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Abstract

A popular approach for the modeling of adsorption phenomena is density-functional theory

(DFT). A new methodology is described that is the first completely reliable technique for finding

all solutions to the nonlinear equation systems arising in the lattice-DFT modeling of adsorption

in porous materials. The method is based on interval analysis, in particular an interval New-

ton/generalized bisection algorithm, which provides a mathematical and computational guarantee

that all solutions are enclosed. The method is demonstrated using a model, formulated using DFT

for a confined lattice, of adsorption in slit-like nanoscale pores. On several test problems, in ad-

dition to confirming solutions found previously, the method also found a number of additional,

previously unreported solutions.



1 Introduction

The study of adsorption in porous materials has important applications in fields such as sepa-

ration and purification, reaction and catalysis, the storage of gases, as well as many others. One

popular approach for the modeling of adsorption phenomena is density-functional theory (DFT),

which provides the capability to predict adsorption isotherms and phase behavior in the pore,

including phase transitions (e.g., wetting, capillary condensation) and hysteresis effects.

The basic idea in formulating a DFT model is to represent the Helmholtz free energy F of

the system as a functional of the density distribution ρ(r); that is F = F [ρ(r)], where r indicates

some spatial coordinate(s). The density distribution ρ(r) may be treated as continuous or as

discrete. The latter is characteristic of a lattice model, as used in the example problems considered

below. The equilibrium density distribution is then found by formulating and solving an appropriate

minimization problem. For the case most often considered, that of constant temperature, pressure

and chemical potentials (the grand canonical ensemble), the problem is to minimize the grand

potential function Ω[ρ(r)]. Alternatively (e.g., Neimark and Ravikovitch, 1998, 2000), one may

consider the case of constant temperature, volume and mole numbers (the canonical ensemble). In

this case, the problem is to minimize the Helmholtz free energy F = F [ρ(r)] subject to the mole

number constraints. In either case, the minimization problem is typically solved by converting the

problem into an equivalent system of nonlinear equations, which is then solved for the equilibrium

density distribution, from which an adsorption isotherm can be determined. For some situations,

the relevant system of equations can be solved analytically in the form of an infinite series (e.g.,

Delmas and Patterson, 1960; Bellemans, 1962; Altenberger and Stecki, 1970). However, in other

situations, especially in regions of phase transitions and hysteresis effects, which are often the

regions of most interest, the equation system to be solved has multiple solutions (e.g., Aranovich

and Donohue, 1999; Neimark and Ravikovitch, 1998, 2000; Lastoskie et al., 1993), and thus solving
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the system is not straightforward. The multiple roots represent stationary points (local minima,

local maxima, or saddle points) in the optimization problem. Local minima correspond to stable

and metastable states in the adsorption problem being modeled, and local maxima and saddle

points to unstable states. To fully understand the predictions of the DFT model, it is necessary

to find all the stable and metastable states, and the unstable states may also be of some interest

(e.g., Neimark and Ravikovitch, 1998). As emphasized by Aranovich and Donohue (1999), failure

to find all the stationary points may not only result in the loss of important information, but also

an incorrect or distorted view of the adsorption isotherm predicted by the model. Thus, there is

a clear need for a nonlinear equation solving method capable of reliably finding all the stationary

points.

One common approach to finding all the stationary points is to use multiple initial guesses in

connection with some local equation solving technique, such as successive substitution, Newton,

or quasi-Newton (Broyden) methods (e.g., Neimark and Ravikovitch, 1998). Using this type of

approach, it is impossible to guarantee that all solutions will be found. A more reliable approach in

many situations is the method of Aranovich and Donohue (1998, 1999). This is a “path tracking”

(homotopy-continuation) approach that is very reliable for finding solutions lying along a single

continuous path. However, it may not find solutions that lie on different paths, and so again it is

impossible to guarantee that all solutions will be found.

We describe here a new approach to the problem of finding all solutions to the nonlinear equation

system arising in DFT modeling of adsorption in porous materials. This technique is based on

interval analysis, in particular, an interval-Newton generalized-bisection (IN/GB) algorithm. This

method is mathematically and computationally guaranteed to enclose any and all solutions of a

system of nonlinear equations. Here, this means that all density distributions that correspond to a

stationary point in the optimization problem arising from DFT will be located.

To demonstrate this method, we use the lattice-DFT model of Aranovich and Donohue (1999)
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for adsorption in nanoscale pores, which is based on the approach of Ono and Kondo (1960).

Since Aranovich and Donohue use this model to demonstrate their path tracking algorithm, this

means that a direct comparison can be made between their solution method and the new approach

described here. In the next section, we summarize the model used and present the mathematical

formulation of the problem. In Section 3, we describe the IN/GB algorithm used to solve for the

stationary points. Then, in Section 4, we present results for several test problems, and, in Section

5, summarize our conclusions.

2 Problem Formulation: DFT for a Confined Lattice

The problem considered here is adsorption in a slit-like, nanoscale pore using DFT for a confined

lattice. The model used is that described by Aranovich and Donohue (1999), who consider the

one-dimensional density distribution in a lattice confined between two planes. As formulated by

Aranovich and Donohue (1999), the model is for a binary mixture of molecules of A and B. However,

since all the examples used here (and by Aranovich and Donohue) are for the special case of a single

component system (B = holes), we will summarize here the problem formulation for this case.

Consider a pure component (A) distributed on a fixed lattice with N layers. Each site on each

layer i = 1, . . . ,N may either be occupied by a molecule of A or may be empty. The lattice is bound

on both sides by adsorbate surfaces on the planes of i = 0 and i = N +1. Since the adsorbant walls

are identical, the system is symmetric. Thus, for a system with an even number of layers (the case

for all example problems considered; if the number of layers is odd, the probably formulation is only

slightly different), there are n = N/2 independent layer densities to be determined. An expression

for the free energy F = H − TS of the system can be derived by determining the Hamiltonian H

and the entropy S for the fluid confined in the lattice. Following Aranovich and Donohue, this is
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done using a mean field approximation (Ono and Kondo, 1960) yielding

H = 2εASρ1 +
n∑

i=1

z2εAAρ2
i +

n−1∑
i=1

2z1εAAρiρi+1 + z1εAAρ2
n (1)

and

S = −k
n∑

i=1

2 [ρi ln ρi + (1− ρi) ln(1− ρi)] . (2)

Here ρi is the density of A in layer i, expressed as the fraction of lattice sites in layer i which

are occupied by a molecule of A, εAS and εAA are, respectively, the energies for adsorbate-surface

and adsorbate-adsorbate interactions, and z1 and z2 are, respectively, the interlayer and intralayer

coordination numbers (note that 2z1+z2 will give the coordination number for the three-dimensional

lattice). Using Eq. (1) for the Hamiltonian and Eq. (2) for the entropy, the reduced free energy

Fr = F/kT of the system can be expressed as

Fr = 2EASρ1 +z1EAAρ2
n +

n∑
i=1

z2EAAρ2
i +

n−1∑
i=1

2z1EAAρiρi+1 +
n∑

i=1

2[ρi ln ρi +(1−ρi) ln(1−ρi)], (3)

where EAA and EAS represent εAA/kT and εAS/kT respectively, and k is Boltzmann’s constant.

