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Abstract

Because models used to represent the Gibbs energy of mixing are typically highly nonlinear, the reliable

prediction of phase stability from such models is a challenging computational problem. The phase stability

problem can be formulated either as a minimization problem or as an equivalent nonlinear equation solving

problem. However, conventional solution methods are initialization dependent, and may fail by converging

to trivial or non-physical solutions or to a point that is a local but not global minimum. Since the correct

prediction of phase stability is critical in the design and analysis of separation processes, there has been

considerable recent interest in developing more reliable techniques for stability analysis. Recently we have

demonstrated a technique that can solve the phase stability problem with complete reliability. The technique,

which is based on interval analysis, is initialization independent, and if properly implemented provides a

mathematical guarantee that the correct solution to the phase stability problem has been found. In this

paper, we demonstrate the use of this technique in connection with excess Gibbs energy models. The NRTL

and UNIQUAC models are used in examples, and larger problems than previously considered are solved.

We also consider two means of enhancing the efficiency of the method, both based on sharpening the range

of interval function evaluations. Results indicate that by using the enhanced method, computation times can

be substantially reduced, especially for the larger problems.



1 Introduction

The basic problem in computing phase equilibrium is the solution of a nonlinear programming (NLP)

problem representing the minimization of the total Gibbs energy subject to material balance constraints. This

may also be represented as an equivalent set of nonlinear equations, including the equifugacity conditions. In

an attempt to assure that a global minimum in the Gibbs energy is found, some type of two-stage approach is

often used (e.g., Michelsen, 1982a,b; Sun and Seider, 1995; McKinnonet al., 1996; McDonald and Floudas,

1997; Huaet al., 1997).

In the first stage, a local (and potentially global) minimum of the NLP problem is located. This repre-

sents a candidate equilibrium solution. Generally, this is initially the trivial case of a single phase whose

composition is the same as a specified overall feed composition. If it is later (in the second stage) determined

that there is no single phase equilibrium solution, then in this stage a phase split calculation is performed,

generally based on some presumed number of phases. This can be done by using a local method to solve

the NLP problem or to solve the equivalent nonlinear equation system. Whether based on the trivial single

phase case, or obtained from a phase split calculation, the phase compositions corresponding to the local

minimum in the NLP problem can be used to define a tangent plane. This is a (hyper)plane tangent to the

(reduced) Gibbs energy surfaceg(x) at each phase composition. It is well known (e.g. Bakeret al., 1982)

that the candidate solution corresponds to a global minimum in the NLP problem, and thus the true equilib-

rium solution, only if the tangent planegtan(x) never intersects (i.e., lies above) the Gibbs energy surface

g(x).

In the second stage of this two-stage approach, this tangent plane criterion is used as a global optimality

test on the local solution identified in the first stage. This is the phase stability problem. One way to

determine whethergtan(x) ever lies aboveg(x) is to consider whether the tangent plane distance function

D(x) = g(x) � gtan(x) is negative for any compositionx. A common approach for determining ifD(x)

is ever negative is to minimize it subject to the mole fractions summing to one. This optimization problem

can either be solved directly or by solving an equivalent set of nonlinear equations for the stationary points
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of D(x). If there is no stationary point found for whichD(x) < 0, that is, if the global minimum ofD(x)

is 0 (at the tangent points), then the local solution being tested is globally optimal and represents the true

equilibrium solution. If, on the other hand, any of these yield a negative tangent plane distance, indicating

that the tangent plane intersects the Gibbs energy surface, the phase is unstable and can split (in this context,

unstable refers to both the metastable and classically unstable cases). In this case, the first stage (phase split)

calculation must then be repeated, perhaps changing the number of phases assumed to be present, until a

solution is found that meets the second stage global optimality (phase stability) test. Assuming that the

tangent plane distance is minimized globally in the phase stability analysis, this type of two-stage procedure

can be shown to converge in a finite number of steps to the equilibrium solution (e.g., McKinnonet al.,

1996).

Clearly, determining a global minimum in the phase stability problem is the key in this two-stage pro-

cedure for computing phase equilibrium. Conventional minimization or equation solving techniques are

initialization dependent, and may fail by converging to trivial or nonphysical solutions or to a point that

is a local but not a global minimum (e.g., Greenet al., 1993). Thus there is no guarantee that the phase

equilibrium problem has been correctly solved. Because of the difficulties that may arise in solving such

problems by standard methods (e.g., Michelsen, 1982a,b), there has been significant interest in the develop-

ment of more reliable methods, as reviewed in more detail by Huaet al. (1998). Particularly noteworthy is

the work of McDonald and Floudas (1995a,b,c; 1997), who have shown that for certain activity coefficient

models, the phase stability and equilibrium problems can be made amenable, through the formulation of

convex underestimating functions, to solution by powerful global optimization techniques using branch and

bound, which provide a mathematical guarantee of reliability. McDonald and Floudas (1997) also demon-

strate that while it is possible to apply rigorous global optimization techniques directly to the NLP problem

for the phase equilibrium problem, it is computationally more efficient to use a two-stage approach such as

outlined above, since the dimensionality of the global optimization problem (phase stability) that must be

solved is less than that of the full equilibrium problem.
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An alternative approach for solving the phase stability problem is the use of interval analysis. This pro-

vides not only a mathematical guarantee of global optimality, but also a computational guarantee (Huaet al.,

1998), since it deals automatically with rounding error. This method, based on a interval Newton/generalized

bisection algorithm, was originally suggested by Stadtherret al. (1995), who applied it to small problems

(binary and ternary) involving excess Gibbs energy models, as later done also by McKinnonet al. (1996).

More recently Huaet al. (1996a,b; 1998) extended this method to problems modeled with cubic equations

of state, in particular the Van der Waals (VDW), Peng-Robinson (PR) and Soave-Redlich-Kwong (SRK)

models with standard mixing rules. In this paper we return to problems involving excess Gibbs energy

models. Though the technique applied here is general-purpose, the applications presented here focus on

the NRTL and UNIQUAC models for excess Gibbs energy. We consider larger problems using these two

models than previously attempted using this method, and in doing so consider two means of enhancing the

efficiency of the technique, both based on sharpening the range of interval function evaluations.

