18.950: PSET 3

1. (5 points) [Problem 23 from text] Let c be a Frenet curve in \mathbb{R}^{n}. Show that

$$
\operatorname{det}\left(c^{\prime}, c^{\prime \prime}, c^{\prime \prime \prime}, \ldots, c^{(n)}\right)=\prod_{i=1}^{n-1} \kappa_{i}^{n-i}
$$

[Hint: write everything in the basis of the Frenet n-frame, and use the Frenet equations]
2. (5 points) [Problem 26 from text] Let c_{1} and c_{2} be two plane closed curves with the property that the line segment $\overline{c_{1}(t) c_{2}(t)}$ containing them never contains the origin. Show that $W_{c_{1}}=W_{c_{2}}$. [Hint: I found that I had to use proof by contradiction to do this problem.]
3. (3 points) [Problem 27 from the text] Show the equivalence (1) - (4) of 2.31 does not hold for curves which are not simply closed. [i.e. give an example of a closed curve which is not simple, where one, but not all, of $(1)-(4)$ hold. A well drawn picture will suffice.]
4. (4 points) Suppose that

$$
c:[a, b] \rightarrow S^{1} \subset \mathbb{R}^{2}
$$

is a closed curve. Show that the winding number can be computed by the line integral

$$
W_{c}=\frac{1}{2 \pi} \int_{c} x d y-y d x
$$

[^0]
[^0]: Date: Assigned: 9/29/09, Due: 10/6/09.