We now seek to find the equilibrium density distribution under conditions of constant tempera-

ture, volume and mole numbers. To do this, values of ρi, i = 1, . . . , n must be found which minimize

Fr under the constraint

NS

n∑
i=1

2ρi = NA, (4)

where NS is the total number of lattice sites and NA is the total number of A molecules in the

system. To solve this problem, we seek stationary points of the Lagrangian function

L(ρ, µ) = Fr(ρ)− µ

[
−NA

NS
+

n∑
i=1

2ρi

]
, (5)

where ρ = (ρ1, ρ2, . . . , ρn)T is the density distribution vector and µ is a Lagrange multiplier that

at the equilibrium state corresponds to the chemical potential. For 2 ≤ i ≤ n− 1, the stationarity

condition is

∂L
∂ρi

= z2EAAρi + z1EAAρi+1 + z1EAAρi−1 + [ln ρi − ln(1− ρi)]− µ = 0, (6)
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from which follows

µ = z2EAAρi + z1EAAρi+1 + z1EAAρi−1 + ln(
ρi

1− ρi
). (7)

Since µ corresponds to the chemical potential at the equilibrium state, and since the layers in the

pore are assumed to be in equilibrium with the bulk, Eq. (7) must hold when ρi = ρi−1 = ρi+1 = ρb,

where ρb is the bulk density (mole fraction) of A. Thus, expressing µ in terms of ρb in Eq. (6)

yields

ln[
ρi(1− ρb)
ρb(1− ρi)

] + z2EAA(ρi − ρb) + z1EAA(ρi+1 − ρb) + z1EAA(ρi−1 − ρb) = 0. (8)

Following a similar procedure for the case of i = 1, we can obtain

ln[
ρ1(1− ρb)
ρb(1− ρ1)

] + z2EAA(ρ1 − ρb) + z1EAA(ρ2 − ρb)− z1EAAρb + EAS = 0, (9)

and, for the case of i = n,

ln[
ρn(1− ρb)
ρb(1− ρn)

] + z2EAA(ρn − ρb) + z1EAA(ρn − ρb) + z1EAA(ρn−1 − ρb) = 0. (10)

Eqs. (8–10) constitute a nonlinear equation system of n equations in n unknowns. Given

values of the coordination numbers z1 and z2, energy parameters EAS and EAA, and bulk density

ρb, this equation system can be solved for the density distribution vector ρ = (ρ1, ρ2, . . . , ρn)T

describing the fractions of A in each of the N layers (remember that ρ1 = ρN , ρ2 = ρN−1, etc.). As

discussed above, for problems of interest, due to presence of phase transitions or hysteresis effects,

this equation system may have multiple solutions, all of which need to be found. We next describe

a solution method that is guaranteed to enclose all the roots of this equation system.

3 Solution Method

We apply here interval mathematics, in particular an interval Newton/generalized bisection

(IN/GB) technique, to find enclosures for all solutions to the problem defined above. We will very
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briefly discuss these topics here, as well as explain how they were applied to solve the specific

problem of interest. Recent monographs which more thoroughly introduce interval analysis, as well

as interval arithmetic and other aspects of computing with intervals, include those of Neumaier

(1990), Hansen (1992) and Kearfott (1996).

A real interval X is defined by X = [xL, xU] = {x ∈ < | xL ≤ x ≤ xU}. In other words, the

interval X contains the section of the real number line bounded by the values xL and xU. A real

interval vector X = (X1,X2, ...,Xn)T has n real interval components and since it can be interpreted

geometrically as an n-dimensional rectangle, is frequently referred to as a box. Note that in this

section lower case quantities are real numbers and upper case quantities are intervals. For an

arbitrary function f(x), the interval extension, F(X) ⊇ {f(x) | x ∈ X}, encloses all values of f(x)

for x ∈ X; that is, it encloses the range of f(x) over X. It is often computed by substituting the

given interval X into the function f(x) and then evaluating the function using interval arithmetic.

The so-called “natural” interval extension so determined is often wider than the actual range of

function values, but it always includes the actual range. The issue of computing interval extensions

for the functions of interest here is considered in more detail below.

3.1 Interval Newton Method

Consider the solution of a nonlinear equation system f(x) = 0 where x ∈ X(0). The solution

algorithm is applied to a sequence of intervals, beginning with the initial interval vector (box)

X(0) specified by the user. This initial interval can be chosen to be sufficiently large to enclose

all physically feasible behavior. The basic iteration step in interval Newton methods is, given an

interval X(k) in the iteration sequence, to solve the linear interval equation system

F ′(X(k))(N(k) − x(k)) = −f(x(k)) (11)

for a new interval N(k), where k is an iteration counter, F ′(X(k)) is an interval extension of the real

Jacobian f ′(x) of f(x) over the current interval X(k), and x(k) is a point in the interior of X(k). It
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can be shown (Moore, 1966) that any root x∗ ∈ X(k) is also contained in the image N(k), implying

that if there is no intersection between X(k) and N(k), then no root exists in the box X(k), and

suggesting the iteration scheme X(k+1) = X(k) ∩ N(k). In addition to this iteration step, which can

be used to tightly enclose a solution, the following property can be proven (e.g., Neumaier, 1990;

Kearfott, 1996): If N(k) is contained completely within X(k), then there is one and only one root

contained in X(k), and it is in N(k). This property is quite powerful, as it provides a mathematical

guarantee of existence and uniqueness when it is satisfied.