2 Background

2.1 Phase Stability Analysis

As discussed above, the determination of phase stability is often done using tangent plane analysis

(Bakeret al., 1982; Michelsen, 1982a). A phase at specified temperatureT , pressureP , and feed mole

fractionz is unstable if the molar Gibbs energy of mixing surfacem(x) = �gmix = �Ĝmix=RT ever falls

below a plane tangent to the surface atz. That is, if the tangent plane distance

D(x) = m(x)�m0 �
nX
i=1

�
@m

@xi

�
0

(xi � zi) (1)

is negative for any compositionx, the phase is unstable. The subscript zero indicates evaluation atx = z,

n is the number of components, and0 < xi < 1, i = 1; : : : ; n. A common approach for determining ifD

is ever negative is to minimizeD subject to the mole fractions summing to one. It is readily shown that the
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stationary points in this optimization problem can be found by solving the system of nonlinear equations:

��
@m

@xi

�
�
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�

��
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@xi

�
�

�
@m

@xn

��
0

= 0; i = 1; : : : ; n� 1 (2)

1�
nX
i=1

xi = 0 (3)

Then�n system given by equations (2)–(3) above has a trivial root atx = z and frequently has multiple

nontrivial roots as well, even for a very simple Margules-type model of excess Gibbs energy (Greenet al.,

1993). We use here an interval Newton/generalized bisection method for solving the system of equations

(2)–(3). The method requires no initial guess, and will find with certainty enclosures of all the stationary

points of the tangent plane distanceD. The method can also be easily modified so that only the stationary

point corresponding to the global minimum inD is found.

The technique is general-purpose and can be applied using any model for the reduced Gibbs energy of

mixing m(x). In this paper we concentrate on the use of excess Gibbs energy models, thus the reduced

Gibbs energy of mixing is given by

m(x) =
nX
i=1

xi lnxi + gE(x) (4)

wheregE = ĜE=RT is the reduced molar excess Gibbs energy. In the example presented here we use the

NRTL and UNIQUAC models forgE .

2.2 NRTL Model

The Non-RandomTwo L iquid model is a local composition model. For ann component system, the

NRTL equation for the reduced molar excess Gibbs energy is given by:

gE(x) =
ĜE(x)

RT
=

nX
k=1

xk
(�G)k

Gk

(5)

wherexk is the mole fraction for speciesk, andGk and(�G)k are mole fraction weighted averages involving

the binary interaction parameters�ik andGik:

Gk =
nX
i=1

Gikxi (6)
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(�G)k =
nX
i=1

�ikGikxi: (7)

The presence of mole fraction weighted averages is emphasized here since this will be exploited below in

improving the efficiency of the interval approach. The parameterGik is a function of�ik and the more

commonly available parameter�ik = �ki, and is given byGik = exp(��ik�ik).

For this model, equation (2) becomes

ln(
xi
xn

)� ln(
zi
zn

) + si(x)� si(z) = 0 i = 1; : : : ; n� 1 (8)

where

si(x) =
(�G)i

Gi

�
(�G)n

Gn

+
nX
k=1

xk

"
�ikGik � �nkGnk

Gk

+
(�G)k(�Gik +Gnk)

G
2

k

#
: (9)

Equations (8) and (3) represent ann � n equation system whose solutions are the stationary points ofD

when the NRTL model is used.

2.3 UNIQUAC model

TheUNIversalQUAsi-Chemical model is another local composition model. For ann component sys-

tem, the UNIQUAC equation for the reduced molar excess Gibbs energy is given by:

gE(x) =
ĜE(x)

RT
=

nX
k=1

xk

"
ln

�
rk
r

�
+

�

2
qk ln

�
qkr

rkq

�
� q0k ln

 
q0�k

q0

!#
(10)

wherexk is the mole fraction for speciesk, and

r =
nX
i=1

rixi (11)

q =
nX
i=1

qixi (12)

q0 =
nX
i=1

q0ixi (13)

q0�k =
nX
i=1

q0i�ikxi (14)
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are mole fraction weighted averages involving the pure component parametersri, qi andq0 and the binary

interaction parameter�ik. The coordination number� is 10.

For this model, equation (2) becomes

ln(
xi
xn

)� ln(
zi
zn

) + si(x)� si(z) = 0 i = 1; : : : ; n� 1 (15)

where

si(x) =
(rn � ri)(�5q +

Pn
i=1 xi)

r
� 5(qi � qn) ln

q

r

+q0i ln
q0

q0�i
� q0n ln

q0

q0�n
�

nX
k=1

xk

�
q0k(q

0
i�ik � q0n�nk)

q0�k

�
: (16)

Equations (15) and (3) represent ann � n equation system whose solutions are the stationary points ofD

when the UNIQUAC model is used.

3 Methodology

3.1 Interval Computations

We apply here an interval Newton/generalized bisection (IN/GB) technique. This technique provides

the power to find, with confidence,enclosuresof all solutions of a system of nonlinear equations (e.g., Neu-

maier, 1990; Kearfott, 1996), and to find with total reliability the global minimum of a nonlinear objective

function (e.g., Hansen, 1992; Kearfott, 1996), provided only that upper and lower bounds are available

for all variables. A detailed step-by-step description of the basic IN/GB algorithm used here is given by

Schnepper and Stadtherr (1996), and additional details are provided by Huaet al. (1998). Our implementa-

tion of the IN/GB method for the phase stability problem is based on appropriately modified routines from

the packages INTBIS (Kearfott and Novoa, 1990) and INTLIB (Kearfottet al., 1994)

3.2 Enhancements

The efficiency of the IN/GB method may depend significantly on how tightly one can computeinterval
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extensionsF (X) of real expressionsf(x). DenotingFR(X) = ff(x) j x 2 Xg as the exact range off(x)

over the intervalX, then an interval extension off(x) is an enclosure forFR, that is,F (X) � FR(X).

