Continuation of an example given in Recitation 5 on $9 / 10$

September 10, 2003

In recitation 5 I began a problem, but didn't finish it. Here it is.

The Problem Define points

$$
\begin{aligned}
Q_{1} & =(1,0,0) \\
Q_{2} & =(-1,1,0) \\
Q_{3} & =(0,3,3)
\end{aligned}
$$

Let L be the line passing through Q_{2} and Q_{3}. Let P be the plane containing Q_{1} and L. Write an equation for the plane P.

Solution We first compute a normal vector \vec{V} to the plane P. By subtracting the head of the vector from the tail of the vector, we compute

$$
\begin{aligned}
Q_{2} \vec{Q}_{3} & =\langle 1,2,3\rangle \\
Q_{2} \vec{Q}_{1} & =\langle 2,-1,0\rangle
\end{aligned}
$$

which gives a normal vector

$$
\begin{aligned}
\vec{V} & =Q_{2} Q_{3} \otimes Q_{2} Q_{1} \\
& =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 2 & 3 \\
2 & -1 & 0
\end{array}\right| \\
& =3 \hat{i}+6 \hat{j}-5 \hat{k}
\end{aligned}
$$

The plane P is the set of all points $Q=(x, y, z)$ with the property that

$$
\overrightarrow{Q_{2} Q} \cdot \vec{v}=0
$$

We may write the vector

$$
\overrightarrow{Q_{2} Q}=\langle x, y, z\rangle-\langle-1,1,0\rangle=\langle x+1, y-1,0\rangle
$$

thus we have

$$
0=\langle x+1, y-1, z\rangle \cdot\langle 3,6,-5\rangle=(3 x+3)+(6 y-6)-5 z
$$

Bring the constants to the other side, we have

$$
3 x+6 y-5 z=3
$$

This is the equation we wanted.

