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1. Introduction

We have been introduced to the idea of homology, which derives from a chain complex of
singular or simplicial chain groups together with some map ∂ between chain groups Cn →
Cn−1. The map ∂ has the property that ∂∂φ = 0 for all chains φ. We define the nth homology
group Hn(X) for this chain complex to be the quotient group ker ∂/Im ∂ at Cn.

We now shift our concern from these chain groups Cn to dual cochain groups C∗n. We define
each dual cochain group C∗n to be the respective group of all homomorphisms Hom(Cn, G)
between Cn and a selected group G. We can define a dual coboundary map δ : C∗n → C∗n+1

sending a homomorphism ϕ : Cn → G to the homomorphism ϕ∂ : Cn+1 → G. As ∂∂ = 0,
δδ=0, and the cohomology group Hn(C;G) is the quotient group ker δ/Im δ at C∗n.

2. Motivation

The motivation here comes from observing the set of all functions f from basis elements
of Cn to some selected group G. Because these functions are defined on basis elements, this
set of functions is identified precisely with the set of all homomorphisms of Cn to G.

Consider that we are observing a one-dimensional ∆-complex X, where ∆1(X) and ∆0(X)
are the simplicial chain groups. We can have a function f that defines the height of each
vertex of the complex as an integer; this function extends naturally to a homomorphism
f : ∆0(X)→ Z. The coboundary of f , δf may then be the map that calculates the change in
height along each oriented edge of the complex. δf([v0, v1]) = f([v1])− f([v0]). This extends
naturally to a homomorphism δf : ∆1(X)→ Z.

The kernel of the coboundary homomorphism of the group of 1-cochains is the entire group,
since the group of 2-cochains is empty. The cohomology group H1

∆(X;Z) is then the quotient
of the entire group of 2-cochains with the boundary (image) of the group of 1-cochains. The
nontrivial elements are generated by the functions from edges that are not the images of
functions from vertices.

If X is a tree, or a disjoint union of trees, then for any function g from the edges to Z
we can find a function f whose coboundary is g by defining the value of f for one vertex of
each connected component of X and then extrapolating values for all neighboring vertices
using the difference values that g defines along each edge. Induction gives the values of f
for all vertices in X. Every basis element of the group of 1-cochains has a pre-image in
the group of 0-cochains, so the coboundary homomorphism is surjective and the cohomology
group H1

∆(X;Z) is trivial.
1
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Otherwise, we can define f such that δf = g if and only if the following condition holds.
For any loop of edges {[v0, v1], ..., [vn−1, vn], [vn, v0]} ⊂ ∆1(X),

0 = g([v0, v1]) + ...+ g([vn−1, vn]) + g([vn, v0]).

Those g that have nontrivial cohomology classes are those that do not satisfy this condition.

The element ([v0, v1] + ... + [vn−1, vn] + [vn, v0]) ∈ ∆1(X) is in fact an elementary “cycle”
in ∆1(X), that is, it is in ker ∂. It is always true that all “coboundaries” δf must vanish on
cycles. In this particular instance the converse is true: all homomorphisms that vanish on
cycles are coboundaries. This second statement is not always true for higher cochain groups.

3. Background

Before discussing cohomology, we first recall some familiar definitions from homology.

Definition 3.1. A chain complex is a sequence

...
∂n+2−−−→ Cn+1

∂n+1−−−→ Cn
∂n−→ Cn−1

∂n−1−−−→ ...(3.1.1)

of chain groups together with boundary homomorphisms ∂i between the chain groups
with the important property that ∂i∂i+1 = 0 for all i. For ease of notation, we frequently
refer to each boundary homomorphism simply as ∂, without the subscript.

With this property, we know that Im ∂n+1 ⊂ ker ∂n. We call elements of the image bound-
aries, and elements of the kernel cycles. The nth homology group in the chain complex
is defined to be the quotient

Hn(C) = ker ∂n/Im ∂n+1.(3.1.2)

Definition 3.2. A sequence

...
gn+2−−→ Gn+1

gn+1−−→ Gn
gn−→ Gn−1

gn−1−−→ ...(3.2.1)

of groups together with homomorphisms gi between them is said to be exact at Gn if Im
gn+1 = ker gn. A sequence that is exact at every stage is said to be an exact sequence.

A short exact sequence is an exact sequence with 0’s at either end:

0→ G2
g2−→ G1

g1−→ G0 → 0.(3.2.2)

A split short exact sequence is a short exact sequence where G1
∼= G2 ⊕G0.

