parameter vector,

θ, is defined as [k1, k2, k3]
T. The measurement data was generated using values of the parameters,

θ = [12, 8, 2]T , with a small amount of random error added, and can be found in Esposito and

Floudas.2 The initial parameter intervals are Θ
(0)
1 = Θ

(0)
2 = Θ

(0)
3 = [0, 20].

The computational results are shown in Table 4. In all cases, the global minimum found was

2.6557× 10−3 with the parameter values of θ = [12.2139, 7.9798, 2.2217]T , which is consistent with

the result of Esposito and Floudas.2 For the ε-global algorithm (LJ =∞), the best performance was

11.1 seconds with LF = 11, while it took 14.3 seconds without the function range test (LF =∞).

With the IN test turned on (exact global algorithm), the best performance was 11.5 seconds with

LF = 11 and LJ = 12. As in the previous examples, above certain trigger levels, the performance

is relatively insensitive to the values used.

Papamichail and Adjiman11 solved this problem to ε-global optimality in 35478 seconds (Sun

UltraSPARC-II 360 MHz; Matlab), and Chachuat and Latifi10 obtained an ε-global solution in

10400 seconds (unspecified machine; prototype implementation). Singer and Barton12 solved this

problem to ε-global optimality for a series of absolute tolerances, so their results are not directly

comparable. However, the computational cost of their method on this problem appears to be similar

to the cost of the method given here. These other methods all provide for ε-convergence only.

29

6.4 Lotka-Volterra Predator-Prey Model

This parameter estimation problem, described by Luus,35 and also studied by Esposito and

Floudas,2 is based on the Lotka-Volterra predator-prey model from theoretical ecology. The system

is described by two differential equations,

ż1 = θ1z1(1− z2)

ż2 = θ2z2(z1 − 1) (29)

z0 = [1.2, 1.1]T t ∈ [0, 10],

where z1 represents the population of the prey and z2 the population of the predator. The measure-

ment data was generated using the parameter values, θ = [3, 1]T, with a small amount of normally

distributed random error (σ = 0.01 and zero mean) added to the observations, and can be found

in Esposito and Floudas.2 The initial parameter intervals are Θ
(0)
1 = Θ

(0)
2 = [0.1, 10].

The computational results are shown in Table 5. In all cases, the global minimum found was

1.2492 × 10−3 with the parameter values of θ = [3.2434, 0.9209]T . For the ε-convergent algorithm

(LJ =∞), the best performance is 43.0 seconds without the function range test (LF =∞). For the

exact global algorithm (LJ finite), the best performance is 80.1 seconds with LF = 22 and LJ = 23.

The sensitivity of performance to trigger levels is a bit higher on this problem, but performance

still varies only by a factor of two over a large range of trigger values. The relative insensitivity of

the computational performance to the values of LF and LJ means that this algorithm should be

fairly easy to tune, since a wide range of values should give reasonable performance.

7 Concluding Remarks

We have presented here a method for deterministic global optimization in the estimation of

parameters for dynamic models (ODE or DAE systems). The method can be implemented as

30

an ε-global algorithm, or, by use of the interval-Newton method, as an exact algorithm. In the

latter case, the method provides a mathematically guaranteed and computationally validated global

optimum in the goodness of fit function. On some problems, the exact global optimization algorithm

requires some additional computational effort relative to the ε-convergent case. However, on other

problems, the exact algorithm is actually less costly. Other global optimization algorithms proposed

for solving this problem either offer no theoretical guarantees,2 or provide ε-convergence only.10–12

The exact algorithm described here provides a rigorous and validated global optimum, and does so

with a computational cost that is comparable to or better than the other methods.

Acknowledgements

This work was supported in part by the State of Indiana 21st Century Research and Technol-

ogy Fund under Grant #909010455, and by the Department of Energy under Grant DE-FG02-

05CH11294.