The foregoing suggests a root inclusion test for X(k):

1. (Range Test) Compute an interval extension F(X(k)) containing the range of f(x) over X(k)

and test to see whether it contains zero. Clearly, if 0 /∈ F(X(k)) ⊇ {f(x) | x ∈ X(k)} then

there can be no solution of f(x) = 0 in X(k) and this interval need not be further tested.

Otherwise, if 0 ∈ F(X(k)), then the processing of X(k) continues.

2. (Domain Reduction) In this step a simple domain reduction technique is used to try to

reduce the size of X(k). The method used in this step is sometimes referred to as constraint

propagation, especially in the context of optimization problems. The basic idea is to rewrite

one or more of the equations in the system in the form xi = gi(x). For example, we can

rewrite Eq. (9) as

ρ2 = 2z1EAAρb − EAS − z2EAA(ρ1 − ρb)− ln[
ρ1(1− ρb)
ρb(1− ρ1)

]z1EAA (12)

and can do similar rearrangements with the other equations. Once the rearrangement to

xi = gi(x) has been done, we can then calculate a new range for xi by substituting the

current interval X(k) into the expression for gi, thus obtaining X
(k)
i,calc = Gi(X(k)). The range

for xi can now be reduced in many cases by using the intersection of the original range

X
(k)
i and the calculated range X

(k)
i,calc; that is X

(k)
i ← X

(k)
i ∩X

(k)
i,calc. If desired, this domain

reduction step can be iterated until there is no further reduction in X(k); however, for the
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problems solved here, our tests indicate that, in terms of CPU time, a single pass is most

effective.

3. (Interval Newton Test) Compute the image N(k) by solving Eq. (11). There are now three

possible outcomes:

(a) If X(k) ∩ N(k) = ∅, then there is no root in X(k), and thus this interval need not be

further tested.

(b) If N(k) ⊂ X(k), then there is exactly one root in X(k) and since the number of roots in

this interval is known, it need not be further tested. A rigorous enclosure of the root can

be found by continuing the interval Newton iteration X ← X ∩N, which will converge

quadratically. Alternatively, an approximation of the root can be found using a standard

point-valued Newton’s method beginning from any point in X(k).

(c) If neither of the above is true, then no conclusion can be drawn about the number of

roots in X(k). However, if there are any roots in X(k), they must be contained in the next

interval Newton iterate X(k+1) = X(k) ∩ N(k). One can now repeat the root inclusion

test on X(k+1), assuming it is sufficiently smaller than X(k), or one can bisect X(k+1)

and add the resulting two intervals to the sequence of intervals to be tested.

These are the basic ideas of interval Newton/generalized bisection (IN/GB) methods. As a frame-

work for our implementation of the IN/GB method, we use appropriately modified FORTRAN-77

routines from the packages INTBIS (Kearfott and Novoa, 1990) and INTLIB (Kearfott et al., 1994).

In addition, for solving the interval Newton equation, the hybrid preconditioning technique of Gau

et al. (1999) is employed. Overall, the IN/GB method described above provides a procedure that

is mathematically and computationally guaranteed to enclose all solutions (density distributions)

of the nonlinear equation system given by Eqs. (8–10).
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3.2 Computing Interval Extensions

To achieve good efficiency in the solution method outlined above, it is desirable that the required

interval extensions bound the corresponding function ranges as tightly as possible. As noted above,

when interval arithmetic is used to obtain the natural interval extension, this often produces bounds

that overestimate the actual range of the function. This is due to the “dependency” problem, which

arises when a variable occurs more than once in a function expression. While a variable may have a

range of possible values, it must take on a unique value each time it occurs in an expression. However,

this type of dependency is not recognized when the natural interval extension is computed. In effect,

when the natural interval extension is used, the range computed for the function is the range that

would occur if each instance of a particular variable were allowed to take on a different value in its

interval range.

For this particular problem, it is possible to eliminate the use of the natural interval extension

and thus the dependency problem. This is possible because the bounds on the function ranges

can be determined directly. This can be seen by looking at the derivatives of the functions in the

system to be solved. From Eqs. (8–10), these are, for each function i = 1, . . . , n,

∂fi

∂ρi
=

1
ρi

+
1

1− ρi
+ k1 (13)

∂fi

∂ρi−1
= k2 (i 6= 1) (14)

∂fi

∂ρi+1
= k3 (i 6= n), (15)

where

k1 =




z2EAA : i 6= n

(z1 + z2)EAA : i = n

and k2 = k3 = z1EAA are constants whose value is determined by the physical parameters in the

model.
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Clearly, each function is monotonic with respect to ρi−1 and ρi+1, and so the extrema of fi will

occur when these variables are at their bounds. With respect to ρi, the extrema of fi will occur

either when this variable is at its bounds or when it is at an interior point for which ∂fi/∂ρi = 0.

Using Eq. (13), it can be shown that this latter condition is satisfied when

ρi =
1±

√
1 + 4

k1

2
. (16)

For k1 < −4, this expression yields two real values for ρi. Thus, fi has extrema at

ρ−i =
1−

√
1 + 4

k1

2
(17)

and

ρ+
i =

1 +
√

1 + 4
k1

2
. (18)

Note that 0 < ρ−i < 1
2 and 1

2 < ρ+
i < 1 The nature of these extrema can be determined using

∂2fi

∂ρ2
i

= − 1
ρ2

i

+
1

(1− ρi)2
. (19)

Evaluation of the second derivative at ρ−i yields a negative result, so this point is a local maximum,

and evaluation at ρ+
i yields a positive result, so this point is a local minimum. Furthermore, it can

be seen that since the second derivative is zero at ρi = 1
2 (and the third derivative is positive here),

there is (for any k1) a local minimum in the slope ∂fi/∂ρi here and that minimum value of the slope

is 4+k1, which for the current range of k1 being considered is negative. For ρi ∈ [0, 1], which is the

interval of interest, this is also a global minimum. However, since as either endpoint is approached,

the slope is clearly positive, this means that the slope is negative only for ρ−i < ρi < ρ+
i . For

purposes of the discussion that follows, we will assume that ρ−i and ρ+
i are point values. However,

as actually implemented, these are (very narrow) interval values computed using interval arithmetic,

starting with degenerate (thin) intervals for the constants in Eqs. (17–18). This is necessary to

maintain computational rigor.
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Using this information about ∂fi/∂ρi for k1 < −4, and assuming that EAA < 0 so that fi

is monotonically decreasing with respect to both ρi−1 and ρi+1, we can compute interval exten-

sions of fi over [ρL,ρU] = ([ρL
1 , ρU

1 ], [ρL
2 , ρU

2 ], . . . , [ρL
n, ρU

n ])T ⊆ [0,1] as follows. For ρU
i ≤ ρ−i , fi is

monotonically increasing with respect to ρi, so

Fi([ρL,ρU]) = [fi(ρU
i−1, ρ

L
i , ρU

i+1), fi(ρL
i−1, ρ

U
i , ρL

i+1)]. (20)