Note that for a short exact sequence, the homomorphism g2 must be injective, and the
homomorphism g1 must be surjective.
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4. Short exact sequence of chain complexes

One concept that we will use repeatedly when discussing cohomology will be the idea that
any short exact sequence of chain complexes can be stretched out into a long exact sequence
of homology groups. While we will explain this concept for a short exact sequence of chain
complexes and homology groups, it also extends naturally to a short exact sequence of cochain
complexes and cohomology groups.
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A commutative diagram of the form

0 0 0
↓ ↓ ↓

...
∂−→ An+1

∂−→ An
∂−→ An−1

∂−→ ...yi
yi

yi
...

∂−→ Bn+1
∂−→ Bn

∂−→ Bn−1
∂−→ ...yj

yj
yj

...
∂−→ Cn+1

∂−→ Cn
∂−→ Cn−1

∂−→ ...
↓ ↓ ↓
0 0 0

(4.0.3)

where the columns are exact and the rows are chain complexes is said to be a short exact
sequence of chain complexes.

We will show that we can stretch out any short exact sequence of chain complexes into a
long exact sequence of homology groups:

...
∂−→ Hn(A)

i∗−→ Hn(B)
j∗−→ Hn(C)

∂−→ Hn−1(A)
i∗−→ Hn−1(B)

j∗−→ ...(4.0.4)

Note that these groups Hn(G) are the homology groups of the homomorphisms ∂ : Gn →
Gn−1, where “G” can be replaced by “A”, “B”, or “C”.

The commutativity of the squares in the short exact sequence of chain complexes implies
that i and j are chain maps: i(∂a) = ∂i(a) and j(∂b) = ∂j(b). The image of any boundary is
a boundary, and the image of any cycle is a cycle. They induce homomorphisms i∗ : Hn(A)→
Hn(B) and j∗ : Hn(B)→ Hn(C). We now must define ∂ : Hn(C)→ Hn−1(A).

Since j is onto, c = j(b) for some b ∈ Bn. ∂b ∈ Bn−1 is in ker j, as can be seen by a direct
calculation j(∂b) = ∂j(b) = ∂c = 0. Since ker j =Im i, ∂b = i(a) for some a ∈ An−1.

Note: i(∂a) = ∂i(a) = ∂∂b = 0. by injectivity of i, ∂a = 0. Thus we know a is a cycle, and
hence has a homology class [a].

Lemma 4.1. Define ∂ : Hn(C) → Hn−1(A) to be the map sending the homology class of c
to the homology class of a as defined above. ∂[c] = [a]. ∂ is a well defined homomorphism
between homology groups.

Proof. ∂ is well-defined:

* a is uniquely determined by ∂b since i is injective.

* if we choose a different value b′ instead of b where j(b′) = j(b) = c, then j(b′ − b) = 0 so
b′ − b ∈ ker j =Im i. b′ − b = i(a′) for some a′, so we can write b′ = b+ i(a′). Our value a is
then replaced by a + ∂a′: i(a + ∂a′) = i(a) + i(∂a′) = ∂b + ∂i(a′) = ∂(b + i(a′)) = ∂b′. This
new element a+ ∂a′ is homologous to a so we get the same homology class for ∂[c].

* if we choose a different value c′ in the homology class of c, we replace c with c′ = c+∂c′′ for
some value c′′ ∈ Cn+1. c

′′ = j(b′′) for some b′′ ∈ Bn+1. c
′ = c+∂j(b′′) = c+j(∂b′′) = j(b+∂b′′).
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b is replaced by b + ∂b′′, which leaves ∂b unchanged and therefore we get the same value for
a.

∂ : Hn(C)→ Hn−1(A) is a homomorphism:

Let ∂[c1] = [a1] and ∂[c2] = [a2] via elements b1 and b2 as above. j(b1 +b2) = j(b1)+j(b2) =
c1 + c2 and i(a1 + a2) = i(a1) + i(a2) = ∂b1 + ∂b2 = ∂(b1 + b2). Thus calculating ∂([c1] + [c2])
as above gives [a1] + [a2], as required. 2

Theorem 4.2. The long sequence of homology groups

...
∂−→ Hn(A)

i∗−→ Hn(B)
j∗−→ Hn(C)

∂−→ Hn−1(A)
i∗−→ Hn−1(B)

j∗−→ ...

is exact.