The most common approach to enclosingFR is to use thenatural interval extensionof f(x), which is

obtained from the expressionf(x) by simply replacing each occurrence of the variablex by the intervalX

and evaluating the real arithmetic operations using the corresponding interval arithmetic operations (Moore,

1966). If each variable in an expression appears only once, then the natural interval extension will always

yield the true (though, in computational practice, outwardly rounded) rangeFR. Unfortunately for most of

the functions of interest in phase stability analysis it is not possible to perform rearrangements that eliminate

all but one occurrence of each variable. In this case, use of the natural interval extension can lead to substan-

tial overestimation ofFR, and means of computing tighter interval extensions should be considered. Two

techniques considered here are the use of constraint information, and the use of monotonicity, as outlined

very briefly below. More details concerning these techniques, and more discussion and examples related to

the computation of interval extension, are available from Tessier (1997) and from Huaet. al. (1998), who

use the techniques in the context of phase stability analysis for equation of state models.

3.2.1 Mole Fraction Weighted Averages

As emphasized above, mole fraction weighted averages, of the formf(x) = �a =
Pn

i=1 xiai, where the

ai are scalar constants and
Pn

i=1 xi = 1, appear frequently in the equation system to be solved in phase

stability analysis when excess Gibbs energy models are used. The natural interval extension of�a will yield

the true range of the expression in the space in which all the mole fraction variablesxi are independent.

However, the range can be tightened by using the constraint that the mole fractions must sum to one. Thus,

Tessier (1997) developed aconstrained space interval extensionFCS of f(x) = �a.

One approach to using the constraint is to use a constraint propagation approach. However, this may

not lead to the sharpest possible bounds on�a in the constrained space. Tessier (1997) showed how the true

upper and lower bounds on�a in the constrained space can be found by thinking of the problem in terms of
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linear programming, which led to an O(n) algorithm for constructing the desired upper and lower bounds

for FCS without actually using an LP problem solver. Details of this algorithm, as well as examples of its

use have been given by Tessier (1997) and Huaet. al. (1998).

For computing the range of mole fraction weighted averages of scalar quantities, such asGk and(�G)k

in the NRTL model andr, q, q0, andq0�k in the UNIQUAC model, this algorithm can be applied directly.

This approach can also be extended to determining the range of a mole fraction weighted average of interval

quantities. This is potentially useful, for example, in bounding the summations in equations (9) and (16),

which are mole fraction weighted averages of the quantities in brackets, which we denote asai(x). To

evaluate the range of such a summation over a desired interval, one can first determine the rangeAi =

[aLi ; a
U
i ] of ai(x) over the interval. Then the problem becomes one of determining the range of�A =

Pn
i=1 xiAi =

Pn
i=1 xi[a

L
i ; a

U
i ] = [

Pn
i=1 xia

L
i ;
Pn

i=1 xia
U
i ]. Note that these upper and lower bounds are

themselves mole fraction weighted averages of the known scalar valuesaLi andaUi . Thus, to get the range

of �A we get its lower bound by using the algorithm referred to above to determine the lower bound of

Pn
i=1 xia

L
i and its upper bound by using this procedure to determine the upper bound of

Pn
i=1 xia

U
i . When

this interval form of the constrained space extension is used, it is denotedFCSI .

Using the algorithm to determineFCS or FCSI represents a computational overhead that, it is hoped,

will be offset by the improvements due to tighter function bounds. Since the algorithm is applied twice in

determiningFCSI , the overhead will be roughly twice that incurred in determiningFCS .

3.2.2 Monotonicity

If a function is known to be monotonic on a given interval, then clearly its range can be tightly bounded

simply by evaluating the function at the endpoints of the interval. Thus, the use of amonotonic interval

extensionFM is a common approach used in trying to more tightly bound function ranges (e.g., Hansen,

1992). If for every variable the function is either monotonically nonincreasing or monotonically nonde-

creasing, thenFM = FR; otherwise,FM is no less sharp than the natural extension. Some implementation
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issues not discussed by Huaet. al. (1998) are mentioned briefly here.

In order to ensure proper outward rounding in computingFM , its upper and lower bounds should be

computed using interval arithmetic. Thus, an evaluation ofFM requires two interval function evaluations,

one for each bound, as opposed to only one if the natural interval extension is used. This is a computational

overhead that must be traded-off against hopefully tighter function bounds whenFM is computed. Since, for

purposes of using the constrained space extensions discussed above we evaluate the functions to be solved

in terms of various mole fraction weighted averages, to use the monotonic interval extension in this context

requires that partial derivatives with respect to the mole fraction weighted averages be bounded. This is an

additional computational overhead which must be weighed against improvements due to sharper function

ranges. It should also be noted that since the natural interval extension is used bound these partial derivatives,

these bounds may be overestimates and thus monotonicity may not be detected even when present.

An important feature in the implementation ofFM is that monotonicity can be “inherited.” That is, if a

function is known to be monotonic with respect to one or more variables over a particular intervalX, then

any subintervals ofX, formed by bisection or by the interval-Newton iteration, will have the same mono-

tonicity properties with respect to these variables. By using this property of inheritance, the unnecessary

evaluation of partial derivative bounds can be avoided.

4 Results and Discussion

The methodology outlined above is now applied to solve several phase stability problems. These will

be used to evaluate the enhancements in computational efficiency expected to be provided by using the

constrained space and monotonic interval extensions. The examples will also demonstrate the performance

of the method on larger NRTL and UNIQUAC problems than previously solved using the method.

The results for each problem presented below include the roots (stationary points) enclosed, as well as

the value of the tangent plane distanceD at each root. It should be noted that, while rounded point approxi-

mations are reported here, we have actually determined verified enclosures of each root and computedD for
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this enclosure. Each such enclosure is known to contain auniqueroot, based on the interval-Newton unique-

ness test (see Huaet al., 1998). Thus, for example, in Table 2, for the first (z1 = 0.148) feed, thex1 value

for the first stationary point was actually the intervalx1 = [0.11433639929296194,0.11433639934254627].