For ρL
i ≥ ρ+

i , fi is also monotonically increasing with respect to ρi, so Fi([ρL,ρU]) can be computed

from Eq. (20). For the case ρ−i ≤ ρL
i and ρU

i ≤ ρ+
i , fi is monotonically decreasing with respect to

ρi, so

Fi([ρL,ρU]) = [fi(ρU
i−1, ρ

U
i , ρU

i+1), fi(ρL
i−1, ρ

L
i , ρL

i+1)]. (21)

If ρ−i ∈ [ρL
i , ρU

i ] but ρ+
i /∈ [ρL

i , ρU
i ], then there is an interior maximum of fi with respect to ρi at ρ−i

and either endpoint could be the minimum with respect to ρi; thus,

Fi([ρL,ρU]) = [min{fi(ρU
i−1, ρ

L
i , ρU

i+1), fi(ρU
i−1, ρ

U
i , ρU

i+1)}, fi(ρL
i−1, ρ

−
i , ρL

i+1)]. (22)

If ρ+
i ∈ [ρL

i , ρU
i ] but ρ−i /∈ [ρL

i , ρU
i ], then there is an interior minimum of fi with respect to ρi at ρ+

i

and either endpoint could be the maximum with respect to ρi; thus,

Fi([ρL,ρU]) = [fi(ρU
i−1, ρ

+
i , ρU

i+1),max{fi(ρL
i−1, ρ

L
i , ρL

i+1), fi(ρL
i−1, ρ

U
i , ρL

i+1)}]. (23)

Finally if ρ−i ∈ [ρL
i , ρU

i ] and ρ+
i ∈ [ρL

i , ρU
i ], then there are both an interior minimum and an interior

maximum with respect to ρi, and

Fi([ρL,ρU]) = [min{fi(ρU
i−1, ρ

L
i , ρU

i+1), fi(ρU
i−1, ρ

+
i , ρU

i+1)},max{fi(ρL
i−1, ρ

U
i , ρL

i+1), fi(ρL
i−1, ρ

−
i , ρL

i+1)}].

(24)

As actually implemented, the bounding procedure is slightly more complex than described here,

since it also accounts for the fact that ρ−i and ρ+
i must be treated as (very narrow) intervals.

For k1 = −4, Eq. (16) yields one real value for ρi, namely ρi = 1
2 . Here the minimum slope

is 4 + k1 = 0, which occurs at the inflection point ρi = 1
2 . For this case, fi is monotonically
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nondecreasing with respect to ρi, and for [ρL,ρU] ⊆ [0,1], the computation of Fi([ρL,ρU]) can be

done using Eq. (20).

For −4 < k1 < 0, Eq. (16) yields no real roots, and for k1 > 0 there are two real roots, but

neither is in the interval ρi ∈ [0, 1] of interest. Here the minimum slope is 4 + k1 > 0, so fi is

monotonically increasing and for [ρL,ρU] ⊆ [0,1], the computation of Fi([ρL,ρU]) can be done

using Eq. (20).

It is important to understand that when the endpoints of interval extensions are computed

directly as in this fashion, each endpoint must be computed using interval arithmetic in order to

maintain computational rigor. That is, if fi(ρU
i−1, ρ

L
i , ρU

i+1) is the lower endpoint of Fi([ρL,ρU]) then

it is computed using interval arithmetic starting with the degenerate (thin) intervals [ρU
i−1, ρ

U
i−1],

[ρL
i , ρL

i ] and [ρU
i+1, ρ

U
i+1], and the lower bound of the resulting interval is taken as the lower bound of

Fi([ρL,ρU]). Similarly, if fi(ρL
i−1, ρ

U
i , ρL

i+1) is the upper endpoint of Fi([ρL,ρU]) then it is computed

using interval arithmetic starting with the thin intervals [ρL
i−1, ρ

L
i−1], [ρU

i , ρU
i ] and [ρL

i+1, ρ
L
i+1], and

the upper bound of the resulting interval is taken as the upper bound of Fi([ρL,ρU]). We also note

that if EAA > 0, so that fi is monotonically increasing with respect to ρi−1 and ρi+1, instead of

decreasing, as assumed before, the same procedure as outlined above can be used, except that all

lower bounds will now be evaluated at ρL
i−1 and ρL

i+1 instead of ρU
i−1 and ρU

i+1, and all upper bounds

will be evaluated at ρU
i−1 and ρU

i+1 instead of ρL
i−1 and ρL

i+1.

For use in Eq. (11), the interval Newton equation, it is also necessary to compute interval

extensions of the Jacobian elements, which are given by Eqs. (13–15). The off-diagonal elements

are all constants. For the diagonal elements f ′
ii = ∂fi/∂ρi, it is clear from the discussion above that

there is a minimum with respect to ρi at ρi = 1
2 . Furthermore, for 0 < ρi < 1

2 , f ′
ii is monotonically

decreasing with respect to ρi, and for 1
2 < ρi < 1, f ′

ii is monotonically increasing with respect to ρi.

With this knowledge, the interval extensions F ′
ii of the diagonal elements can be computed directly

as follows. If ρU
i < 1

2 , then F ′
ii = [f ′

ii(ρ
U
i ), f ′

ii(ρ
L
i )]. If ρL

i > 1
2 , then F ′

ii = [f ′
ii(ρ

L
i ), f ′

ii(ρ
U
i )]. Finally,
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if 1
2 ∈ [ρL

i , ρU
i ], then F ′

ii = [4 + k1,max{f ′
ii(ρ

L
i ), f ′

ii(ρ
U
i )}]. Again, when the endpoints are computed

directly, as done here, this must be done using interval arithmetic as explained above. Using

the procedures described here, the necessary interval extensions of both functions and Jacobian

elements can be computed exactly (within roundout), thus avoiding the overestimation that occurs

when the natural interval extension is used. This can result in significant computational savings

relative to using the natural interval extension. For example, for the example described below

involving twenty layers (N = 20) and ten independent variables (n = 10), the savings in CPU time

was about 80 percent.