Proof. We must verify that the kernel of each homomorphism is equal to the image of the
prior homomorphism.

Im i∗ = ker j∗: Im i∗ ⊂ ker j∗ because ji = 0 in the short exact sequence and this implies
that j∗i∗ = 0.

Consider now a representative cycle b ∈ Bn for a homology class in the kernel of j∗.
j∗([b]) = 0, so j(b) = ∂c′ for some c′ ∈ Cn+1. Since j is surjective at each dimension,
c′ = j(b′) for some b′ ∈ Bn+1. We evaluate j(b − ∂b′) = j(b) − j(∂b′) = j(b) − ∂j(b′) =
j(b) − ∂c′ = j(b) − j(b) = 0. (b − ∂b′) ∈ ker j =Im i. Thus b − ∂b′ = i(a) for some a ∈ An.
i(∂a) = ∂i(a) = ∂(b− ∂(b′)) = ∂b = 0 since b is a cycle. By injectivity of i, then, ∂a = 0 and
a is a cycle with a homology class [a]. i∗([a]) = [b− ∂b′] = [b], so [b] ∈Im i∗.

Im j∗ = ker ∂: If [c] ∈Im j∗, then b as defined when calculating ∂[c] has a homology class
and is therefore a cycle. ∂b = 0 so ∂([c]) = [a] = 0. Thus [c] ∈ ker ∂.

Now assume [c] is in ker ∂. ∂[c] = [a] = 0 so a = ∂a′ for some a′ ∈ An. ∂(b − i(a′)) =
∂b− ∂i(a′) = ∂b− i(∂a′) = ∂b− i(a) = ∂b− ∂b = 0, so the element (b− i(a′)) is a cycle in Bn

and has a homology class [b−i(a′)]. j(b−i(a′)) = j(b)−ji(a′) = j(b) = c so j∗([b−i(a′)]) = [c]
and thus [c] ∈Im j∗.

Im ∂ = ker i∗: i∗ takes ∂[c] = [a] to [∂b], which is 0, so Im ∂ ⊂ ker i∗.

A homology class in ker i∗ is represented by an cycle a ∈ An−1 where i(a) = ∂b for some
b ∈ Bn. ∂j(b) = j(∂b) = ji(a) = 0, so j(b) is a cycle and has a homology class [j(b)]. The
homomorphism ∂ takes [j(b)] to [a], and thus [a] ∈Im ∂. 2

We now have established a good deal of machinery and can begin our discussion of coho-
mology groups.
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5. Cohomology and the Universal Coefficient Theorem

Definition 5.1. Cohomology.

Given a chain complex

...
∂n+2−−−→ Cn+1

∂n+1−−−→ Cn
∂n−→ Cn−1

∂n−1−−−→ ...

and a group G, we can define the cochains C∗n to be the respective groups of all homomor-
phisms from Cn to G:

C∗n = Hom(Cn, G).(5.1.1)

We define the coboundary map δn : C∗n−1 → C∗n dual to ∂n as the map sending ϕ 7→
δnϕ = ∂∗nϕ. For an element c ∈ Cn and a homomorphism ϕ ∈ C∗n−1, we have

δnϕ(c) = ϕ(∂nc).(5.1.2)

Because ∂n∂n+1 = 0, it is easily seen that δn+1δn = 0. In other words, Im δn ⊂ ker δn+1.
With this fact we can define the nth cohomology group as the quotient:

Hn(C;G) = ker δn+1/Im δn.(5.1.3)

Again, for ease of notation, we will simply use the symbol δ to denote a coboundary map
and will not usually use the subscripts.

Define Zn to be the group of cycles in Cn (ker ∂n), and Bn to be the group of boundaries
in Cn (Im ∂n+1). As discussed earlier, Bn ⊂ Zn.

A cohomology class in Hn(C;G) is represented by a homomorphism ϕ : Cn → G such that
δϕ = 0. ϕ∂ = 0, or ϕ vanishes on Bn. Cocycles in C∗n are precisely those homomorphisms
that vanish on all boundaries in Cn.

If ϕ is a coboundary ϕ = δψ for some ψ ∈ C∗n−1, then ϕ(c) = δψ(c) = ψ(∂(c)), so ϕ
vanishes on Zn. Coboundaries in C∗n all vanish on cycles in Cn, but the converse is frequently
not true.