Similarly narrow enclosures were found in all cases.

In order to emphasize the power of the method, in these studies we have foundall the stationary points.

However, it should be emphasized that, for making a determination of phase stability or instability, finding

all the stationary points is not necessary, since at most the stationary point corresponding to the global

minimum inD is needed. The method applied here can easily be modified, as discussed in more detail

below, so that only this point is found. Nevertheless, it may in fact be desirable to determine all the stationary

points (at least all the local minima), since the local minima inD are known to provide good initializations

for the local methods used to solve the phase split stage of the phase equilibrium problem (e.g., Michelsen,

1982a,b; Sun and Seider, 1995).

For each problem, results on computational efficiency are also presented. These include data for the

number of intervals on which the root inclusion test must be performed and for the CPU time on a Sun Ultra

2/1300 workstation. Results for four different ways to compute interval function extensions are given. In

the tables of results, these are denotedF for the natural interval extension without any of the enhancements

suggested above,FCS for the scalar form of the constrained space interval extension,FCSI for both interval

and scalar forms of the constrained space extension, andFCSM for use of monotonicity along with both

interval and scalar forms of the constrained space extension. In all cases, the results found for the stationary

points is the same.

4.1 Problem 1

This problem involves the three-component systemn-propanol (1),n-butanol (2) and water (3). The

NRTL model is used with parameters (McDonald and Floudas, 1995a) listed in Table 1. Results are shown

in Tables 2 and 3. The first feed listed was considered by McDonald and Floudas (1995a), and is interesting
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because it is very close to the plait point and thus is particularly challenging. The results obtained for the

global minimum inD match (after accounting for their misnumbering of components) those of McDonald

and Floudas (1995a). Three other feeds were also considered. The improved bounds on function ranges

due to the constrained space and monotonic interval extensions is apparent in the reduction in the number

of intervals that must be tested, which is about 36% fromF to FCS , 55% fromF to FCSI , and 60% from

F to FCSM . This is not fully reflected in the CPU times, however, because of the overhead involved in

implementing the enhanced interval extensions. For example, in theFCSM case, the CPU time actually

increases relative toFCSI even though the number of root inclusion tests required is somewhat less. We

would expect this overhead to perhaps be somewhat less of a factor as larger problems are considered.

4.2 Problem 2

This problem involves the four-component systemn-propanol (1),n-butanol (2), benzene (3) and water

(4). The NRTL model is used with parameters (Gmehlinget al., 1977-1990) listed in Table 4. Results are

shown in Tables 5 and 6. All but the second feed listed are unstable. By far the largest improvement due

to enhancements comes in going fromF to FCS, about a 68% reduction in root inclusion tests and a 60%

reduction in CPU time. UsingFCSI andFCSM results in relatively small improvements in the number

of root inclusions tests, which are insufficient to overcome the overhead incurred, as seen in the CPU time

results.

4.3 Problem 3

This problem involves the five-component systemn-propanol (1),n-butanol (2), benzene (3), ethanol

(4), water (5). The NRTL model is used with parameters listed in Table 7. Results are given in Tables 8 and

9. All these feeds are unstable, and some have five stationary points. Once again the biggest improvement

in performance comes in changing from use ofF to use ofFCS . In this case, the improvements due to

usingFCSI andFCSM are sufficient to somewhat overcome the overhead, resulting in an average CPU
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time savings of over 75% on these problems.

4.4 Problem 4

This problem involves the three-component system ethylene glycol (1), lauryl alcohol (2), and ni-

tromethane (3). The UNIQUAC model is used with the parameters (McDonald and Floudas, 1995a) listed

in Table 10. Results are shown in Tables 11 and 12. The first two feeds listed were also considered by Mc-

Donald and Floudas (1995a), and the results obtained here for the global minimum inD match their results

in both cases. Two other feeds were also considered. For this problem, only the use of theFCS extension

proved worthwhile in terms of computation time, again due to the additional overhead required forFCSI

andFCSM .

4.5 Problem 5

This problem involves the four-component problem acetic acid (1), benzene (2), furfural (3) and cyclo-

hexane (4). The UNIQUAC model is used with the parameters (Sørensen and Arlt, 1979–1987) listed in

Table 13. Results are shown in Tables 14 and 15. The first feed is a stable phase, while the remaining four

are unstable. This problem is unusual, in our experience, in that for none of the feeds was there any im-

provement in number of root inclusion tests due to use of monotonicity. Apparently, for this particular Gibbs

energy surface, the use of the natural interval extension to bound the partial derivatives that determine mono-

tonicity results in overestimations sufficient to prevent monotonicity from being detected when present, or

at least to not be detected often enough to make any difference. Overall, the computational savings due to

the use of theFCS extension was impressive on this problem, averaging about 83%.

4.6 Problem 6

This problem involves the five-component problem acetic acid (1), benzene (2), furfural (3), cyclohexane

(4) and water (5). The UNIQUAC model is used with the parameters (Sørensen and Arlt, 1979–1987) listed
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in Table 16. Results are shown in Tables 17 and 18. All of the feeds considered prove to be unstable. This

is the most difficult of the problems solved in terms of computation time. Here again the use ofFCSI

relative toFCS resulted in only modest reduction in number of root inclusion tests, insufficient to overcome

the computation time overhead. However, this is the only problem in which then using monotonicity in

FCSM resulted in a large reduction in root inclusion tests, well beyond what was needed to offset overhead,

with computational savings ranging from about 75% to 85% relative to the natural interval extension. This

suggests that there may be large regions of monotonicity in the functions whose zeros are sought in finding

the stationary points.

