18.950: PSET 9

1. (4 points) Show that if M is an n-manifold in \mathbb{R}^{N}, and if ω is a k-form on M expressed as

$$
\omega=\sum_{i_{1}<\ldots<i_{k}} \omega_{i_{1}, \ldots, i_{k}} d u^{i_{1}} \wedge \cdots \wedge d u^{i_{k}}
$$

in local coordinates, that $d(d \omega)=0$.
2. (5 points) The divergence theorem states that if R is a 3 -submanifold of \mathbb{R}^{3} with boundary surface ∂M, and if

$$
X(x, y, z)=(P(x, y, z), Q(x, y, z), R(x, y, z))
$$

is a vector field in \mathbb{R}^{3}, that

$$
\int_{\partial M} X \cdot d \vec{A}=\int_{M} d i v X d V
$$

Show that this is a special instance of the generalized Stoke's theorem

$$
\int_{\partial M} \omega=\int_{M} d \omega
$$

using the form

$$
\omega=P d y \wedge d z+Q d z \wedge d x+R d x \wedge d y
$$

3. (4 points) Suppose that M is a closed surface which is obtained by gluing two surfaces M_{1} and M_{2} along a common boundary curve A.

You may assume that each surface M_{1} and M_{2} is triangulated, and the triangulations match up (edges to edges, vertices to vertices) along the common boundary. (Here, A is 1-dimensional, the triangulations restrict to cover A with edges and vertices, and $\chi(A):=V-E$
4. (4 points) What is $\chi\left(D^{2}\right)$ (the 2-disk)? What is $\chi\left(S^{1} \times[0,1]\right)$ (a cylinder without top or bottom)?

5. (5 points) Argue by induction on g that for the surface M given by a g-holed doughnut (a.k.a. genus g surface) the Euler characteristic is

$$
\chi(M)=2-2 g
$$

Hint: problems 3 and 4 should be of assistance. You can get a genus $g+1$ surface from a genus g surface by cutting out two disks, and gluing in a cylinder.

[^0]

[^0]: Date: Assigned: 11/24/09, Due: THURSDAY 12/3/09.