Consider the quotient of the subgroup of homomorphisms in C∗n vanishing on Bn with the
subgroup of homomorphisms in C∗n vanishing on Zn (note that we can always define quotient
group because a homomorphism vanishing on all cycles must vanish on the subgroup of
boundaries); temporarily call this quotient group Jn(C;G). Homomorphisms in this quotient
group are identified with homomorphisms in Hom(Zn/Bn, G) = Hom(Hn(C), G).

Assume that for a given chain complex C and group G, every homorphism ϕ : Cn → G
that vanishes on a cycle in Cn is a coboundary. In this case the coboundaries are precisely
those functions that vanish on Zn, and we already know that the cocycles are precisely those
functions that vanish on Bn. Hence Hn(C;G) = Jn(C;G) and in this case it is isomorphic
with Hom(Hn(C), G).

5.2. Motivation for the Universal Coefficient Theorem. An extremely important tool
in cohomology is the Universal Coefficient Theorem, which completely determines the nth
cohomology group Hn(C;G) of a chain complex C and group G, from the nth homology
group Hn(C) and the group G.
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As above, if the homomorphisms vanishing on cycles are all coboundaries, then the groups
Hom(Hn(C), G) and Hn(C;G) are isomorphic. The statement of the Universal Coefficient
Theorem provides a measure of the failure of this statement to be true.

Definition 5.3. The map h.

It would be ideal if Hn(C;G) were isomorphic to Hom(Hn(C), G). Unfortunately, this is
not usually the case. There is, however, a natural map h : Hn(C;G)→ Hom(Hn(C), G).

Given a representative cocycle ϕ for a cohomology class in Hn(C;G), consider the re-
striction ϕ0 = ϕ | Zn. This induces a quotient homomorphism ϕ̄0 : Zn/Bn → G. ϕ̄0 ∈
Hom(Hn(C), G). If the cohomology class of ϕ is [0], then ϕ is a coboundary, and as discussed
earlier, ϕ vanishes on Zn, so the restriction homomorphism ϕ0 = 0 and the induced quotient
homomorphism ϕ̄0 = 0. Thus there is a well-defined map:

h : Hn(C,G)→ Hom(Hn(C), G)(5.3.1)

sending

[ϕ] 7→ ϕ̄0.(5.3.2)

The map h is a homomorphism.

Lemma 5.4. The homomorphism h is surjective.

Proof.

The exact sequence

0→ Zn → Cn
∂−→ Bn−1 → 0(5.4.1)

splits, since Bn−1 is free, being a subroup of the free abelian group Cn−1. There is thus a
projection homomorphism p : Cn → Zn that restricts to the identity on Zn.

Given a homomorphism ϕ0 : Zn → G, we see that ϕ0p is a homomorphism from Cn to G.
ϕ0p(c) = ϕ0(c) for all c ∈ Zn.

There is a one-to-one correspondence of homomorphisms from Hn(C) to G (elements of
Hom(Hn(C), G)) and homomorphisms ϕ0 : Zn → G that vanish on Bn. If ϕ0 : Zn → G
vanishes on Bn, ϕ0p vanishes on Bn as well and it is thus a cocycle, ϕ0p ∈ ker δ. Thus we
have a natural homomorphism from the group Hom(Hn(C), G) to the group ker δ.

If we compose this homomorphism with the quotient map ker δ → Hn(C;G), we have a
homomorphism from Hom(Hn(C), G) to Hn(C;G). Following this homomorphism with h
gives the identity on Hom(Hn(C), G):

We first send a homomorphism ϕ−1 : Hn(C)→ G to the single homomorphism ϕ0 : Zn → G
that vanishes on Bn and takes the values for other elements of Zn that ϕ−1 takes for their
quotient classes in Hn(C). We then extend ϕ0 to a homomorphism ϕ1 : Cn → G where
ϕ1 = ϕ0p. This homomorphism is in ker δ, and we send it to its quotient class [ϕ1] in
Hn(C;G). We then apply h: we first choose a representative element of ϕ2 of [ϕ1], which is
a cocycle and thus must vanish on Bn. We then restrict its domain to Zn; this gives us ϕ0

again. We finally look at the induced quotient homomorphism ϕ̄0, which is indeed ϕ−1.

Thus h must be surjective onto Hom(Hn(C), G). 2
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It is easily seen that the elements of kerh are the cohomology classes of those homomor-
phisms that vanish on Zn. These homomorphisms all have cohomology classes because they
must vanish on boundaries and hence are cocycles. If every homomorphism that vanishes on
Zn is a coboundary, then these cohomology classes are all [0] and hence ker h is trivial. In

this case h : Hn(C;G)
h−→ Hom(Hn(C), G) is injective and is hence an isomorphism.