4.7 Discussion

The results clearly show that substantial computational savings can be obtained by using the scalar form

of the constrained space interval extensionFCS instead of the natural interval extensionF . The procedure

(Tessier, 1997; Huaet al., 1998) for computingFCS efficiently determines the exact (without roundout)

bounds on the mole fraction weighted averages occurring in the equation system to be solved. This in turn

leads to tighter bounds on expressions containing these parameters. The tightening of bounds on function

ranges allows intervals to be eliminated more readily than if bounds are not sharp. For instance, if the

true rangeFR of a function over an interval does not contain zero, then that interval can be eliminated

from further consideration, but an overestimate ofFR, such as might be obtained from the natural interval

extension, might well contain zero, leading to further work on this interval and perhaps its bisection, creating

even more work. While the interval form of the constrained space extensionFCSI , and the monotonic

extensionFCSM derived from it, can even further tighten function bounds in most cases, this comes at the

cost of some additional computational overhead, which cannot always be overcome by the reduction in the

number of intervals that must be tested. However, even in the worst case (Problem 5), theFCSM extension

is not significantly most costly thanFCS (and is still a significant improvement over the natural interval

extensionF ), and there is potential for substantial savings as seen in Problem 6. Thus, since its benefit is
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potentially significant, and its disadvantages are relatively small, the routine use of theFCSM extension

may be worthwhile, at least on problems of size equal to or greater than those considered here.

The computation times required by the method used here are quite good for a general-purpose approach

offering a verified solution. All the problems used here were also solved with the commercial package

Numerica (ILOG), which also offers a verified solution. This code (van Hentenryck,et al., 1997) combines

ideas from interval analysis, such as used here, with techniques from constraint satisfaction programming

(CSP). In all cases, Numerica found the same results as reported in Tables 2,5,8,11,14 and 17, but at a

computational cost roughly two to three orders of magnitude greater than for the method used here. For

example, on the first feed listed for Problem 6, Numerica required 34448 seconds (over nine and a half

hours) of CPU time, while (on the same machine) the method used here required only about 144 seconds

(less than two and a half minutes).

While we have focused here on improving the interval function evaluations that underlie the interval

approach for phase stability analysis, we can also use several other simple ways to make improvements in

efficiency. For example, in the problems above we found enclosures ofall the stationary points. However,

for making a determination of phase stability or instability, findingall the stationary points is not always

necessary. For example if an interval is encountered over which the interval evaluation ofD has a negative

upper bound, this guarantees that there is a point at whichD < 0, and so one can immediately conclude that

the mixture is unstable without determining all the stationary points. It is also possible to make use of the

underlying global minimization problem. Since the objective functionD has a known value of zero at the

mixture feed composition, any interval over which the interval value ofD has a lower bound greater than

zero cannot contain the global minimum and can be discarded, even though it may contain a stationary point

(at whichD will be positive and thus not of interest). Thus, we can essentially combine the interval-Newton

technique with an interval branch and bound procedure in which lower bounds are generated using interval

techniques as opposed to convex underestimators. Also, it should be noted that the method described here

can easily be combined with existing local methods for determining phase stability. First, the (fast) local

14



method is used. If it indicates instability then this is the correct answer as it means a point at whichD < 0

has been found. If the local method indicates stability, however, this may not be the correct answer since the

local method may have missed the global minimum inD. Applying the method described here can then be

used to confirm that the mixture is stable if that is the case, or to correctly determine that it is really unstable

if that is the case (Huaet al., 1997).

5 Concluding Remarks

Results presented here demonstrate that interval analysis provides a completely reliable technique for

solving phase stability problems involving excess Gibbs energy models. The technique is initialization

independent, immune from rounding error, and provides both mathematical and computational guarantees

that all stationary points in the tangent plane distance function are enclosed, thus eliminating computational

problems that may occur in other currently used techniques. Though applied here in connection with the

NRTL and UNIQUAC models, the technique used is general-purpose, straightforward to use, and can be

applied in connection with any model. The enhancements described for improving the evaluation of interval

extensions provides significant savings in computation time, approaching an order of magnitude reduction in

some cases. For problems of the size considered here (up to five components), this means that computation

times are quite reasonable. Of course, the computation time requirements are much greater than in the case

of local methods that do not guarantee that the correct solution is found. Thus, as might be expected, there

is a price to pay for knowing with certainty that the phase stability problem is correctly solved.
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Table 1: Problem 1: NRTL parameters (McDonald and Floudas, 1995a)

Gij

inj 1 2 3

1 1.0 1.2017478 1.0216786

2 0.8066060 1.0 0.6490629

3 0.4392221 0.1852084 1.0

�ij

1 0.0 -0.61259 -0.07149

2 0.71640 0.0 0.90047

3 2.7425 3.51307 0.0
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Table 2: Stationary points forn-propanol(1),n-butanol(2), water(3) system at a number of feeds using
NRTL model.

Feed Stationary Points D

(z1; z2; z3) (x1; x2; x3)

(0.148, 0.052, 0.80) (0.144,4:99� 10�2, 0.807) 4.5711 � 10�8

(0.148, 0.052, 0.800) 0.00000

(0.114, 0.036, 0.850) -9.9851 � 10�6

(0.12, 0.08, 0.80) (0.130,8:90� 10�2, 0.781) -3.0693 � 10�6

(5:97 � 10�2, 2:82 � 10�2, 0.912) -7.4818 � 10�4

(0.120, 0.080, 0.800) 0.00000

(0.13, 0.07, 0.80) (0.130, 0.070, 0.800) 0.00000

(0.138,7:56� 10�2, 0.787) -8.6268 � 10�7

(7:38 � 10�2, 3:03 � 10�2, 0.896) -3.2762 � 10�4

(0.12, 0.05, 0.83) (0.158,7:29� 10�2, 0.770) -5.7360 � 10�5

(9:40 � 10�2, 3:49 � 10�2, 0.871) -3.0088 � 10�5

(0.120, 0.050, 0.830) 0.00000
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Table 3: Computational efficiency onn-propanol(1),n-butanol(2), water(3) system with NRTL model.