List of Symbols

B = interval bound

f, g, h = functions

F = interval extension of function f

k = order of ITS method

J = set of state variables whose derivatives appear in the constraints

L = level of subinterval in the binary tree

L = the interval sequence

31

M = set of fitted state variables

p = polynomial part of Taylor model; number of parameters

q = order of Taylor model

r = number of data points

R = remainder part of Taylor model

t = independent variable in ODEs

T = Taylor model

x = real variable

X = interval variable

y = state variable (real) in ODEs (section 4)

Y = state variable (interval) in ODEs (section 4)

z = state variable in ODE constraints

z̄ = measured value of z

Z = set of state variables

Greek symbols

ε = convergence tolerance on objective value

φ = objective function (real)

φ̂ = upper bound on global minimum of φ

φ∗ = global minimum of φ

32

Φ = objective function (interval)

θ = parameter (real)

Θ = parameter (interval)

Superscripts

abs = absolute

rel = relative

[i] = refers to i-th Taylor coefficient in Taylor expansion with respect to time

(k) = refers to k-th subinterval tested

Subscripts

0 = initial value; base point in Taylor expansion (section 3.2)

c = constraint (section 3.3); current subinterval (section 5.5)

33

References

(1) Bard, Y. Nonlinear Parameter Estimation; Academic Press: New York, 1974.

(2) Esposito, W. R.; Floudas, C. A. Global optimization for the parameter estimation of

differential-algebraic systems. Ind. Eng. Chem. Res. 2000, 39, 1291-1310.

(3) Stewart, W. E.; Caracotsios, M.; Sorensen, J. P. Parameter estimation from multiresponse

data. AIChE J. 1992, 38, 641-650.

(4) Boender, C. E.; Romeijn, H. E. Stochastic Methods. In Handbook of Global Optimization;

Horst, R.; Pardalos, P. M., Eds.; Kluwer Academic Publishers: Dordrecht, 1995.

(5) Floudas, C. A. Deterministic Global Optimization: Theory, Methods and Application; Kluwer

Academic Publishers: Dordrecht, The Netherlands, 2000.

(6) Hansen, E.; Walster, G. W. Global Optimization Using Interval Analysis; Marcel Dekker:

New York, 2004.

(7) Adjiman, C. S.; Androulakis, I. P.; Floudas, C. A.; Neumaier, A. A global optimization

method, αBB, for general twice-differentiable NLPs–I. Theoretical advances. Comput. Chem.

Eng. 1998, 22, 1137-1158.

(8) Adjiman, C. S.; Dallwig, S.; Floudas, C. A.; Neumaier, A. A global optimization method,

αBB, for general twice-differentiable NLPs–II. Implementation and computational results.

Comput. Chem. Eng. 1998, 22, 1159-1179.

(9) Papamichail, I.; Adjiman, C. S. A rigorous global optimization algorithm for problems with

ordinary differential equations. J. Global. Opt. 2002, 24, 1-33.

34

(10) Chachuat, B.; Latifi, M. A. A new approach in deteterministic global optimisation of problems

with ordinary differential equations. In Frontiers in Global Optimization; Floudas, C. A.;

Pardalos, P. M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004.

(11) Papamichail, I.; Adjiman, C. S. Global optimization of dynamic systems. Comput. Chem.

Eng. 2004, 28, 403-415.

(12) Singer, A. B.; Barton, P. I. Global optimization with nonlinear ordinary differential equations.

J. Global Optim. 2006, 34, 159-190.

(13) Lin, Y.; Stadtherr, M. A. Validated solutions of initial value problems for parametric ODEs.

SIAM J. Sci. Comput. 2005, submitted.

(14) Brenan, K. E.; Campbell, S. L.; Petzold, L. R. Numerical Solution of Initial-Value Problems

in Differential-Algebraic Equations; SIAM: Philadelphia, 1996.

(15) Jaulin, L.; Kieffer, M.; Didrit, O.; É Walter, Applied Interval Analysis; Springer-Verlag:

London, 2001.

(16) Kearfott, R. B. Rigorous Global Search: Continuous Problems; Kluwer Academic Publishers:

Dordrecht, The Netherlands, 1996.

(17) Neumaier, A. Interval Methods for Systems of Equations; Cambridge University Press: Cam-

bridge, UK, 1990.

(18) Makino, K.; Berz, M. Remainder differential algebras and their applications. In Computational

Differentiation: Techniques, Applications, and Tools; Berz, M.; Bishof, C.; Corliss, G.;

Griewank, A., Eds.; SIAM: Philadelphia, 1996.

(19) Makino, K.; Berz, M. Efficient control of the dependency problem based on Taylor model

methods. Reliab. Comput. 1999, 5, 3-12.

35

(20) Makino, K.; Berz, M. Taylor models and other validated functional inclusion methods. Int.