We have the following split short exact sequence:

0→ kerh→ Hn(C;G)
h−→ Hom(Hn(C), G)→ 0(5.4.2)

where kerh is trivial if and only if every homomorphism that vanishes on Zn is a coboundary.
If kerh is nontrivial, the nontrivial elements are cohomology classes of homomorphisms that
vanish on Zn but are not coboundaries.

Consider now the short exact sequence:

0→ Bn−1
in−1−−→ Zn−1 → Hn−1(C)→ 0.(5.4.3)

The map in−1 is the inclusion map and the map on the right is the quotient map.

Dualize this sequence via Hom(−−, G) to obtain

0← B∗
n−1

i∗n−1←−− Z∗n−1 ← Hn−1(C)∗ ← 0.(5.4.4)

This sequence need not be exact, but the dual of a split short exact sequence is always a split
short exact sequence, so if (5.4.3) splits then (5.4.4) is split exact.

Let δ′ be the natural extension of the map δ to all homorphisms in B∗
n−1. If ϕ0 ∈ B∗

n−1

then δ′ϕ0 is a homomorphism from Cn to G; i.e. it is an element of Cn−1. It is not necessarily
a coboundary, but it does vanish on Zn. Furthermore, for each nontrivial class of homomor-
phisms [ψ] ∈ kerh that vanishes on Zn, we can find homomorphisms ψ in the image of δ′

(note that [ψ] being nontrivial implies that such ψ are not coboundaries.)

The map δ′ϕ0 a coboundary if and only if ϕ0 : Bn−1 → G can be extended to a ho-
momorphism ϕ : Cn−1 → G. This is the case if and only if it can first be extended to a
homomorphism ϕ1 : Zn−1 → G. In other words, ϕ0 ∈Im i∗n−1.

The cokernel of i∗n−1 is the quotient B∗
n−1/Im i∗n−1. By the arguments above, this cokernel

is isomorphic with kerh.

We can then replace (5.4.2) with the new split short exact sequence:

0→ coker i∗n−1 → Hn(C;G)
h−→ Hom(Hn(C), G)→ 0.(5.4.5)

In order to completely describe the group Hn(C;G) in terms of the groups Hn(C) and G,
we wish to describe the term coker i∗n−1 simply in terms of the homology groups of C.

In the case that (5.4.4) is exact, coker i∗n−1 is zero. This is usually not the case. Sequence
(5.4.3) does, however, have a special quality that it is a “free resolution” of Hn−1(C).
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Definition 5.5. Free Resolution of an Abelian Group.

A free resolution of an abelian group H is an exact sequence

...→ F2
f2−→ F1

f1−→ F0
f0−→ H → 0(5.5.1)

where each Fn is free. If we dualize a free resolution by looking at the groups of homomor-
phisms Hom(−−, G), we get a dual complex

...← F ∗2
f∗2←− F ∗1

f∗1←− F ∗0
f∗0←− H∗ ← 0.(5.5.2)

Let us use the temporary notation Hn(F ;G) to indicate the cohomology group ker f ∗n+1/Im
f ∗n of the dual complex.

Lemma 5.6. Every abelian group H has a free resolution of the form

0→ F1 → F0 → H → 0,(5.6.1)

with Fi = 0 for i > 1.

Proof. We obtain this free resolution as follows. Choose any set of generators for H and
let F be a free abelian group with basis in one-to-one correspondence with these generators.
We then have a surjective homomorphism f0 : F0 → H sending the basis elements to the
chosen generators. The kernel of f0 is free, being a subroup of a free abelian group; we let F1

be this kernel with f1 : F1 → F0 as the inclusion map. Take Fi = 0 for i > 1. We leave it to
the reader to check that the sequence is exact. 2

In this case Hn(F ;G) = 0 for n > 1.

Lemma 5.7. For any two free resolutions F and F ′ of a group H, there are isomorphisms
Hn(F ;G) ∼= Hn(F ′;G) for all n.

We omit the proof here.

Corollary 5.8. For any free resolution F of a group H, Hn(F ;G) = 0 for n > 1.

This follows immediately from the above two lemmas. H1(F ;G) is the only interesting
cohomology group, and it is invariant regardless of the free resolution F . This group depends
only on H and G, and is denoted as Ext(H,G).