Number of Root CPU Time (sec)

Feed Inclusion Tests Sun Ultra 2/1300

(z1; z2; z3) F FCS FCSI FCSM F FCS FCSI FCSM

(0.148, 0.052, 0.800) 8543 6125 4375 3982 0.739 0.670 0.580 0.654

(0.12, 0.08, 0.80) 4936 3039 2133 1816 0.445 0.358 0.305 0.320

(0.13, 0.07, 0.80) 5583 3624 2507 2195 0.498 0.409 0.350 0.385

(0.12, 0.05, 0.83) 5111 3027 2111 1756 0.454 0.348 0.303 0.312
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Table 4: Problem 2: NRTL parameters (Gmehlinget al., 1977-1990)

Gij

inj 1 2 3 4

1 1.0 0.34320 0.93449 0.96384

2 1.80967 1.0 1.02932 0.93623

3 0.56132 0.59659 1.0 0.32322

4 0.51986 0.22649 0.31656 1.0

�ij

1 0.0 2.16486 0.23689 0.13060

2 -1.2007 0.0 -0.09730 0.19154

3 2.01911 1.73912 0.0 4.01932

4 2.31985 4.31706 4.09334 0.0
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Table 5: Stationary points forn-propanol(1),n-butanol(2), benzene(3), water(4) system at a number of feeds
using NRTL model.

Feed Stationary Points D

(z1; z2; z3; z4) (x1; x2; x3; x4)

(0.148, 0.052, (4:61 � 10�2, 1:89� 10�2, 0.916,1:87 � 10�2) -0.03365

0.600, 0.200) (0.148, 0.052, 0.600, 0.200) 0.00000

(1:81 � 10�2, 6:20� 10�4, 4:48 � 10�3, 0.977) -0.33982

(0.25, 0.25, (3:53 � 10�2, 5:73� 10�3, 6:75 � 10�3, 0.952) 0.03079

0.25, 0.25) (0.133,8:02 � 10�2, 5:20 � 10�2, 0.735) 0.06532

(0.250, 0.250, 0.250, 0.250) 0.00000

(0.148, 0.052, (8:20 � 10�2, 3:07� 10�2, 0.854,3:29 � 10�2) -3.1279 � 10�3

0.700, 0.100) (0.148, 0.052, 0.700, 0.100) 0.00000

(2:41 � 10�2, 7:86� 10�4, 4:74 � 10�3, 0.970) -0.31097

(0.25, 0.15, (3:67 � 10�2, 2:98� 10�3, 7:37 � 10�3, 0.953) -0.03867

0.40, 0.20) (0.195,7:86� 10�2, 0.114, 0.613) 0.02268

(0.250, 0.150, 0.400, 0.200) 0.00000

(0.25, 0.15, (3:32 � 10�2, 2:69� 10�3, 6:71 � 10�3, 0.957) -0.07363

0.35, 0.25) (0.206,9:47� 10�2, 0.140, 0.560) 0.01066

(0.250, 0.150, 0.350, 0.250) 0.00000
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Table 6: Computational efficiency onn-propanol(1),n-butanol(2), benzene(3), water(4) system with NRTL
model.

Number of Root CPU Time (sec)

Feed Inclusion Tests Sun Ultra 2/1300

(z1; z2; z3; z4) F FCS FCSI FCSM F FCS FCSI FCSM

(0.148, 0.052, 0.600, 0.200) 14,918 4774 4059 3392 2.599 1.058 1.124 1.101

(0.25, 0.25, 0.25, 0.25) 22,554 7824 6181 5075 3.944 1.727 1.722 1.655

(0.148, 0.052, 0.700, 0.100) 23,962 7858 6623 5383 4.138 1.719 1.834 1.748

(0.25, 0.15, 0.40, 0.20) 39,237 12,198 9980 7930 6.807 2.717 2.798 2.615

(0.25, 0.15, 0.35, 0.25) 40,532 12,042 9903 7824 7.059 2.714 2.802 2.592
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Table 7: Problem 3: NRTL parameters (Gmehlinget al., 1977-1990)

Gij

inj 1 2 3 4 5

1 1.0 0.34320 0.93450 0.35902 0.96384

2 3.91873 1.0 1.02931 1.41931 1.06238

3 0.56132 0.59670 1.0 0.57907 0.36864

4 1.03030 0.70216 0.86880 1.0 1.04035

5 0.51986 0.21196 0.17857 0.55537 1.0

�ij

1 0.0 2.16486 0.23686 3.78001 0.13060

2 -1.20070 0.0 -0.09730 -1.15187 -0.20374

3 2.01911 1.73912 0.0 1.85228 3.73758

4 -0.10979 1.16315 0.47676 0.0 -0.14651

5 2.31985 5.22337 6.45226 2.17820 0.0
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Table 8: Stationary points forn-propanol(1),n-butanol(2), benzene(3), ethanol(4), water(5) system at a
number of feeds using NRTL model.

Feed Stationary Points D

(z1; z2; z3; z4; z5) (x1; x2; x3; x4; x5)

(0.148, 0.052, (6:98 � 10�2, 2:26� 10�2, 0.811,5:15 � 10�2, 4:52 � 10�2) -4.2107 � 10�3

0.500, 0.100, 0.200) (2:43 � 10�2, 5:45� 10�4, 1:73 � 10�3, 3:55 � 10�2, 0.938) -0.10430

(0.148, 0.052, 0.500, 0.100, 0.200) 0.00000

(0.148, 0.052, (6:90 � 10�2, 2:62� 10�2, 0.822,4:30 � 10�2, 4:33 � 10�2) -4.4793 � 10�3

0.540, 0.08, 0.180) (0.148, 0.052, 0.540, 0.08, 0.180) 0.00000

(2:31 � 10�2, 4:81� 10�4, 1:42 � 10�3, 2:89 � 10�2, 0.946) -0.12840

(0.148, 0.052, (7:99 � 10�2, 2:68� 10�2, 0.794,4:85 � 10�2, 5:04 � 10�2) -1.9581 � 10�3