J. Pure Appl. Math. 2003, 4, 379-456.

(21) Revol, N.; Makino, K.; Berz, M. Taylor models and floating-point arithmetic: Proof that

arithmetic operations are validated in COSY. J. Logic Algebr. Progr. 2005, 64, 135-154.

(22) Makino, K. Rigorous Analysis of Nonlinear Motion in Particle Accelerators, Thesis, Michigan

State University, East Lansing, Michigan, USA, 1998.

(23) Neumaier, A. Taylor forms - Use and limits. Reliab. Comput. 2002, 9, 43-79.

(24) Moore, R. E. Interval Analysis; Prentice-Hall: Englewood Cliffs, NJ, 1966.

(25) Nedialkov, N. S.; Jackson, K. R.; Corliss, G. F. Validated solutions of initial value problems

for ordinary differential equations. Appl. Math. Comput. 1999, 105, 21-68.

(26) Lohner, R. J. Computations of guaranteed enclosures for the solutions of ordinary initial

and boundary value problems. In Computational Ordinary Differential Equations; Cash, J.;

Gladwell, I., Eds.; Clarendon Press: Oxford, UK, 1992.

(27) Nedialkov, N. S.; Jackson, K. R.; Pryce, J. D. An effective high-order interval method for

validating existence and uniqueness of the solution of an IVP for an ODE. Reliab. Comput.

2001, 7, 449-465.

(28) Berz, M.; Makino, K. Verified integration of ODEs and flows using differential algebraic

methods on high-order Taylor models. Reliab. Comput. 1998, 4, 361-369.

(29) Byrd, R. H.; Lu, P.; Nocedal, J.; Zhu, C. A limited memory algorithm for bound constrained

optimization. SIAM J. Sci Comput. 1995, 16, 1190-1208.

(30) Rohn, J.; Kreinovich, V. Computing exact componentwise bounds on solution of linear sys-

tems with interval data is NP-hard. SIAM J. Matrix Anal. Appl. 1995, 16, 415-420.

36

(31) Gau, C.-Y.; Stadtherr, M. A. New interval methodologies for reliable chemical process mod-

eling. Comput. Chem. Eng. 2002, 26, 827-840.

(32) Lin, Y.; Stadtherr, M. A. Advances in interval methods for deterministic global optimization

in chemical engineering. J. Global Optim. 2004, 29, 281-296.

(33) Lin, Y.; Stadtherr, M. A. LP strategy for the interval-Newton method in deterministic global

optimization. Ind. Eng. Chem. Res. 2004, 43, 3741-3749.

(34) Tjoa, T. B.; Biegler, L. T. Simultaneous solution and optimization strategies for parameter

estimation of differential-algebraic equation systems. Ind. Eng. Chem. Res. 1991, 30, 376.

(35) Luus, R. Parameter estimation of Lotka-Volterra problem by direct search optimization. Hung.

J. Ind. Chem. 1998, 26, 287.

37

Algorithm 1 VSPODE Phase2(In: T̂ yj
, Aj , V j , hj , Ỹ j , Y j ; Out: T yj+1

, T̂ yj+1
, Aj+1, V j+1)

a

1: Zj+1 = hk
j F

[k](Ỹ j ,Θ)

2: T Uj+1 = T̂ yj
+

k−1
∑

i=1
hi

jT f̂
[i] + Zj+1

3: Sj = I +
k−1
∑

i=1
hi

jJ(f [i];Y j ,Θ)

4: Aj+1 = (m(SjAj))
−1

5: (T̂ yj+1
,RU j+1

)⇐ T Uj+1
, with m(RU j+1

) = 0

6: V j+1 = (A−1
j+1SjAj)V j + A−1

j+1RUj+1

7: T yj+1
= T̂ yj+1

+ Aj+1V j+1

aThe procedure begins with V 0 = 0, T̂ y0
= (y0, [0, 0]), and A0 = I. J(f [i];Y j ,Θ) denotes the

interval extension of the Jacobian (with respect to the state variables) of f [i] over yj ∈ Y j and

θ ∈ Θ, and T
f̂

[i] = f [i](T̂ yj
,T θ).