5.9. The Universal Coefficient Theorem. We now return to our discussion of cohomology
groups.

Recall the short exact sequence

0→ Bn−1
in−1−−→ Zn−1 → Hn−1(C)→ 0(5.9.1)

and its dual

0← B∗
n−1

i∗n−1←−− Z∗n−1 ← Hn−1(C)∗ ← 0.(5.9.2)

The first sequence above is a free resolution F of Hn−1(C). coker i∗n−1 = Z∗n−1/ ker i∗n−1 is
then H1(F ;G) by definition. We have seen that H1(F ;G) is independent of the choice of free
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resolution F and is dependent only on H and G and is denoted Ext(H,G). In this case the
group H is the group of homomorphisms Hn−1(C). We have that

coker i∗n−1 = Ext(Hn−1(C), G).(5.9.3)

Replacing terms in the split short exact sequence (5.3.5) gives us the remarkable Universal
Coefficient Theorem for Cohomology, whose statement is as follows.

Theorem 5.10. If a chain complex C of free abelian groups has homology groups Hn(C),
then the cohomology groups Hn(C;G) of the cochain complex Hom(Cn, G) are determined by
split short exact sequences

0→ Ext(Hn−1(C), G)→ Hn(C;G)
h−→ Hom(Hn(C), G)→ 0(5.10.1)

Proposition 5.11. In order to utilize this theorem we note some properties about the groups
Ext(H,G).

5.11.1. Ext(H ⊕H ′, G) ∼= Ext(H,G)⊕ Ext(H ′, G)

5.11.2. Ext(H,G) = 0 if H is free

5.11.3. Ext(Zn, G) ∼= G/nG

Proof. We can use a direct sum of free resolutions for H and H ′ as a free resolution for
H ⊕ H ′. (5.10.1) follows directly when we look at cohomology groups. If H is free, then
0→ H → H → 0 is a free resolution of H, so we get (5.10.2) H1(F,G) = 0.

To find the third property we use the free resolution 0 → Z n−→ Z → Zn → 0. This
gives a dual sequence 0 ← Hom(Z, G)

n←− Hom(Z, G) ← Hom(Zn, G) ← 0. The groups
Hom(Z, G) here are isomorphic to G, so the image of Hom(Z, G) under the homomorphism
n is isomorphic to nG and Ext(Zn, G) ∼= G/nG. 2

Properties (5.10.1) and (5.10.2) imply that Ext(H,G) ∼= Ext(T,G), where T is the torsion
subgroup of H, if the free part of H is finitely generated. Properties (5.10.1) and (5.10.3)
imply that Ext(T,Z) ∼= T if T is finitely generated. So we have that Ext(H,Z) is isomorphic
to the torsion subgroup of H if H is finitely generated.

We can also see thatHom(H,Z) is isomorphic to the free part ofH ifH is finitely generated,
so the splitting of the sequence in the Universal Coefficient Theorem gives us the following
corollary:

Corollary 5.12. If the homology groups Hn(C) and Hn−1(C) of a chain complex C of
free abelian groups are finitely generated, with torsion subgroups Tn ⊂ Hn(C) and Tn−1 ⊂
Hn−1(C), then Hn(C;Z) ∼= Tn−1 ⊕ (Hn(C)/Tn).

To conclude this section we have one more powerful corollary:

Corollary 5.13. If a chain map between chain complexes of free abelian groups induces an
isomorphism on homology groups, then it induces an isomorphism on cohomology groups with
any coefficient group G.
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6. Cohomology Groups of Spaces

We now finally turn our attention to the cohomology groups of spaces.

Definition 6.1. Given a space X and an abelian group G, define Cn(X;G), the group of
singular n-cochains of X with coefficients in G, to be the dual group Hom(Cn(X), G) of the
singular cochain group Cn(X).

Remark 6.2. A homomorphism ϕ ∈ Cn(X,G) assigns to each singular n-simplex σ : ∆n →
X a value ϕ(σ) ∈ G. Since the singular n-simplices are a basis for Cn(X), these values can
be chosen arbitrarily, and define the entire homomorphism ϕ. n-cochains are equivalent to
functions from singular n-simplices to G.

Definition 6.3. Define the coboundary map δ : Cn−1(X;G) → Cn(X;G) to be the dual
of the boundary map ∂ : Cn(X) → Cn−1(X). Define cohomology groups Hn(X;G) with
coefficients in G to be the quotient groups ker δ/ Im δ at Cn(X;G) in the cochain complex.