0.560, 0.08, 0.160) (0.148, 0.052, 0.560, 0.08, 0.160) 0.00000

(2:49 � 10�2, 5:52� 10�4, 1:59 � 10�3, 3:14 � 10�2, 0.942) -0.10682

(0.148, 0.052, (0.108,3:68 � 10�2, 0.684,8:60 � 10�2, 8:60� 10�2) 1.0396 � 10�4

0.500, 0.120, 0.180) (0.119,4:13� 10�2, 0.639,9:46 � 10�2, 0.105) 1.1075 � 10�4

(2:95 � 10�2, 8:25� 10�4, 2:71 � 10�3, 4:93 � 10�2, 0.918) -0.04748

(0.136,3:92 � 10�2, 0.152, 0.156, 0.518) 6.2085 � 10�3

(0.148, 0.052, 0.500, 0.120, 0.180) 0.00000

(0.148, 0.052, (7:96 � 10�2, 2:63� 10�2, 0.784,5:77 � 10�2, 5:24 � 10�2) -1.9019 � 10�3

0.520, 0.100, 0.180) (0.148, 0.052, 0.520, 0.100, 0.180) 0.00000

(2:60 � 10�2, 6:18� 10�4, 1:93 � 10�3, 3:83 � 10�2, 0.933) -0.08658

(0.163,5:64 � 10�2, 0.397, 0.116, 0.267) -1.0107 � 10�4

(0.162,5:32 � 10�2, 0.271, 0.128, 0.385) 8.2373 � 10�5
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Table 9: Computational efficiency onn-propanol(1),n-butanol(2), benzene(3), ethanol(4), water(5) system with NRTL model.

Number of Root CPU Time (sec)

Feed Inclusion Tests Sun Ultra 2/1300

(z1; z2; z3; z4; z5) F FCS FCSI FCSM F FCS FCSI FCSM

(0.148, 0.052, 0.50, 0.10, 0.20) 493,833 98,057 73,756 58,733 147.98 37.77 36.16 32.97

(0.148, 0.052, 0.54, 0.08, 0.18) 387,526 77,118 58,174 45,968 115.50 29.44 28.24 25.51

(0.148, 0.052, 0.56, 0.08, 0.16) 569,988 112,822 84,689 66,897 170.56 43.56 41.57 37.54

(0.148, 0.052, 0.50, 0.12, 0.18)1,612,909 437,783 310,894 240,244471.00 166.11 148.45 131.99

(0.148, 0.052, 0.52, 0.10, 0.18) 857,095 173,687 129,540 103,053258.50 67.97 64.64 58.98
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Table 10: Problem 4: UNIQUAC parameters (McDonald and Floudas, 1995a)

�ij

inj 1 2 3

1 1.0 0.432589 0.830749

2 0.789593 1.0 0.354992

3 0.204736 0.636678 1.0

rj

2.4088 8.8495 2.0086

qj = q0j

2.2480 7.3720 1.8680
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Table 11: Stationary points for ethylene glycol(1), lauryl alcohol(2), nitromethane(3) system at a number of
feeds using UNIQUAC model.

Feed Stationary Points D

(z1; z2; z3) (x1; x2; x3)

(0.27078, 0.47302, (0.620,5:62 � 10�3, 0.374) -4.6119 � 10�6

0.25620) (0.369,1:53 � 10�2, 0.615) 7.9578 � 10�3

(2:33 � 10�2, 1:73 � 10�3, 0.975) -0.05876

(0.27078, 0.47302, 0.25620) 0.00000

(0.347, 0.157, 0.496) 0.03454

(0.40, 0.30, 0.30) (0.754,2:22 � 10�3, 0.244) -0.11395

(0.190,1:03 � 10�2, 0.799) -0.01094

(3:59 � 10�2, 2:05 � 10�3, 0.962) -0.02711

(0.409, 0.284, 0.308) 5.1978 � 10�6

(0.400, 0.300, 0.300) 0.00000

(0.30, 0.40, 0.30) (0.629,4:70 � 10�3, 0.366) -0.04575

(0.359,1:31 � 10�2, 0.628) -0.03536

(2:34 � 10�2, 1:55 � 10�3, 0.975) -0.10136

(0.349, 0.206, 0.444) -7.9580 � 10�3

(0.300, 0.400, 0.300) 0.00000

(0.30, 0.30, 0.40) (2:00 � 10�2, 1:32 � 10�3, 0.979) -0.15664

(0.298, 0.315, 0.387) -3.8209 � 10�6

(0.300, 0.300, 0.400) 0.00000
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Table 12: Computational efficiency on ethylene glycol(1), lauryl alcohol(2), nitromethane(3) system with
UNIQUAC model.

Number of Root CPU Time (sec)

Feed Inclusion Tests Sun Ultra 2/1300

(z1; z2; z3) F FCS FCSI FCSM F FCS FCSI FCSM

(0.27078, 0.47302, 0.25620) 9651 4307 4022 3535 1.093 0.681 0.703 0.829

(0.40, 0.30, 0.30) 18,577 10,105 9563 6618 2.082 1.380 1.575 1.459

(0.30, 0.40, 0.30) 10,183 4553 4228 3623 1.154 0.651 0.738 0.847

(0.30, 0.30, 0.40) 15,055 7781 7338 5635 1.689 1.073 1.223 1.262
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Table 13: Problem 5: UNIQUAC parameters (Sørensen and Arlt, 1979–1987)

�ij

inj 1 2 3 4

1 1.0 1.26362 3.36860 0.85128

2 0.99972 1.0 1.02041 0.89333

3 0.31633 0.79027 1.0 0.96249

4 0.49739 1.09619 0.26222 1.0

rj

2.2024 3.1878 3.1680 4.0464

qj = q0j

2.072 2.400 2.484 3.240
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Table 14: Stationary points for acetic acid(1), benzene(2), fufural (3), cyclohexane(4) system at a number
of feeds using UNIQUAC model.