4 Test Problems and Results

To demonstrate the use of the computational method proposed here, several test problems

are considered. In each case, unless otherwise noted, the test problems were originally used by

Aranovich and Donohue (1998,1999). This allows us to verify the ability of the proposed IN/GB

technique to reliably enclose the previously found solutions. In several of the cases, however, IN/GB

is able to find additional solutions which were not included in the previously published results. For

each problem considered, the nonlinear equation system given by Eqs. (8–10) was solved using

IN/GB for the density profile (layer concentrations) ρi, i = 1, . . . , n, for many different values of

the bulk concentration ρb. The results are then presented by plotting versus the bulk concentration.

In solving the equation system, the initial intervals used for all the variables ρi was [0, 1], thus the

entire physically feasible variable space can be used as the initialization. Note that no initial point

guess is needed, as in conventional equation solvers. All the computations were done on a Sun

Ultra 10/440 workstation.

4.1 Two Layers

The first two problems have two layers (N = 2), so there is only one variable (n = 1) to
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consider. These problems were originally presented in Aranovich and Donohue (1998). Figure 1

shows the results of solving the first problem, which is the case of z1 = 1, z2 = 3, EAA = −1.4

and EAS = −1.0. The plot gives the fraction ρ1 (= ρ2) of lattice sites occupied by molecules of A

as a function of the bulk mole fraction ρb of A. Note that this plot, and those given below, was

prepared by solving the equation system for the layer concentration for a very large number of

different values of the bulk concentration, and then plotting all the solutions; no curve fitting or

smoothing techniques were used. For some values of the bulk concentration, the equation system

has only one solution, but there are three ranges of ρb for which there are three roots. All the

solutions lie on one continuous path. The solutions obtained agree closely with the plot presented

by Aranovich and Donohue.

Figure 2 shows the results for another two-layer problem, this one with different energy param-

eters, EAA = −1.9 and EAS = −0.258, than the first. For this problem, using their path tracking

approach, Aranovich and Donohue were able to find only the set of roots lying on the continuous

path starting at the origin, which would suggest that, except for a small range at very high bulk

concentration, there is only one root. Actually, however, for a large range of ρb, running from

just above zero to about 0.5, there are three roots, which are very easily found using the IN/GB

approach, but not found with the path tracking method. The difficulty for the path tracking ap-

proach is that the roots do not all lie on one continuous path. Aranovich and Donohue were well

aware of this issue, and presented this example to show a case in which their approach would fail.

This is one instance where IN/GB has the ability to find all of the solutions, wherever they may

be located, while other techniques may not.

4.2 Four Layers

This test problem, and the remaining problems, are multivariable problems, many of which

were originally examined by Aranovich and Donohue (1999). Rather than show the individual
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layer results, we follow Aranovich and Donohue and give the Gibbs adsorption

Γ =
N∑

i=1

[ρi − ρb] =
n∑

i=1

2[ρi − ρb]

as a function of the bulk concentration ρb. These adsorption isotherms also provide a convenient

way to see the location and type of the phase transitions in the confined fluid.

For this four-layer problem, z1 = 1, z2 = 4, EAA = −1.1 and EAS = −3.0. Figure 3 shows the

results of solving for the layer concentrations for a large number of bulk concentration values and

then plotting the Gibbs adsorption isotherm; this result is in close agreement with that obtained

by Aranovich and Donohue (1999). As seen in this plot, there are two ranges of bulk concentration

for which the equation system has three roots. These multivalued regions correspond to phase

transitions. As the bulk concentration of A is increased from zero, there is first a wetting transition

in which the two layers nearest the pore walls fill. Then, at higher bulk concentration, there is a

capillary condensation in which the remaining layers fill. The exact locations of the equilibrium

phase transitions can be determined based on equality of spreading pressure, as shown by Aranovich

and Donohue, and are not shown in the plot here. The plot does distinguish between solutions

at which the Helmholtz energy surface is convex (bold curve), indicating a stable or metastable

state, or nonconvex (non-bold curve), indicating an unstable state. This allows hysteresis effects

to be easily seen. For example, in the capillary condensation transition, as the bulk concentration

is increased through the transition, one may stay on the middle bold curve past the equilibrium

transition until the metastable state disappears around ρb = 0.035, at which point there is a jump

up to the topmost bold curve. But, as the bulk concentration is decreased through the transition,

one may stay on the topmost bold curve past the equilibrium transition until this metastable state

disappears around 0.019, and there is a jump down to the middle bold curve.

4.3 Eight Layers

In this set of problems, there are eight layers, so the number of independent variables is n = 4.
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The first test problem considered, with z1 = 1, z2 = 4, EAA = −1.4 and EAS = −4.0, was also

used by Aranovich and Donohue (1999). Figure 4 shows the results of solving for the ρi for a

large number of ρb values and then plotting the Gibbs adsorption isotherm. This is another case

where the benefits of the IN/GB approach can be clearly seen. The continuous track of roots which

begins at the origin matches well with the track presented by the previous authors (though the

roots shown by Aranovich and Donohue appear to be slightly off in places, especially near the

origin). In addition to these solutions, however, the IN/GB approach finds another set of solutions

(resembling a figure eight on the plot), which were not found previously. This demonstrates the

ability of IN/GB to find all solutions to the problem. The results indicate that there is a wetting

transition, as in the previous problem, in which layers one and eight (nearest the pore surface) are

filled. As the bulk concentration is increased, this is followed by a capillary condensation transition

in which all the remaining layers fill. This equilibrium transition “hides” two metastable states

(bold curves) found on the continuous track of roots. The first, at about Γ = 4, corresponds to the

filling of layer two (and seven), and the second, at about Γ = 6, corresponds to the filling of layer

three (and six). In addition, there is also a metastable portion of the newly-found figure eight of

roots. This appears to to be an “overhang” state, corresponding to the filling of layer three faster

than layer two (and six faster than seven).

In addition to solving this first problem with the energy parameters used by Aranovich and

Donohue, we have also solved the eight-layer case with some other energy parameter values. This

demonstrates the ease with which the IN/GB approach can be used in modeling studies, here to

determine the effect on the solution of changing the energy parameters. As a first such case, we

change EAS from −4.0 to −3.0, thus lowering the strength of the adsorption of A on the surface. The

results, shown in Figure 5, shows that this has little effect on the overall character of the solution.