Remark 6.4. For a singlar (n+ 1)-simplex σ : ∆n+1 → X, we have

δϕ(σ) = ϕ(∂σ) = ϕ(
n∑

i=1

(−1)iσ | [v0, ..., v̄i, ..., vn+1]) =
n∑

i=1

(−1)iϕ(σ | [v0, ..., v̄i, ..., vn+1]).

We now have extended our definition of cohomology groups of chain complexes naturally
to a definition of cohomology groups of spaces. Since the chain groups Cn(X) are free, we
can extend the theorems for cohomology groups of chain complexes all naturally follow to
cohomology groups of chain complexes of spaces. The Universal Coefficient Theorem becomes:

Theorem 6.5. The cohomology groups Hn(X;G) of a space X with coefficients in G are
described by split short exact sequences:

0→ Ext(Hn−1(X), G)→ Hn(X;G)→ Hom(Hn(X), G)→ 0(6.5.1)

Here are a few examples of how the Universal Coefficient Theorem can be easily applied
to evaluate cohomology groups of familiar spaces.

Example 6.6. We have seen that the 0th homology group of P2 is H0(P2) ∼= Z, and the first
homology group of P2 is H1(P2) ∼= Z2. The torsion subgroup of Z is isomorphic to the trivial
group, and thus Ext(Z, G) = Ext(0, G) is the trivial group. Therefore the first cohomology
group H1(P;G) is isomorphic to the group of homomorphisms from Z2 to G, which is trivial
if G is free and otherwise is a direct sum of copies of Z2. The second homology group of P2

is trivial, and Ext(Z2, G) is isomorphic to G/2G, so the second cohomology group H2(P;G)
is isomorphic to G/2G.

Example 6.7. Both the 0th and first homology groups of S1 are isomorphic to Z, and
the higher homology groups of S1 are all isomorphic to the trivial group. Thus the first
cohomology group H1(S1;G) is isomorphic to the group of homomorphisms from Z to G,
which is isomorphic to G.

Example 6.8. The first homology group of the torus T1 is H1(T1) ∼= Z⊕Z, and the 0th and
second homology groups are each isomorphic to Z. The first cohomology group H1(T1;G) is
isomorphic to the group of homomorphisms from Z⊕ Z to the group G, which is trivial if G
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is a torsion group and otherwise is a direct sum of copies of G⊕G. The second cohomology
group H1(T1;G) is isomorphic to the group of homomorphisms from Z to the group G, which
is isomorphic to G.

In fact, the 0th and first cohomology groups of any space with coefficients in a group G are
isomorphic to Hom(H0(X), G) and Hom(H1(X), G), respectively, because there is no Ext
term when calculating H0(X;G) and Ext(H0(X), G) always is trivial because H0(X) is free.

Calculation of Ext(Hn−1(X), G) is extremely easy for most spaces X using proposition
(5.11), because the homology groups are finitely generated. Calculation of the group of
homomorphisms from Hn(X) to G is also usually fairly straightforward, so the Universal
Coefficient Theorem makes calculation of the nth cohomology group Hn(X;G) a trivial task
in most circumstances. Corollary 5.12 allows one to completely describe the nth cohomology
groups of a space X with coefficients in Z.

If X is path-connected, H1(X) is the abelianization of the fundamental group π1(X), and
thus because G is abelian, Hom(H1(X), G) and Hom(π1(X), G) are isomorphic.

7. The Long Exact Sequence of a Pair

We conclude this paper with a discussion of relative groups in homology and cohomology.

Definition 7.1. Relative Groups. Given a space X and a subspace A ⊂ X, we call (X,A)
a pair. Let Cn(X,A) be the quotient group Cn(X)/Cn(A). We call this the nth relative
chain group of X and A.

We have a boundary map defined, ∂ : Cn(X) → Cn−1(X). We define the boundary map
on Cn(A) to be the restriction of this map to the n-simplices in A, and the image of this map
is clearly in Cn−1(A) since subsimplices of n-simplices in A are all also simplices in A. We
can then define the boundary map ∂ : Cn(X,A)→ Cn−1(X,A) as the induced quotient map.

The relation ∂∂ holds here. The nth relative homology group Hn(X,A) for a pair is then
defined as ker ∂/ Im ∂.

We now wish to define the relative cohomology groups of a pair.

