### 18.950: TAKE-HOME MIDTERM

1. (10 points) Suppose that $M \subset \mathbb{R}^{2}$ is a 1-manifold (i.e. parameterized by a curve $c: I \rightarrow \mathbb{R}^{2}$ ). I want you to define some analogs of the notions for surfaces that we studies for curves. Namely, define analogs of
a) a "Gauss map"

$$
\nu: I \rightarrow S^{1} \subset \mathbb{R}^{2}
$$

(in terms of the Frenet frame of $c$ ).
b) a "Shape operator"

$$
L: T_{x} M \rightarrow T_{x} M
$$

c) "Gaussian curvature" $K=\operatorname{Det} L$. What is the relationship between the "Gaussian curvature" defined above, and the curvature $\kappa$ of the curve $c$.
2. (7 points) Let

$$
c_{0}(t), c_{1}(t):[0,1] \rightarrow \mathbb{R}^{2}
$$

be two regular closed curves. The curves $c_{i}$ are said to be "regularly homotopic" if there exists a (smooth) function

$$
H(t, s):[0,1] \times[0,1] \rightarrow \mathbb{R}^{2}
$$

such that for each fixed $s_{0}$ the function

$$
\gamma_{s_{0}}(t)=H\left(t, s_{0}\right):[0,1] \rightarrow \mathbb{R}^{2}
$$

is a regular closed curve, and $\gamma_{0}(t)=c_{0}(t), \gamma_{1}(t)=c_{1}(t)$. Show that if $c_{0}$ and $c_{1}$ are regularly homotopic, they have the same rotation indices $U_{c_{0}}=U_{c_{1}}$.
[Hint: one way is to use the intermediate value theorem]
(3 points) When two curves are regularly homotopic, it means that one can be continuously deformed into another. Below I have drawn what looks like a regular homotopy between two curves, one of which has rotation index 0 , and the other which has rotation index 1 . Why is this not a contradiction? (a hueristic explaination will suffice.)


[^0]3. (7 points) Consider the torus, viewed as a surface of rotation given by the curve
$$
c(t)=(h(t), r(t))=(2+\cos t, \sin t)
$$
as in Definition 3.16. Determine which points $(t, \phi)$ have positive/negative/zero curvature. Explain why your answer makes sense given your intuition about the meaning of positive/negative/zero curvature.
4. (8 points) Let $c(t)=(h(t), r(t))$ be any simple closed curve, such that $r(t)$ is always positive. Show that for the resulting surface of rotation $M \subset \mathbb{R}^{3}$, when we integrate the Gaussian curvature, we get
$$
\int_{M} K d A=0 .
$$
(You should probably assume that $c$ is parameterized by arclength to make the calculations neater.)
5. ( 10 points) Do problem 6 of chapter 3 of the book. Explain the geometric meaning of the term $\theta$ that appears in the matrix $\tilde{g}_{i, j}$.


[^0]:    Date: Assigned: Thursday, 10/22/09, Due: Tuesday, 10/27/09.