However, not unexpectedly, the initial wetting transition now does not occur until higher values of

the bulk concentration, reflecting the weaker strength of adsorption. For the remaining problems,
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we set EAS = −4.0, and use different values of EAA. First, EAA is changed from the original −1.4

to −1.2, thus weakening the strength of the bonds between neighboring A molecules, with the result

shown in Figure 6. One effect of doing this is that the equilibrium phase transitions now occur at

larger values of the bulk concentration. However, it can also be seen that for this value of EAA,

the metastable overhang state disappears. Apparently, the bonds between neighboring molecules

are now not strong enough to support any overhang of one layer over another. Increasing the

bond strength slightly to EAA = −1.3, as shown in Figure 7, causes a small region of metastable

overhang states to reappear. Finally, we significantly increase the bond strength to EAA = −1.8,

with the result shown in Figure 8. Now the equilibrium phase transitions occur at smaller values

of the bulk concentration. The bond strength is now sufficient to allow an additional metastable

overhang state to occur, this one corresponding to layer four filling faster than layer three (and five

faster than six).

4.4 Twelve Layers

For this case, there are 12 layers, so the number of independent variables is n = 6. For the

problem considered, z1 = 1, z2 = 4, EAA = −1.1 and EAS = −3.0, as also used by Aranovich

and Donohue (1999). Figure 9 shows the results. Again, the continuous track which begins at the

origin matches closely the solution presented by Aranovich and Donohue. However, IN/GB has

also located additional solutions not found by Aranovich and Donohue, just as in the previous set

of problems.

4.5 Twenty Layers

The final problem we present involves 20 layers and 10 independent variables. The parameters

used here and by Aranovich and Donohue (1999) are z1 = 1, z2 = 4, EAA = −1.0 and EAS = −3.0,

and the results are shown in Figure 10, with an expanded view of part of the solution shown in
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Figure 11. Again there is a continuous path of solutions beginning at the origin that closely matches

what is given by Aranovich and Donohue. However, IN/GB also finds a large number of additional

solutions to the equation system. Many of these are unstable states, but also found are a number

of new metastable states, which can be interpreted in terms of overhang as discussed above. It

may not be possible to observe all metastable states experimentally; however, as discussed in detail

by Aranovich and Donohue (1999), knowledge of these states and the corresponding transitions is

important in understanding the physical mechanisms underlying the phase behavior in the pore. In

the region with most solutions, there are a total of 65 roots, only 15 of which lie in the continuous

track that begins at the origin. The set of 65 solutions for the case ρb = 0.068 are listed in Table

1, for potential use by those who may wish to use this problem to test another equation solving

technique. It should be noted that, while point approximations of the solutions, rounded to five

decimal places, are reported here, we have actually determined rigorous interval enclosures of each

solution. Each such enclosure is known to contain a unique root, based on the interval-Newton

uniqueness test described above.

4.6 Computational Performance

Table 2 shows, as a function of problem size, the average CPU time required to obtain all

solutions of the nonlinear equation system for a particular given value of the bulk concentration.

Times are on a Sun Ultra 10/440 workstation. The results indicate that the IN/GB approach is

remarkably efficient considering that it also provides a mathematical and computational guarantee

that all the solutions have been found.

The larger average solution time for the larger problems is due mostly to the fact that, for

the parameter values chosen, these have a larger number of solutions to be found. For the largest

problem (20 layers), Figure 12 shows the relationship between the number of solutions and the

computation time, by plotting both as a function of the bulk concentration value used. This shows
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that IN/GB is very efficient when the number of solutions is small, taking more time only when

many solutions exist and more work is required to enclose each solution uniquely.

5 Concluding Remarks

We have described here a new methodology that is the first completely reliable technique for

finding all solutions to the nonlinear equation systems arising in the lattice-DFT modeling of ad-

sorption in porous materials. The method is based on interval analysis, in particular an interval

Newton/generalized bisection algorithm, which provides a mathematical and computational guaran-

tee that all solutions are enclosed. The method was demonstrated using a number of test problems,

finding not only the previously reported solutions, but also that these problems have additional

unreported solutions. The new methodology is not only completely reliable, but it solved these

problems very efficiently in terms of CPU requirements.
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Table 1: List of the 65 solutions to the 20-layer problem at ρb = 0.068.

layer sol 1 sol 2 sol 3 sol 4 sol 5 sol 6 sol 7 sol 8 sol 9 sol 10
1 0.99243 0.99243 0.99243 0.99243 0.99243 0.99243 0.99243 0.99243 0.99243 0.99240
2 0.93232 0.93232 0.93232 0.93232 0.93227 0.93231 0.93231 0.93230 0.93228 0.92775
3 0.92695 0.92695 0.92695 0.92694 0.92646 0.92693 0.92691 0.92672 0.92657 0.87502
4 0.92644 0.92644 0.92642 0.92641 0.92121 0.92622 0.92606 0.92404 0.92240 0.54408
5 0.92640 0.92635 0.92617 0.92601 0.87345 0.92400 0.92235 0.90151 0.88504 0.15127
6 0.92639 0.92590 0.92400 0.92233 0.54264 0.90150 0.88503 0.70987 0.60431 0.15198
7 0.92639 0.92124 0.90167 0.88491 0.15279 0.70986 0.60434 0.17959 0.14700 0.54750
8 0.92639 0.87432 0.71104 0.60362 0.15913 0.17958 0.14701 0.07846 0.07520 0.87442
9 0.92639 0.54700 0.18043 0.14701 0.57181 0.07846 0.07521 0.06890 0.06862 0.92125
10 0.92639 0.15206 0.07965 0.07591 0.86869 0.06898 0.06867 0.06808 0.06806 0.92586

layer sol 11 sol 12 sol 13 sol 14 sol 15 sol 16 sol 17 sol 18 sol 19 sol 20
1 0.99243 0.99243 0.99243 0.99242 0.99242 0.99240 0.99242 0.99240 0.99243 0.99243
2 0.93188 0.93155 0.93175 0.93106 0.93039 0.92851 0.93033 0.92857 0.93224 0.93226
3 0.92186 0.91797 0.92031 0.91220 0.90451 0.88340 0.90383 0.88408 0.92609 0.92632
4 0.87438 0.83743 0.85937 0.78676 0.72577 0.58876 0.72072 0.59259 0.91735 0.91977
5 0.54668 0.39738 0.47809 0.27210 0.19150 0.14622 0.18715 0.14607 0.83720 0.85964
6 0.15199 0.18248 0.16640 0.16666 0.09377 0.08764 0.08787 0.08318 0.39720 0.47979
7 0.15212 0.39889 0.27079 0.47762 0.19078 0.18621 0.14727 0.14714 0.18268 0.16614
8 0.54729 0.83769 0.78565 0.85910 0.72398 0.71853 0.59269 0.59688 0.39962 0.26825
9 0.87427 0.91733 0.91133 0.91965 0.90342 0.90267 0.88289 0.88365 0.83761 0.78317
10 0.92071 0.92544 0.92481 0.92569 0.92396 0.92388 0.92169 0.92177 0.91632 0.90912