We have a short exact sequence

0→ Cn(A)
i−→ Cn(X)

j−→ Cn(X,A)→ 0(7.1.1)

where i is the inclusion map and j is the quotient map. We dualize this sequence via
Hom(−−, G) as usual and get the sequence

0← Cn(A;G)
i∗←− Cn(X;G)

j∗←− Cn(X,A;G)← 0.(7.1.2)

Claim 7.2. The sequence (7.1.2) is exact.

Proof. It is trivial that the sequence is exact at Cn(X,A;G).

The dual map i∗ restricts a cochain on X to a cochain on A. For a function from singular n-
simplices in X to G (recall that by Remark 6.2, this function identifies with a homomorphism
in Cn(X)), the image of this function under i∗ is obtained by restricting the domain of the
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function to singular n-simplices in A (which then identifies with the image homomorphism in
Cn(A)). Any homomorphism in Cn(A) is identified with a function from singular n-simplices
in A to G, and this function can be extended to be defined on all singular n-simplices in X,
arbitrarily, and then this extended function identifies with a homomorphism in Cn(X) whose
image is the homomorphism in A. Thus i∗ is surjective. The sequence is exact at Cn(A;G).

The kernel of i∗ consists of all singular cochains in Cn(X) that take the value 0 on singular
n-simplices in A ⊂ X. These cochains are identified with homomorphisms in Cn(X,A;G),
the set of all homomorphisms from Cn(X,A) = Cn(X)/Cn(A) to G. The kernel is then
exactly the image j∗(Cn(X,A;G)). Thus the sequence is exact at Cn(X;G). 2

We have identified the group Cn(X,G) with the set of functions from singular n-simplices
in X to G, and have identified the group Cn(X,G) with the set of functions from singular
n-simplices in X to G. The quotient group Cn(X,A) is generated by the singular n-simplices
with image not contained in A, so we can view Cn(X,A;G) as identified with functions from
singular n-simplices in X that vanish on n-simplices with image completely contained in A.

We have boundary maps defined, ∂ : Cn(X) → Cn−1(X) and ∂ : Cn(A) → Cn−1(A). We
have dual coboundary maps δ defined by applying Hom(−−, G). We can define the relative
coboundary map, δ : Cn−1(X,A;G) → Cn(X,A;G) as the map induced by the restrictions
of the maps δ. This defines the relative cohomology groups Hn(X,A;G).

Note that the relative coboundary map δ is not the same as the dual of the relative boundary
map ∂ : Cn(X,A)→ Cn−1(X,A).

Because the maps i and j commute with ∂, the maps i∗ and j∗ commute with δ, and the
sequence (7.1.2) becomes a short exact sequence of cochain complexes.

0 0 0
↓ ↓ ↓

...
δ−→ Cn−1(X,A;G)

δ−→ Cn(X,A;G)
δ−→ Cn+1(X,A;G)

δ−→ ...yj∗
yj∗

yj∗

...
δ−→ Cn−1(X;G)

δ−→ Cn(X;G)
δ−→ Cn+1(X;G)

δ−→ ...yi∗
yi∗

yi∗

...
δ−→ Cn−1(A;G)

δ−→ Cn(A;G)
δ−→ Cn+1(A;G)

δ−→ ...
↓ ↓ ↓
0 0 0

(7.2.1)

As we know from Section 4 of this paper, we can extend this to a long exact sequence of
cohomology groups.

...
δ−→ Hn(X,A;G)

j∗∗−→ Hn(X;G)
i∗∗−→ Hn(A;G)

δ−→ Hn+1(X,A;G)
j∗∗−→ ...(7.2.2)

Similarly, the short exact sequence (7.1.1) becomes a short exact sequence of chain com-
plexes and we have a long exact sequence of homology groups.
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...
j∗−→ Hn+1(X,A)

∂−→ Hn(A)
i∗−→ Hn(X)

j∗−→ Hn(X,A)
∂−→ ...(7.2.3)

There is a duality relationship between the connecting homomorphisms δ : Hn(A;G) →
Hn+1(X,A;G) and ∂ : Hn+1(X,A)→ Hn(A).

This dual relationship is expressed by the following commutative diagram:

Hn(A;G)
δ−→ Hn+1(X,A;G)yh

yh
Hom(Hn(A), G)

∂∗−→ Hom(Hn+1(X,A), G).

(7.2.4)

We leave it as an exercise to check that hδ = ∂∗h.
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