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Here are a few exercises in category theory, to acclimate you with the definitions.

1. Yoneda lemma. Let C be a category. We may consider the category Funct(Cop,Sets)
whose objects are contravariant functors C → Sets and whose morphisms are natu-
ral transformations, ignoring the caveat that the collection of natural transforma-
tions between two functors may not form a set. We have seen that objects Z ∈ C
give rise to contravariant functors

FZ : C → Sets

X 7→ MapC(X,Z) = FZ(X).

We have also seen that morphisms f : Z1 → Z2 give rise to natural transformations

f∗ : FZ1
= MapC(−, Z1)→ MapC(−, Z2) = FZ2

.

We thus have a functor

Y : C → Funct(C,Sets)

given by Y(Z) = FZ . This functor is called the Yoneda embedding.

Prove Yoneda’s lemma: the map

MapC(Z1, Z2)→ Nat(FZ1 , FZ2)

is a bijection. Here, Nat(FZ1
, FZ2

) is the collection of natural transformations. In
particular, FZ1

and FZ2
are naturally isomorphic functors if and only if Z1 and Z2

are isomorphic.

2. Adjoint functors. Let C and D be categories. A pair of covariant functors

F : C � D : G

are said to form an adjoint pair (F,G) if there is a natural isomorphism

η : MapD(F (−),−)
∼=−→ MapC(−, G(−))

between functors from Cop×D → Sets. Such an isomorphism η is called an adjunc-
tion. We say that F is left adjoint to G, and that G is right adjoint to F .

(a): Show that if G′ is also right adjoint to F , then there is a natural isomor-
phism G ∼= G′ (hint: you can use the Yoneda lemma).

(b): Show that if F ′ is also left adjoint to G, then there is a natural isomor-
phism F ∼= F ′ (hint: deduce this from (a) by being sneaky).

(c): Let S be a set. Show that there is an adjunction

Map(X × S, Y ) ∼= Map(X,Map(S, Y )).
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3. Adjoint functor formulation of limit, colimit Let I be a small category, and
suppose that C is a category which has all limits and colimits. Show that the pairs

const : C � CI : lim←−
lim−→ : CI � C : const

are adjoint pairs. Here
const : C → CI

is the functor which assigns to X ∈ ObC the “constant diagram”

(constX)(i) = X

with all arrows in the diagram identity morphisms. (Note that lim←− and lim−→ may be
regarded as functors - this follows from the fact that the universal property implies
that if limits and colimits exist, then they are unique up to unique isomorphism.)

4. Limit preservation properties of adjoint functors (a) Suppose that I is a small
category, and that

F : C � D : G

are a pair of adjoint functors. Suppose that both C and D have all limits and
colimits. Show that for any diagram X ∈ DI , there is an isomorphism

lim←−
i∈I

G(X(i)) ∼= G(lim←−
i∈I

X(i))

and for any diagram Y ∈ CI , there is an isomorphism

lim−→
i∈I

F (Y (i)) ∼= F (lim−→
i∈I

Y (i)).

(Note you should only need to prove one of these - the other should be deduced
using opposite categories)

(b) Show that if C has limits and colimits, then CI has all limits and colimits, and
these are formed “pointwise”: i.e. if J is a small category, and X ∈ (CI)J is a
J-shaped diagram of I-shaped diagrams, then

(lim←−
j∈J

X(j))(i) ∼= lim←−
j∈J

(X(j)(i))

(lim−→
j∈J

X(j))(i) ∼= lim−→
j∈J

(X(j)(i))

In the above equations, the limit/colimit on the LHS is taken in the category CI ,
whereas the limit/colimit on the RHS is taken in the category C.

(c) Deduce from (a) and (b) (and problem 3) that if I and J are small categories,
C has all limits and colimits, and

Z : I × J → C
is a functor, that we have

lim−→
i∈I

lim−→
j∈J

Z(i, j) ∼= lim−→
(i,j)∈I×J

Z(i, j) ∼= lim−→
j∈J

lim−→
i∈I

Z(i, j)

lim←−
i∈I

lim←−
j∈J

Z(i, j) ∼= lim←−
(i,j)∈I×J

Z(i, j) ∼= lim←−
j∈J

lim←−
i∈I

Z(i, j)
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