Feed Stationary Points D

(z1; z2; z3; z4) (x1; x2; x3; x4)

(0.25, 0.25, (0.25, 0.25, 0.25, 0.25) 0.0000

0.25, 0.25)

(0.05, 0.20, (1:75 � 10�2, 0.200, 0.134, 0.649) -4.9318 � 10�3

0.35, 0.40) (6:14 � 10�2, 0.187, 0.430, 0.321) -2.2164 � 10�4

(0.050, 0.200, 0.350, 0.400) 0.00000

(0.05, 0.21, (2:04 � 10�2, 0.212, 0.149, 0.618) -2.8447 � 10�3

0.34, 0.40) (5:98 � 10�2, 0.199, 0.407, 0.334) -1.1141 � 10�4

(0.050, 0.210, 0.340, 0.400) 0.00000

(0.05, 0.22, (2:42 � 10�2,0.225, 0.169, 0.582) -1.3244 � 10�3

0.33, 0.40) (5:75 � 10�2, 0.213, 0.378, 0.351) -3.7713 � 10�5

(0.050, 0.220, 0.330, 0.400) 0.00000

(0.05, 0.23, (2:97 � 10�2, 0.263, 0.197, 0.537) -3.6123 � 10�4

0.32, 0.40) (5:35 � 10�2, 0.227, 0.342, 0.378) -2.5032 � 10�6

(0.050, 0.230, 0.320, 0.400) 0.00000
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Table 15: Computational efficiency on acetic acid(1), benzene(2), furfural(3), cyclohexane(4) system with
UNIQUAC model.

Number of Root CPU Time (sec)

Feed Inclusion Tests Sun Ultra 2/1300

(z1; z2; z3; z4) F FCS FCSI FCSM F FCS FCSI FCSM

(0.25, 0.25, 0.25, 0.25) 33,971 4976 4209 4209 7.517 1.162 1.240 1.301

(0.05, 0.20, 0.35, 0.40) 69,092 8190 7095 7095 14.59 1.906 2.103 2.191

(0.05, 0.21, 0.34, 0.40) 78,789 9919 8491 8491 16.61 2.311 2.512 2.617

(0.05, 0.22, 0.33, 0.40) 93,380 12,657 10,955 10,95519.77 2.958 3.278 3.411

(0.05, 0.23, 0.32, 0.40) 126,174 30,511 26,947 26,94726.65 7.092 7.927 8.269
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Table 16: Problem 6: UNIQUAC parameters (Sørensen and Arlt, 1979–1987)

�ij

inj 1 2 3 4 5

1 1.0 1.26362 3.36860 0.85128 1.54662

2 0.99972 1.0 1.02041 0.89333 0.09441

3 0.31633 0.79027 1.0 0.96249 0.60488

4 0.49739 1.09619 0.26222 1.0 0.08839

5 2.44225 0.13507 0.69066 0.19491 1.0

rj

2.2024 3.1878 3.1680 4.0464 0.9200

qj = q0j

2.072 2.400 2.484 3.240 1.400
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Table 17: Stationary points for acetic Acid(1), benzene(2), furfural(3), cyclohexane(4), water(5) system at a
number of feeds using UNIQUAC model.

Feed Stationary Points D

(z1; z2; z3; z4; z5) (x1; x2; x3; x4; x5)

(0.20, 0.20, 0.20 (3:04 � 10�2, 0.302,3:44 � 10�2, 0.622,1:06� 10�2) -0.11354

0.20, 0.20) (0.227,3:34 � 10�3, 4:75 � 10�2, 1:58� 10�3, 0.720) -0.17765

(0.200, 0.200, 0.200, 0.200, 0.200) 0.00000

(0.20, 0.25, 0.20 (0.217,3:66 � 10�3, 4:08 � 10�2, 1:04� 10�3, 0.737) -0.17697

0.15, 0.20) (4:35 � 10�2, 0.412,5:50 � 10�2, 0.475,1:47� 10�2) -0.07454

(0.200, 0.250, 0.200, 0.150, 0.200) 0.00000

(0.20, 0.25, 0.25 (0.270,1:43 � 10�2, 0.118,4:83 � 10�3, 0.593) -0.06565

0.15, 0.15) (6:89 � 10�2, 0.393,9:84 � 10�2, 0.420,2:03� 10�2) -0.02410

(0.200, 0.250, 0.250, 0.150, 0.150) 0.00000

(0.10, 0.25, 0.25 (5:69 � 10�2, 1:38 � 10�4, 7:32 � 10�3, 4:54 � 10�5, 0.936) -0.44049

0.15, 0.25) (1:10 � 10�2, 0.433,6:78 � 10�2, 0.471,1:73� 10�2) -0.10803

(0.100, 0.250, 0.250, 0.150, 0.250) 0.00000

(0.15, 0.25, 0.25 (0.117,7:69 � 10�4, 1:81 � 10�2, 1:61� 10�4, 0.864) -0.24901

0.10, 0.25) (2:63 � 10�2, 0.497,8:43 � 10�2, 0.375,1:72� 10�2) -0.09182

(0.150, 0.250, 0.250, 0.100, 0.250) 0.00000
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Table 18: Computational efficiency on acetic Acid(1), benzene(2), furfural(3), cyclohexane(4), water(5) system with UNIQUAC model.

Number of Root CPU Time (sec)

Feed Inclusion Tests Sun Ultra 2/1300

(z1; z2; z3; z4; z5) F FCS FCSI FCSM F FCS FCSI FCSM

(0.20, 0.20, 0.20, 0.20, 0.20) 1,999,134 618,759 562,050 311,745648.64 196.70 233.93 143.68

(0.20, 0.25, 0.20, 0.15, 0.20) 2,086,106 712,531 649,510 352,054657.67 224.83 268.29 161.25

(0.20, 0.25, 0.25, 0.15, 0.15) 3,704,189 1,285,709 1,179,217 648,8751201.8 406.69 488.56 296.40

(0.10, 0.25, 0.25, 0.15, 0.25) 1,294,290 255,134 224,104 114,753423.12 85.17 98.38 55.28

(0.15, 0.25, 0.25, 0.10, 0.25) 1,645,807 456,376 408,388 214,395536.58 183.85 172.46 100.63
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