38

Table 1: Resultsa for Example 1

Algorithm LF LJ iter IFun IJac IN tests CPU s

ε-Global ∞ ∞ 4 0 0 0 0.023

Exact 0 1 2 1 1 1 0.059

a LF = trigger level for function range test; LJ = trigger level for interval-Newton test; iter =
number of iteration; IFun = number of function calls; IJac = number of Jacobian calls; IN tests =
number of interval-Newton tests; CPU = CPU time (s)

39

Table 2: Resultsa for Example 2-1

Algorithm LF LJ iter IFun IJac IN tests CPU s

ε-Global 14 ∞ 1478 477 0 0 296.4

15 ∞ 1622 395 0 0 270.8

16 ∞ 1886 427 0 0 311.5

17 ∞ 2162 405 0 0 320.1

18 ∞ 2485 394 0 0 333.7

19 ∞ 2862 433 0 0 376.0

∞ ∞ 9050 0 0 0 630.1

Exact 14 15 1357 146 235 194 811.7

15 16 1380 159 48 42 297.8

15 17 1392 188 30 29 265.6

16 17 1641 195 39 36 312.6

16 18 1671 226 36 32 315.1

17 18 1952 214 35 26 337.6

17 19 1989 247 32 22 336.6

18 19 2301 239 26 18 347.8

a LF = trigger level for function range test; LJ = trigger level for interval-Newton test; iter =
number of iteration; IFun = number of function calls; IJac = number of Jacobian calls; IN tests =
number of interval-Newton tests; CPU = CPU time (s)

40

Table 3: Resultsa for Example 2-2

Algorithm LF LJ iter IFun IJac IN tests CPU s

ε-Global 16 ∞ 10192 5873 0 0 2978.1

17 ∞ 10645 5760 0 0 2888.0

18 ∞ 11296 5693 0 0 2883.2

19 ∞ 12255 5561 0 0 2897.4

20 ∞ 13223 5386 0 0 2915.5

21 ∞ 14391 5290 0 0 2971.6

22 ∞ 15826 5102 0 0 2968.5

∞ ∞ 40552 0 0 0 2617.3

Exact 17 19 3775 791 315 257 1430.2

18 19 4330 694 240 220 1267.1

18 20 4737 928 335 272 1613.6

18 21 5173 1257 343 305 1813.2

19 20 5576 766 272 256 1437.9

19 21 6072 1038 364 292 1870.1

19 22 6491 1394 318 288 1901.8

20 21 6925 854 294 262 1655.6

20 22 7401 1145 372 315 2004.2

21 22 8490 1052 302 289 1912.6

a LF = trigger level for function range test; LJ = trigger level for interval-Newton test; iter =
number of iteration; IFun = number of function calls; IJac = number of Jacobian calls; IN tests =
number of interval-Newton tests; CPU = CPU time (s)

41

Table 4: Resultsa for Example 3

Algorithm LF LJ iter IFun IJac IN tests CPU s

ε-Global 10 ∞ 150 28 0 0 11.8

11 ∞ 182 19 0 0 11.1

12 ∞ 206 15 0 0 11.3

13 ∞ 226 14 0 0 11.9

14 ∞ 247 13 0 0 12.5

15 ∞ 266 13 0 0 13.3

16 ∞ 285 12 0 0 13.9

∞ ∞ 359 0 0 0 14.3

Exact 10 11 149 25 3 1 13.1

11 12 181 18 1 1 11.5

12 13 206 14 1 1 11.7

13 14 226 13 1 1 12.3

14 15 247 13 1 1 13.0

a LF = trigger level for function range test; LJ = trigger level for interval-Newton test; iter =
number of iteration; IFun = number of function calls; IJac = number of Jacobian calls; IN tests =
number of interval-Newton tests; CPU = CPU time (s)

42

Table 5: Resultsa for Example 4

Algorithm LF LJ iter IFun IJac IN tests CPU s

ε-Global 17 ∞ 501 87 0 0 104.0

18 ∞ 502 69 0 0 89.3

19 ∞ 494 54 0 0 78.7

20 ∞ 501 48 0 0 74.9

∞ ∞ 536 0 0 0 43.0

Exact 17 18 473 14 56 17 235.0

18 19 473 9 45 21 201.3

19 20 466 11 31 22 154.0

20 21 471 14 21 17 122.3

21 22 481 14 13 13 93.4

22 23 498 8 10 10 80.1

23 24 514 12 12 11 94.7

24 25 531 15 12 12 97.7

a LF = trigger level for function range test; LJ = trigger level for interval-Newton test; iter =
number of iteration; IFun = number of function calls; IJac = number of Jacobian calls; IN tests =
number of interval-Newton tests; CPU = CPU time (s)

43