layer sol 21 sol 22 sol 23 sol 24 sol 25 sol 26 sol 27 sol 28 sol 29 sol 30
1 0.99243 0.99243 0.99243 0.99243 0.99243 0.99242 0.99242 0.99240 0.99240 0.99243
2 0.93220 0.93213 0.93213 0.93196 0.93196 0.93024 0.93024 0.92867 0.92868 0.93211
3 0.92553 0.92476 0.92471 0.92274 0.92279 0.90283 0.90280 0.88522 0.88525 0.92458
4 0.91146 0.90348 0.90296 0.88306 0.88355 0.71331 0.71310 0.59910 0.59928 0.90161
5 0.78603 0.72367 0.71983 0.59257 0.59531 0.18127 0.18112 0.14592 0.14592 0.71008
6 0.27141 0.19040 0.18716 0.14709 0.14700 0.07968 0.07946 0.07608 0.07589 0.17966
7 0.16667 0.09314 0.08879 0.08727 0.08418 0.07912 0.07715 0.07872 0.07681 0.07846
8 0.47833 0.18701 0.15501 0.18221 0.15524 0.17533 0.15609 0.17497 0.15616 0.06890
9 0.85910 0.71508 0.62117 0.70827 0.62662 0.69706 0.63671 0.69641 0.63730 0.06808
10 0.91893 0.89868 0.88065 0.89753 0.88184 0.89559 0.88400 0.89548 0.88413 0.06801

layer sol 31 sol 32 sol 33 sol 34 sol 35 sol 36 sol 37 sol 38 sol 39 sol 40
1 0.99243 0.99242 0.99240 0.99203 0.99194 0.99139 0.99137 0.99195 0.99202 0.99139
2 0.93198 0.93023 0.92869 0.88181 0.87061 0.80653 0.80389 0.87154 0.88105 0.80602
3 0.92294 0.90268 0.88539 0.51625 0.45779 0.23594 0.22968 0.46237 0.51199 0.23472
4 0.88507 0.71224 0.60005 0.14404 0.15482 0.10046 0.09310 0.15400 0.14479 0.09908
5 0.60393 0.18047 0.14591 0.15126 0.25146 0.19594 0.14740 0.24388 0.15860 0.18728
6 0.14691 0.07855 0.07510 0.55202 0.77432 0.72973 0.58799 0.76478 0.57795 0.70984
7 0.07519 0.06891 0.06861 0.87532 0.90996 0.90422 0.88213 0.90189 0.86979 0.89379
8 0.06862 0.06808 0.06805 0.92135 0.92481 0.92425 0.92204 0.87192 0.86783 0.87090
9 0.06805 0.06801 0.06800 0.92591 0.92624 0.92619 0.92598 0.55429 0.56660 0.55737
10 0.06800 0.06800 0.06800 0.92634 0.92637 0.92637 0.92635 0.15476 0.15959 0.15594
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Table 1 continued

layer sol 41 sol 42 sol 43 sol 44 sol 45 sol 46 sol 47 sol 48 sol 49 sol 50
1 0.99137 0.99237 0.99234 0.99239 0.99229 0.99209 0.99228 0.99209 0.99134 0.99134
2 0.80439 0.92412 0.91997 0.92639 0.91388 0.88861 0.91340 0.88908 0.80088 0.80074
3 0.23086 0.83667 0.79552 0.86044 0.73993 0.55590 0.73585 0.55882 0.22276 0.22245
4 0.09453 0.38868 0.28231 0.47663 0.19784 0.13816 0.19353 0.13784 0.08426 0.08383
5 0.15733 0.18157 0.16803 0.16531 0.09468 0.08661 0.08862 0.08227 0.08017 0.07669
6 0.62375 0.40512 0.47174 0.26872 0.19149 0.18549 0.14723 0.14706 0.18081 0.14701
7 0.87899 0.83960 0.85768 0.78451 0.72483 0.71766 0.59177 0.59744 0.71155 0.60284
8 0.86901 0.91755 0.91950 0.91121 0.90356 0.90258 0.88281 0.88382 0.90174 0.88477
9 0.56305 0.92555 0.92573 0.92493 0.92419 0.92409 0.92211 0.92221 0.92401 0.92231
10 0.15816 0.92630 0.92632 0.92624 0.92616 0.92615 0.92595 0.92596 0.92614 0.92597

layer sol 51 sol 52 sol 53 sol 54 sol 55 sol 56 sol 57 sol 58 sol 59 sol 60
1 0.99228 0.99228 0.99210 0.99210 0.99134 0.99134 0.99228 0.99210 0.99228 0.99210
2 0.91275 0.91272 0.88987 0.88990 0.80048 0.80047 0.91266 0.88997 0.91266 0.88998
3 0.73026 0.73000 0.56365 0.56387 0.22187 0.22184 0.72950 0.56431 0.72949 0.56432
4 0.18798 0.18772 0.13735 0.13732 0.08306 0.08302 0.18725 0.13728 0.18723 0.13728
5 0.08044 0.08006 0.07529 0.07496 0.07022 0.06993 0.07934 0.07435 0.07932 0.07433
6 0.07973 0.07632 0.07916 0.07582 0.07860 0.07534 0.06984 0.06940 0.06968 0.06924
7 0.18046 0.14708 0.18005 0.14708 0.17965 0.14709 0.07802 0.07797 0.07621 0.07617
8 0.71103 0.60349 0.71046 0.60400 0.70990 0.60450 0.17434 0.17430 0.15629 0.15630
9 0.90163 0.88481 0.90155 0.88490 0.90147 0.88499 0.69527 0.69519 0.63835 0.63843
10 0.92376 0.92190 0.92376 0.92191 0.92375 0.92192 0.89528 0.89527 0.88435 0.88436

layer sol 61 sol 62 sol 63 sol 64 sol 65
1 0.99134 0.99134 0.99228 0.99210 0.99134
2 0.80045 0.80045 0.91266 0.88998 0.80044
3 0.22179 0.22179 0.72943 0.56437 0.22179
4 0.08296 0.08295 0.18718 0.13728 0.08295
5 0.06937 0.06936 0.07924 0.07426 0.06929
6 0.06897 0.06881 0.06897 0.06854 0.06811
7 0.07792 0.07612 0.06808 0.06805 0.06801
8 0.17425 0.15631 0.06801 0.06800 0.06800
9 0.69511 0.63850 0.06800 0.06800 0.06800
10 0.89525 0.88438 0.06800 0.06800 0.06800
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Table 2: Computational performance on test problems. The average solution time is the average
CPU time required to obtain all solutions of the nonlinear equation system for a particular given
value of the bulk concentration. Times are on a Sun Ultra 10/440 workstation.

Layers Variables Average Solution Time

(N) (N/2) (s)

2 1 0.001

4 2 0.002

8 4 0.006

12 6 0.019

20 10 0.316
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Figure Captions

Figure 1: Results for two-layer problem with z1 = 1, z2 = 3, EAA = −1.4, EAS = −1.0.

Figure 2: Results for two-layer problem with z1 = 1, z2 = 3, EAA = −1.9, EAS = −0.258.

Figure 3: Results for four-layer problem with z1 = 1, z2 = 4, EAA = −1.1, EAS = −3.0. The bold
lines indicate regions that are either stable or metastable. The thin lines indicate unstable
regions.

Figure 4: Results for eight-layer problem with z1 = 1, z2 = 4, EAA = −1.4, EAS = −4.0. The bold
lines indicate regions that are either stable or metastable. The thin lines indicate unstable
regions.

Figure 5: Results for eight-layer problem with z1 = 1, z2 = 4, EAA = −1.4, EAS = −3.0. The bold
lines indicate regions that are either stable or metastable. The thin lines indicate unstable
regions.

Figure 6: Results for eight-layer problem with z1 = 1, z2 = 4, EAA = −1.2, EAS = −4.0. The bold
lines indicate regions that are either stable or metastable. The thin lines indicate unstable
regions.

Figure 7: Results for eight-layer problem with z1 = 1, z2 = 4, EAA = −1.3, EAS = −4.0. The bold
lines indicate regions that are either stable or metastable. The thin lines indicate unstable
regions.

Figure 8: Results for eight-layer problem with z1 = 1, z2 = 4, EAA = −1.8, EAS = −4.0. The bold
lines indicate regions that are either stable or metastable. The thin lines indicate unstable
regions.

Figure 9: Results for 12-layer problem with z1 = 1, z2 = 4, EAA = −1.1, EAS = −3.0. The bold
lines indicate regions that are either stable or metastable. The thin lines indicate unstable
regions.

Figure 10: Results for 20-layer problem with z1 = 1, z2 = 4, EAA = −1.0, EAS = −3.0. The bold
lines indicate regions that are either stable or metastable. The thin lines indicate unstable
regions.

Figure 11: An expanded version of part of Figure 11 showing results for 20-layer problem. The bold
lines indicate regions that are either stable or metastable. The thin lines indicate unstable
regions.

Figure 12: Number of roots and computational performance on the 20-layer problem. Circles
correspond to the left axis, and indicates the number of solutions at a particular bulk concen-
tration. The line corresponds to the right axis, and indicates the time required to completely
solve the problem for all the roots.
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Figure 1: Results for two-layer problem with z1 = 1, z2 = 3, EAA = −1.4, EAS = −1.0.

26



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bulk Concentration

La
ye

r 
C

on
ce

nt
ra

tio
n

Figure 2: Results for two-layer problem with z1 = 1, z2 = 3, EAA = −1.9, EAS = −0.258.
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Figure 3: Results for four-layer problem with z1 = 1, z2 = 4, EAA = −1.1, EAS = −3.0. The bold
lines indicate regions that are either stable or metastable. The thin lines indicate unstable regions.
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Figure 4: Results for eight-layer problem with z1 = 1, z2 = 4, EAA = −1.4, EAS = −4.0. The bold
lines indicate regions that are either stable or metastable. The thin lines indicate unstable regions.
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Figure 5: Results for eight-layer problem with z1 = 1, z2 = 4, EAA = −1.4, EAS = −3.0. The bold
lines indicate regions that are either stable or metastable. The thin lines indicate unstable regions.
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Figure 6: Results for eight-layer problem with z1 = 1, z2 = 4, EAA = −1.2, EAS = −4.0. The bold
lines indicate regions that are either stable or metastable. The thin lines indicate unstable regions.
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Figure 7: Results for eight-layer problem with z1 = 1, z2 = 4, EAA = −1.3, EAS = −4.0. The bold
lines indicate regions that are either stable or metastable. The thin lines indicate unstable regions.

32



0 0.01 0.02 0.03 0.04 0.05
0

1

2

3

4

5

6

7

8

Bulk Concentration

G
ib

bs
 A

ds
or

pt
io

n

Figure 8: Results for eight-layer problem with z1 = 1, z2 = 4, EAA = −1.8, EAS = −4.0. The bold
lines indicate regions that are either stable or metastable. The thin lines indicate unstable regions.

33



0 0.01 0.02 0.03 0.04 0.05 0.06
0

2

4

6

8

10

12

Bulk Concentration

G
ib

bs
 A

ds
or

pt
io

n

Figure 9: Results for 12-layer problem with z1 = 1, z2 = 4, EAA = −1.1, EAS = −3.0. The bold
lines indicate regions that are either stable or metastable. The thin lines indicate unstable regions.
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Figure 10: Results for 20-layer problem with z1 = 1, z2 = 4, EAA = −1.0, EAS = −3.0. The bold
lines indicate regions that are either stable or metastable. The thin lines indicate unstable regions.
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Figure 11: An expanded version of part of Figure 11 showing results for 20-layer problem. The
bold lines indicate regions that are either stable or metastable. The thin lines indicate unstable
regions.
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Figure 12: Number of roots and computational performance on the 20-layer problem. Circles
correspond to the left axis, and indicates the number of solutions at a particular bulk concentration.
The line corresponds to the right axis, and indicates the time required to completely solve the
problem for all the roots.
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